Účinok atómovej bomby. Jadrová bomba je zbraň, ktorej držanie je už odstrašujúci prostriedok. Röntgenový laser s jadrovým čerpaním

Úvod

Záujem o históriu vzniku a významu jadrových zbraní pre ľudstvo je determinovaný významom viacerých faktorov, medzi ktorými možno prvý rad zaujímajú problémy zabezpečenia rovnováhy síl vo svetovej aréne. relevantnosť budovania systému jadrového odstrašovania vojenskej hrozby pre štát. Prítomnosť jadrových zbraní má vždy určitý vplyv, priamy alebo nepriamy, na sociálno-ekonomickú situáciu a politickú rovnováhu síl v „krajinách vlastníka“ takýchto zbraní, čo okrem iného určuje relevantnosť výskumného problému. sme si vybrali. Problém vývoja a relevantnosti použitia jadrových zbraní s cieľom zabezpečiť Národná bezpečnosťštátu je v domácej vede pomerne aktuálny už viac ako desaťročie a táto téma sa ešte nevyčerpala.

Predmetom tejto štúdie sú atómové zbrane modernom svete, predmetom skúmania sú dejiny stvorenia atómová bomba a jeho technologické zariadenie. Novosť práce spočíva v tom, že problematika atómových zbraní je pokrytá z pohľadu viacerých oblastí: jadrová fyzika, národná bezpečnosť, história, zahraničná politika a inteligenciu.

Cieľom tejto práce je študovať históriu vzniku a úlohu atómovej (jadrovej) bomby pri zabezpečovaní mieru a poriadku na našej planéte.

Na dosiahnutie tohto cieľa boli v práci vyriešené tieto úlohy:

je charakterizovaný pojem „atómová bomba“, „jadrová zbraň“ atď.;

zvažujú sa predpoklady pre vznik atómových zbraní;

sú odhalené dôvody, ktoré podnietili ľudstvo k vytvoreniu atómových zbraní a ich použitiu.

analyzoval štruktúru a zloženie atómovej bomby.

Stanovený cieľ a ciele určili štruktúru a logiku štúdie, ktorá pozostáva z úvodu, dvoch častí, záveru a zoznamu použitých zdrojov.

ATÓMOVÁ BOMBA: ZLOŽENIE, BOJOVÉ CHARAKTERISTIKY A ÚČEL TVORBY

Pred začatím štúdia štruktúry atómovej bomby je potrebné porozumieť terminológii o tejto problematike. Takže vo vedeckých kruhoch existujú špeciálne pojmy, ktoré odrážajú vlastnosti atómových zbraní. Spomedzi nich vyzdvihujeme nasledovné:

Atómová bomba – pôvodný názov leteckej jadrovej bomby, ktorej pôsobenie je založené na výbušnej reťazovej reakcii jadrového štiepenia. S príchodom tzv vodíková bomba, na základe termonukleárnej fúznej reakcie sa pre ne ustálil spoločný termín – jadrová bomba.

Atómová bomba- letecká bomba s jadrovou náložou, má veľkú ničivú silu. Prvé dve jadrové bomby s ekvivalentom TNT asi 20 kt každá zhodili americké lietadlá na japonské mestá Hirošima a Nagasaki 6. a 9. augusta 1945 a spôsobili obrovské straty na životoch a zničenie. Moderné jadrové bomby majú ekvivalent TNT v desiatkach až miliónoch ton.

Jadrové alebo atómové zbrane sú výbušné zbrane založené na využití jadrovej energie uvoľnenej počas reťazovej jadrovej štiepnej reakcie ťažkých jadier alebo termonukleárnej fúznej reakcie ľahkých jadier.

Vzťahuje sa na zbrane hromadného ničenia (ZHN) spolu s biologickými a chemickými zbraňami.

Jadrová zbraň- súbor jadrových zbraní, prostriedky ich dodania k cieľu a ovládacie prvky. Týka sa zbraní hromadného ničenia; má obrovskú ničivú silu. Z vyššie uvedeného dôvodu USA a ZSSR výrazne investovali do vývoja jadrových zbraní. Podľa sily náloží a dosahu pôsobenia sa jadrové zbrane delia na taktické, operačno-taktické a strategické. Použitie jadrových zbraní vo vojne je katastrofou pre celé ľudstvo.

Jadrový výbuch je proces okamžitého uvoľnenia veľkého množstva vnútrojadrovej energie v obmedzenom objeme.

Pôsobenie atómových zbraní je založené na štiepnej reakcii ťažkých jadier (urán-235, plutónium-239 a v niektorých prípadoch aj urán-233).

Urán-235 sa používa v jadrových zbraniach, pretože na rozdiel od bežnejšieho izotopu uránu-238 dokáže uskutočniť samoudržiavaciu jadrovú reťazovú reakciu.

Plutónium-239 sa tiež označuje ako „plutónium zbraňovej kvality“, pretože je určený na vytvorenie jadrových zbraní a obsah izotopu 239Pu musí byť aspoň 93,5 %.

Na vyjadrenie štruktúry a zloženia atómovej bomby ako prototypu analyzujeme plutóniovú bombu „Fat Man“ (obr. 1) zhodenú 9. augusta 1945 na japonské mesto Nagasaki.

výbuch atómovej jadrovej bomby

Obrázok 1 - Atómová bomba "Fat Man"

Usporiadanie tejto bomby (typické pre plutóniovú jednofázovú muníciu) je približne nasledovné:

Neutrónový iniciátor - berýliová guľa s priemerom asi 2 cm, pokrytá tenkou vrstvou zliatiny ytria-polónia alebo kovu polónia-210 - primárny zdroj neutrónov pre prudký pokles kritickej hmotnosti a zrýchlenie nástupu reakciu. Vystrelí v momente prechodu bojového jadra do superkritického stavu (pri kompresii dochádza k zmesi polónia a berýlia s uvoľnením veľkého množstva neutrónov). V súčasnosti je okrem tohto typu iniciácie bežnejšia termonukleárna iniciácia (TI). Termonukleárny iniciátor (TI). Nachádza sa v strede nálože (podobne ako NI), kde sa nachádza malé množstvo termonukleárneho materiálu, ktorého stred je ohrievaný konvergujúcou rázovou vlnou a v procese termonukleárnej reakcie na pozadí teplôt ktoré vznikli, vzniká značné množstvo neutrónov, dostatočné na neutrónovú iniciáciu reťazovej reakcie (obr. 2).

Plutónium. Použite najčistejší izotop plutónia-239, aj keď na zvýšenie stability fyzikálne vlastnosti(hustota) a zlepšujú stlačiteľnosť náboja plutónium je dopované malým množstvom gália.

Plášť (zvyčajne vyrobený z uránu), ktorý slúži ako reflektor neutrónov.

Kompresný plášť vyrobený z hliníka. Poskytuje väčšiu rovnomernosť stlačenia rázovou vlnou a zároveň chráni vnútorné časti nálože pred priamym kontaktom s výbušninami a horúcimi produktmi jej rozkladu.

Výbušné s komplexný systém detonáciu, zabezpečujúcu synchrónnu detonáciu celej výbušniny. Synchronicita je nevyhnutná na vytvorenie striktne sférickej kompresnej (nasmerovanej vo vnútri lopty) rázovej vlny. Nesférická vlna vedie k vymršteniu materiálu loptičky v dôsledku nehomogenity a nemožnosti vytvorenia kritickej hmoty. Vytvorenie takéhoto systému na lokalizáciu výbušnín a detonácie bolo svojho času jednou z najťažších úloh. Používa sa kombinovaná schéma (systém šošoviek) „rýchlych“ a „pomalých“ výbušnín.

Telo vyrobené z duralových lisovaných prvkov - dva guľové kryty a remeň spojený skrutkami.

Obrázok 2 - Princíp činnosti plutóniovej bomby

Stred jadrového výbuchu je bod, v ktorom dôjde k záblesku alebo sa nachádza stred ohnivej gule, a epicentrum je projekcia centra výbuchu na zem alebo vodnú hladinu.

Jadrové zbrane sú najsilnejším a najnebezpečnejším typom zbraní hromadného ničenia, ktoré ohrozujú celé ľudstvo bezprecedentným zničením a zničením miliónov ľudí.

Ak dôjde k výbuchu na zemi alebo pomerne blízko jej povrchu, časť energie výbuchu sa prenesie na povrch Zeme vo forme seizmických vibrácií. Dochádza k javu, ktorý svojimi znakmi pripomína zemetrasenie. V dôsledku takéhoto výbuchu vznikajú seizmické vlny, ktoré sa šíria hrúbkou zeme na veľmi veľké vzdialenosti. Deštruktívny účinok vlny je obmedzený na polomer niekoľkých stoviek metrov.

V dôsledku extrémne vysokej teploty výbuchu dochádza k jasnému záblesku svetla, ktorého intenzita je stokrát väčšia ako intenzita slnečných lúčov dopadajúcich na Zem. Blesk uvoľňuje obrovské množstvo tepla a svetla. Svetelné žiarenie spôsobuje samovznietenie horľavých materiálov a spáli pokožku ľudí v okruhu mnohých kilometrov.

O nukleárny výbuch dochádza k ožiareniu. Trvá asi minútu a má takú vysokú penetračnú silu, že sú potrebné výkonné a spoľahlivé úkryty na ochranu pred ním na blízku vzdialenosť.

Jadrový výbuch je schopný okamžite zničiť alebo zneškodniť nechránené osoby, otvorene stojace zariadenia, konštrukcie a rôzny materiál. Hlavné škodlivé faktory jadrového výbuchu (PFYAV) sú:

rázová vlna;

svetelné žiarenie;

prenikajúce žiarenie;

rádioaktívna kontaminácia oblasti;

elektromagnetický impulz (EMP).

Počas jadrového výbuchu v atmosfére je rozdelenie uvoľnenej energie medzi PNF približne nasledovné: asi 50 % za rázová vlna, pre podiel svetelného žiarenia 35 %, pre rádioaktívne zamorenie 10 % a 5 % pre prenikajúce žiarenie a EMP.

Rádioaktívnu kontamináciu ľudí, vojenskej techniky, terénu a rôznych predmetov pri jadrovom výbuchu spôsobujú štiepne úlomky náložovej látky (Pu-239, U-235) a nezreagovaná časť nálože vypadávajúca z oblaku výbuchu, ako aj ako rádioaktívne izotopy vznikajúce v pôde a iných materiáloch pod vplyvom neutrónov – indukovaná aktivita. Postupom času aktivita štiepnych úlomkov rapídne klesá, najmä v prvých hodinách po výbuchu. Takže napríklad celková aktivita štiepnych úlomkov pri výbuchu 20 kT jadrovej zbrane bude za jeden deň niekoľkotisíckrát menšia ako za jednu minútu po výbuchu.

Svet atómu je taký fantastický, že jeho pochopenie si vyžaduje radikálny zlom v zaužívaných konceptoch priestoru a času. Atómy sú také malé, že ak by sa kvapka vody mohla zväčšiť na veľkosť Zeme, každý atóm v tejto kvapke by bol menší ako pomaranč. V skutočnosti jedna kvapka vody pozostáva zo 6000 miliárd (60000000000000000000000) atómov vodíka a kyslíka. A predsa, napriek svojej mikroskopickej veľkosti, má atóm štruktúru do určitej miery podobnú štruktúre našej slnečnej sústavy. V jeho nepochopiteľne malom strede, ktorého polomer je menší ako jedna bilióntina centimetra, sa nachádza pomerne obrovské „slnko“ – jadro atómu.

Okolo tohto atómového „slnka“ sa točia drobné „planéty“ – elektróny. Jadro sa skladá z dvoch hlavných stavebných kameňov Vesmíru – protónov a neutrónov (majú jednotiaci názov – nukleóny). Elektrón a protón sú nabité častice a množstvo náboja v každej z nich je úplne rovnaké, ale náboje sa líšia znamienkom: protón je vždy kladne nabitý a elektrón je vždy záporný. Neutrón neprenáša nabíjačka a preto má veľmi vysokú priepustnosť.

V stupnici atómového merania sa hmotnosť protónu a neutrónu považuje za jednotu. Atómová hmotnosť akéhokoľvek chemického prvku teda závisí od počtu protónov a neutrónov obsiahnutých v jeho jadre. Napríklad atóm vodíka, ktorého jadro pozostáva len z jedného protónu, má atómová hmotnosť rovná 1. Atóm hélia s jadrom dvoch protónov a dvoch neutrónov má atómovú hmotnosť rovnajúcu sa 4.

Jadrá atómov toho istého prvku obsahujú vždy rovnaký počet protónov, ale počet neutrónov môže byť rôzny. Atómy, ktoré majú jadrá s rovnakým počtom protónov, ale líšia sa počtom neutrónov a súvisia s odrodami toho istého prvku, sa nazývajú izotopy. Na odlíšenie od seba je symbolu prvku priradené číslo, rovná súčtu všetkých častíc v jadre daného izotopu.

Môže vzniknúť otázka: prečo sa jadro atómu nerozpadne? Koniec koncov, protóny v ňom obsiahnuté sú elektricky nabité častice s rovnakým nábojom, ktoré sa musia navzájom odpudzovať veľkou silou. Vysvetľuje to skutočnosť, že vo vnútri jadra existujú aj takzvané intranukleárne sily, ktoré priťahujú častice jadra k sebe. Tieto sily kompenzujú odpudivé sily protónov a nedovoľujú, aby sa jadro samovoľne rozletelo.

Vnútrojadrové sily sú veľmi silné, ale pôsobia len veľmi blízko. Preto sa jadrá ťažkých prvkov, pozostávajúce zo stoviek nukleónov, ukazujú ako nestabilné. Častice jadra sú tu v neustálom pohybe (v rámci objemu jadra) a ak k nim pridáte ešte nejaké množstvo energie navyše, dokážu prekonať vnútorné sily – jadro sa rozdelí na časti. Množstvo tejto prebytočnej energie sa nazýva excitačná energia. Medzi izotopmi ťažkých prvkov sú také, ktoré sa zdajú byť na samom pokraji samorozpadu. Stačí len malé „zatlačenie“, napríklad jednoduchý zásah do jadra neutrónu (a to ani nemusí byť urýchlené na vysokú rýchlosť), aby sa jadrová štiepna reakcia rozbehla. Niektoré z týchto „štiepnych“ izotopov boli neskôr vyrobené umelo. V prírode existuje iba jeden takýto izotop - je to urán-235.

Urán objavil v roku 1783 Klaproth, ktorý ho izoloval z uránovej smoly a pomenoval ho po nedávno objavenej planéte Urán. Ako sa neskôr ukázalo, v skutočnosti nešlo o samotný urán, ale o jeho oxid. Získal sa čistý urán, striebristo biely kov
až v roku 1842 Peligot. Nový prvok nemal žiadne pozoruhodné vlastnosti a neupútal pozornosť až do roku 1896, keď Becquerel objavil fenomén rádioaktivity uránových solí. Potom sa urán stal predmetom vedecký výskum a experimenty, ale praktické uplatnenie stále nemal.

Keď v prvej tretine 20. storočia fyzici viac-menej pochopili štruktúru atómového jadra, v prvom rade sa pokúsili splniť si dávny sen alchymistov - pokúsili sa ho premeniť chemický prvok v inom. V roku 1934 francúzski výskumníci, manželia Frederic a Irene Joliot-Curieovci, informovali Francúzskej akadémii vied o nasledujúcom experimente: keď boli hliníkové platne bombardované časticami alfa (jadrá atómu hélia), atómy hliníka sa zmenili na atómy fosforu. , ale nie obyčajný, ale rádioaktívny, ktorý naopak prešiel do stabilného izotopu kremíka. Atóm hliníka sa teda po pridaní jedného protónu a dvoch neutrónov zmenil na ťažší atóm kremíka.

Táto skúsenosť viedla k myšlienke, že ak sú jadrá najťažšieho prvku v prírode, uránu, „obalené“ neutrónmi, potom je možné získať prvok, ktorý v prírodných podmienkach neexistuje. V roku 1938 nemeckí chemici Otto Hahn a Fritz Strassmann vo všeobecnosti zopakovali skúsenosť manželov Joliot-Curieových, ktorí namiesto hliníka používali urán. Výsledky experimentu neboli vôbec také, aké očakávali - namiesto nového superťažkého prvku s hmotnostným číslom väčším ako má urán dostali Hahn a Strassmann ľahké prvky zo strednej časti. periodický systém: bárium, kryptón, bróm a niektoré ďalšie. Samotní experimentátori nedokázali pozorovaný jav vysvetliť. Až v nasledujúcom roku našla fyzika Lisa Meitner, ktorej Hahn oznámil svoje ťažkosti, správne vysvetlenie pozorovaného javu, podľa ktorého sa pri bombardovaní uránu neutrónmi jeho jadro rozštiepilo (rozštiepilo). V tomto prípade mali vzniknúť jadrá ľahších prvkov (tu sa zobralo bárium, kryptón a iné látky), ako aj uvoľnené 2-3 voľné neutróny. Ďalší výskum umožnil podrobne objasniť obraz toho, čo sa deje.

Prírodný urán pozostáva zo zmesi troch izotopov s hmotnosťou 238, 234 a 235. Hlavné množstvo uránu pripadá na izotop-238, ktorého jadro obsahuje 92 protónov a 146 neutrónov. Urán-235 je len 1/140 prírodného uránu (0,7 % (v jadre má 92 protónov a 143 neutrónov) a urán-234 (92 protónov, 142 neutrónov) je len 1/17 500 celkovej hmotnosti uránu ( 0 006% Najmenej stabilným z týchto izotopov je urán-235.

Z času na čas sa jadrá jeho atómov spontánne rozdelia na časti, v dôsledku čoho vznikajú ľahšie prvky periodického systému. Proces je sprevádzaný uvoľnením dvoch alebo troch voľných neutrónov, ktoré sa rútia obrovskou rýchlosťou - asi 10 000 km / s (nazývajú sa rýchle neutróny). Tieto neutróny môžu zasiahnuť iné jadrá uránu a spôsobiť jadrové reakcie. Každý izotop sa v tomto prípade správa inak. Jadrá uránu-238 vo väčšine prípadov jednoducho zachytávajú tieto neutróny bez akýchkoľvek ďalších transformácií. Ale asi v jednom z piatich prípadov, keď sa rýchly neutrón zrazí s jadrom izotopu 238, dôjde k zvláštnej jadrovej reakcii: jeden z neutrónov uránu-238 vyžaruje elektrón, ktorý sa zmení na protón, teda izotop uránu. zmení na viac
ťažkým prvkom je neptúnium-239 (93 protónov + 146 neutrónov). Neptúnium je však nestabilné - po niekoľkých minútach jeden z jeho neutrónov vyžaruje elektrón, ktorý sa zmení na protón, po ktorom sa izotop neptúnia zmení na ďalší prvok periodického systému - plutónium-239 (94 protónov + 145 neutrónov). Ak neutrón vstúpi do jadra nestabilného uránu-235, okamžite dôjde k štiepeniu - atómy sa rozpadajú s emisiou dvoch alebo troch neutrónov. Je jasné, že v prírodnom uráne, ktorého väčšina atómov patrí izotopu 238, nemá táto reakcia žiadne viditeľné následky – všetky voľné neutróny budú časom absorbované týmto izotopom.

Ale čo keď si predstavíme pomerne masívny kus uránu, ktorý pozostáva výlučne z izotopu 235?

Tu bude proces prebiehať inak: neutróny uvoľnené počas štiepenia niekoľkých jadier, ktoré zase padajú do susedných jadier, spôsobujú ich štiepenie. V dôsledku toho sa uvoľní nová časť neutrónov, ktorá rozdelí nasledujúce jadrá. Za priaznivých podmienok táto reakcia prebieha ako lavína a nazýva sa reťazová reakcia. Na spustenie môže stačiť niekoľko bombardujúcich častíc.

Vskutku, nech len 100 neutrónov bombarduje urán-235. Rozdelia 100 jadier uránu. V tomto prípade sa uvoľní 250 nových neutrónov druhej generácie (v priemere 2,5 na štiepenie). Neutróny druhej generácie už vytvoria 250 štiepení, pri ktorých sa uvoľní 625 neutrónov. V ďalšej generácii to bude 1562, potom 3906, potom 9670 a tak ďalej. Počet divízií sa bez obmedzenia zvýši, ak sa proces nezastaví.

V skutočnosti sa však do jadier atómov dostane len nepatrná časť neutrónov. Zvyšok, ktorý sa medzi nimi rýchlo rúti, je unášaný do okolitého priestoru. Samostatná reťazová reakcia môže nastať iba v dostatočne veľkom poli uránu-235, o ktorom sa hovorí, že má kritickú hmotnosť. (Táto hmotnosť je za normálnych podmienok 50 kg.) Je dôležité poznamenať, že štiepenie každého jadra je sprevádzané uvoľnením obrovského množstva energie, čo je asi 300 miliónov krát viac ako energia vynaložená na štiepenie. ! (Bolo vypočítané, že pri úplnom štiepení 1 kg uránu-235 sa uvoľní rovnaké množstvo tepla ako pri spaľovaní 3 tisíc ton uhlia.)

Tento kolosálny príval energie, uvoľnený v priebehu niekoľkých okamihov, sa prejavuje ako výbuch obrovskej sily a je základom operácie jadrových zbraní. Aby sa však táto zbraň stala realitou, je potrebné, aby náboj netvoril prírodný urán, ale vzácny izotop – 235 (takýto urán sa nazýva obohatený). Neskôr sa zistilo, že čisté plutónium je tiež štiepnym materiálom a môže sa použiť v atómovom náboji namiesto uránu-235.

Všetky tieto dôležité objavy boli urobené v predvečer druhej svetovej vojny. Čoskoro sa v Nemecku a ďalších krajinách začali tajné práce na vytvorení atómovej bomby. V Spojených štátoch sa tento problém začal riešiť v roku 1941. Celý komplex prác dostal názov „Projekt Manhattan“.

Administratívne vedenie projektu vykonával generál Groves a vedecké smerovanie vykonával profesor Robert Oppenheimer z Kalifornskej univerzity. Obaja si boli dobre vedomí obrovskej zložitosti úlohy, ktorá pred nimi stála. Preto prvou Oppenheimerovou starosťou bolo získanie vysoko inteligentného vedeckého tímu. V Spojených štátoch bolo v tom čase veľa fyzikov, ktorí emigrovali nacistické Nemecko. Zapojiť ich do tvorby zbraní namierených proti ich bývalej vlasti nebolo jednoduché. Oppenheimer sa s každým rozprával osobne, pričom využil celú silu svojho šarmu. Čoskoro sa mu podarilo zhromaždiť malú skupinu teoretikov, ktorých žartom nazval „svetielkami“. A vlastne v nej boli najväčší odborníci tej doby v oblasti fyziky a chémie. (Medzi nimi 13 laureátov nobelová cena, vrátane Bohra, Fermiho, Franka, Chadwicka, Lawrencea.) Okrem nich tam bolo mnoho ďalších špecialistov rôznych profilov.

Americká vláda na výdavkoch nešetrila a práca nadobudla od samého začiatku grandiózny rozsah. V roku 1942 bolo v Los Alamos založené najväčšie výskumné laboratórium na svete. Počet obyvateľov tohto vedeckého mesta čoskoro dosiahol 9 tisíc ľudí. Podľa zloženia vedcov rozsah vedeckých experimentov, počet špecialistov a pracovníkov zapojených do práce laboratória v Los Alamos nemal vo svetových dejinách obdobu. Projekt Manhattan mal vlastnú políciu, kontrarozviedku, komunikačný systém, sklady, osady, továrne, laboratóriá a svoj vlastný kolosálny rozpočet.

Hlavným cieľom projektu bolo získať dostatok štiepneho materiálu, z ktorého by bolo možné vytvoriť niekoľko atómových bômb. Okrem uránu-235, ako už bolo spomenuté, môže ako náplň bomby slúžiť umelý prvok plutónium-239, to znamená, že bombou môže byť urán alebo plutónium.

Háje a Oppenheimer sa dohodli, že práce by sa mali vykonávať súčasne v dvoch smeroch, pretože nie je možné vopred rozhodnúť, ktorý z nich bude sľubnejší. Obe metódy sa od seba zásadne líšili: akumulácia uránu-235 sa musela uskutočniť jeho oddelením od väčšiny prírodného uránu a plutónium bolo možné získať len ako výsledok riadenej jadrovej reakcie ožiarením uránu-238 neutróny. Obe cesty sa zdali nezvyčajne ťažké a nesľubovali ľahké riešenia.

Ako sa totiž dajú od seba oddeliť dva izotopy, ktoré sa len nepatrne líšia svojou hmotnosťou a chemicky sa správajú úplne rovnako? Veda ani technika nikdy nečelili takémuto problému. Produkcia plutónia sa tiež zdala spočiatku veľmi problematická. Predtým sa celá skúsenosť s jadrovými transformáciami zredukovala na niekoľko laboratórnych experimentov. Teraz bolo potrebné zvládnuť výrobu kilogramov plutónia v priemyselnom meradle, vyvinúť a vytvoriť na to špeciálne zariadenie - jadrový reaktor a naučiť sa riadiť priebeh jadrovej reakcie.

A tu a tam bolo treba vyriešiť celý komplex zložitých problémov. Preto „Projekt Manhattan“ pozostával z niekoľkých podprojektov, na čele ktorých stáli významní vedci. Samotný Oppenheimer bol vedúcim vedeckého laboratória v Los Alamos. Lawrence mal na starosti Radiačné laboratórium na Kalifornskej univerzite. Fermi viedol výskum na Chicagskej univerzite o vytvorení jadrového reaktora.

Spočiatku bolo najdôležitejším problémom získavanie uránu. Pred vojnou tento kov vlastne nemal žiadne využitie. Teraz, keď bol okamžite potrebný vo veľkých množstvách, sa ukázalo, že neexistuje žiadny priemyselný spôsob jeho výroby.

Spoločnosť Westinghouse sa pustila do jeho vývoja a rýchlo dosiahla úspech. Po vyčistení uránovej živice (v tejto forme sa urán vyskytuje v prírode) a získaní oxidu uránu sa táto premenila na tetrafluorid (UF4), z ktorého sa elektrolýzou izoloval kovový urán. Ak na konci roku 1941 mali americkí vedci k dispozícii len niekoľko gramov kovového uránu, tak v novembri 1942 dosiahla jeho priemyselná produkcia v závodoch Westinghouse 6000 libier mesačne.

Zároveň prebiehali práce na vytvorení jadrového reaktora. Proces výroby plutónia sa v skutočnosti scvrkol do ožarovania uránových tyčí neutrónmi, v dôsledku čoho sa časť uránu-238 musela zmeniť na plutónium. Zdrojom neutrónov by v tomto prípade mohli byť štiepne atómy uránu-235 rozptýlené v dostatočnom množstve medzi atómami uránu-238. Aby sa však udržala neustála reprodukcia neutrónov, musela sa začať reťazová reakcia štiepenia atómov uránu-235. Medzitým, ako už bolo spomenuté, na každý atóm uránu-235 pripadalo 140 atómov uránu-238. Je zrejmé, že neutróny letiace všetkými smermi mali oveľa väčšiu pravdepodobnosť, že sa s nimi na svojej ceste stretnú. To znamená, že obrovské množstvo uvoľnených neutrónov sa ukázalo byť bezvýsledne absorbované hlavným izotopom. Je zrejmé, že za takýchto podmienok by reťazová reakcia nemohla prebehnúť. Ako byť?

Spočiatku sa zdalo, že bez oddelenia dvoch izotopov je prevádzka reaktora vo všeobecnosti nemožná, ale čoskoro sa zistila jedna dôležitá okolnosť: ukázalo sa, že urán-235 a urán-238 sú citlivé na neutróny rôznych energií. Jadro atómu uránu-235 je možné rozdeliť neutrónom s relatívne nízkou energiou, ktorý má rýchlosť asi 22 m/s. Takéto pomalé neutróny nie sú zachytené jadrami uránu-238 - na to musia mať rýchlosť rádovo stoviek tisíc metrov za sekundu. Inými slovami, urán-238 je bezmocný, aby zabránil spusteniu a postupu reťazovej reakcie v uráne-235 spôsobenej neutrónmi spomalenými na extrémne nízke rýchlosti – nie viac ako 22 m/s. Tento jav objavil taliansky fyzik Fermi, ktorý od roku 1938 žil v USA a dohliadal na práce na vytvorení prvého reaktora tu. Fermi sa rozhodol použiť grafit ako moderátor neutrónov. Podľa jeho výpočtov mali neutróny emitované z uránu-235, ktoré prešli vrstvou grafitu 40 cm, znížiť svoju rýchlosť na 22 m/s a spustiť samoudržiavajúcu reťazovú reakciu v uráne-235.

Ako ďalší moderátor by mohla poslúžiť takzvaná „ťažká“ voda. Keďže atómy vodíka, ktoré ho tvoria, sú veľkosťou a hmotnosťou veľmi blízko neutrónov, mohli by ich najlepšie spomaliť. (S rýchlymi neutrónmi sa deje približne to isté ako s loptičkami: ak malá guľa narazí na veľkú, odkotúľa sa späť, takmer bez straty rýchlosti, ale keď sa stretne s malou loptičkou, odovzdá jej značnú časť svojej energie - rovnako ako neutrón pri pružnej zrážke sa odrazí od ťažkého jadra len mierne spomaľuje a pri zrážke s jadrami atómov vodíka veľmi rýchlo stráca všetku energiu.) Obyčajná voda však nie je vhodná na spomalenie, keďže jej vodík má tendenciu absorbovať neutróny. Práve preto by sa na tento účel malo používať deutérium, ktoré je súčasťou „ťažkej“ vody.

Začiatkom roku 1942 sa pod vedením Fermiho začala výstavba vôbec prvého jadrového reaktora na tenisovom kurte pod západnou tribúnou štadióna v Chicagu. Všetky práce vykonali samotní vedci. Reakciu je možné riadiť jediným spôsobom – úpravou počtu neutrónov zapojených do reťazovej reakcie. Fermi si to predstavoval pomocou tyčí vyrobených z materiálov, ako je bór a kadmium, ktoré silne absorbujú neutróny. Ako moderátor slúžili grafitové tehly, z ktorých fyzici postavili stĺpy vysoké 3 m a široké 1,2 m. Medzi ne boli osadené pravouhlé bloky s oxidom uránu. Do celej konštrukcie išlo asi 46 ton oxidu uránu a 385 ton grafitu. Na spomalenie reakcie slúžili kadmiové a bórové tyče zavedené do reaktora.

Ak by to nestačilo, tak pre istotu na plošine umiestnenej nad reaktorom stáli dvaja vedci s vedrami naplnenými roztokom kadmiových solí – mali ich vyliať na reaktor, ak by sa reakcia vymkla kontrole. Našťastie to nebolo potrebné. 2. decembra 1942 Fermi nariadil vysunúť všetky riadiace tyče a experiment sa začal. O štyri minúty neskôr začali počítadlá neutrónov cvakať čoraz hlasnejšie. S každou minútou sa intenzita toku neutrónov zvyšovala. To naznačovalo, že v reaktore prebieha reťazová reakcia. Trvalo to 28 minút. Potom Fermi signalizoval a spustené tyče zastavili proces. Človek tak po prvý raz uvoľnil energiu atómového jadra a dokázal, že ho dokáže ovládať podľa ľubovôle. Teraz už nebolo pochýb o tom, že jadrové zbrane sú realitou.

V roku 1943 bol Fermiho reaktor demontovaný a prevezený do Aragónskeho národného laboratória (50 km od Chicaga). Čoskoro tu bol vybudovaný ďalší jadrový reaktor, v ktorom bola ako moderátor použitá ťažká voda. Pozostávala z valcovej hliníkovej nádrže s obsahom 6,5 tony ťažkej vody, do ktorej bolo vertikálne naložených 120 tyčí kovového uránu, uzavretých v hliníkovom plášti. Sedem riadiacich tyčí bolo vyrobených z kadmia. Okolo nádrže bol grafitový reflektor, potom clona zo zliatin olova a kadmia. Celá konštrukcia bola uzavretá v betónovom plášti s hrúbkou steny cca 2,5 m.

Experimenty na týchto experimentálnych reaktoroch túto možnosť potvrdili priemyselná produkcia plutónium.

Hlavným centrom „Projektu Manhattan“ sa čoskoro stalo mestečko Oak Ridge v údolí rieky Tennessee, ktorého populácia sa za pár mesiacov rozrástla na 79 tisíc ľudí. Tu bol v krátkom čase vybudovaný prvý závod na výrobu obohateného uránu. Hneď v roku 1943 bol spustený priemyselný reaktor, ktorý produkoval plutónium. Vo februári 1944 sa z neho denne vyťažilo asi 300 kg uránu, z ktorého povrchu sa chemickou separáciou získavalo plutónium. (Na tento účel sa plutónium najskôr rozpustilo a potom sa vyzrážalo.) Vyčistený urán sa potom opäť vrátil do reaktora. V tom istom roku sa v neúrodnej, pustej púšti na južnom brehu rieky Columbia začala stavať obrovský závod Hanford. Boli tu umiestnené tri výkonné jadrové reaktory, ktoré denne dávali niekoľko stoviek gramov plutónia.

Súbežne s tým bol v plnom prúde výskum zameraný na vývoj priemyselného procesu obohacovania uránu.

Po zvážení rôzne varianty, Groves a Oppenheimer sa rozhodli zamerať na dve metódy: difúziu plynu a elektromagnetickú.

Metóda difúzie plynu bola založená na princípe známom ako Grahamov zákon (prvýkrát ho sformuloval v roku 1829 škótsky chemik Thomas Graham a v roku 1896 ho vyvinul anglický fyzik Reilly). V súlade s týmto zákonom, ak dva plyny, z ktorých jeden je ľahší ako druhý, prejdú cez filter so zanedbateľne malými otvormi, potom ním prejde o niečo viac ľahkého plynu ako ťažkého plynu. V novembri 1942 Urey a Dunning na Kolumbijskej univerzite vytvorili metódu plynovej difúzie na separáciu izotopov uránu založenú na Reillyho metóde.

Keďže prírodný urán je pevný, potom sa najskôr premenil na fluorid uránu (UF6). Tento plyn potom prešiel mikroskopickými otvormi v prepážke filtra, ktoré dosahujú rádovo tisíciny milimetra.

Keďže rozdiel v molárnych hmotnostiach plynov bol veľmi malý, za prepážkou sa obsah uránu-235 zvýšil len 1,0002-násobne.

Aby sa množstvo uránu-235 ešte viac zvýšilo, výsledná zmes sa opäť nechá prejsť prepážkou a množstvo uránu sa opäť zvýši 1,0002-krát. Aby sa teda obsah uránu-235 zvýšil na 99 %, bolo potrebné prejsť plyn cez 4000 filtrov. Stalo sa to v obrovskom zariadení na difúziu plynov v Oak Ridge.

V roku 1940 sa pod vedením Ernsta Lawrencea na Kalifornskej univerzite začal výskum separácie izotopov uránu elektromagnetickou metódou. Bolo potrebné nájsť také fyzikálne procesy, ktoré by umožnili separáciu izotopov pomocou rozdielu v ich hmotnostiach. Lawrence sa pokúsil oddeliť izotopy pomocou princípu hmotnostného spektrografu - prístroja, ktorý určuje hmotnosti atómov.

Princíp jeho fungovania bol nasledovný: predionizované atómy boli urýchlené elektrické pole, a potom prešli magnetickým poľom, v ktorom opísali kruhy umiestnené v rovine kolmej na smer poľa. Keďže polomery týchto trajektórií boli úmerné hmotnosti, ľahké ióny skončili na kruhoch s menším polomerom ako ťažké. Ak boli do dráhy atómov umiestnené pasce, potom bolo možné týmto spôsobom oddelene zbierať rôzne izotopy.

Taká bola metóda. V laboratórnych podmienkach dával dobré výsledky. Ale výstavba závodu, v ktorom by sa separácia izotopov mohla vykonávať v priemyselnom meradle, sa ukázala ako mimoriadne náročná. Lawrence však nakoniec dokázal prekonať všetky ťažkosti. Výsledkom jeho úsilia bol vzhľad calutronu, ktorý bol inštalovaný v obrovskom závode v Oak Ridge.

Táto elektromagnetická továreň bola postavená v roku 1943 a ukázalo sa, že je možno najdrahším nápadom projektu Manhattan. Lawrenceova metóda si vyžadovala veľké množstvo zložitých, zatiaľ nevyvinutých zariadení súvisiacich s vysoké napätie, vysoké vákuum a silné magnetické polia. Náklady boli obrovské. Calutron mal obrovský elektromagnet, ktorého dĺžka dosahovala 75 m a vážila asi 4000 ton.

Niekoľko tisíc ton strieborného drôtu išlo do vinutia tohto elektromagnetu.

Celé dielo (okrem nákladov na striebro v hodnote 300 miliónov dolárov, ktoré Štátna pokladnica poskytla len dočasne) stálo 400 miliónov dolárov. Len za elektrinu spotrebovanú kalutrónom zaplatilo ministerstvo obrany 10 miliónov. Väčšina zariadení v továrni Oak Ridge bola v rozsahu a presnosti lepšia ako čokoľvek, čo sa kedy v tejto oblasti vyvinulo.

Ale všetky tieto výdavky neboli márne. Americkí vedci, ktorí minuli celkovo asi 2 miliardy dolárov, vytvorili do roku 1944 jedinečnú technológiu na obohacovanie uránu a výrobu plutónia. Medzitým v laboratóriu v Los Alamos pracovali na návrhu samotnej bomby. Princíp jeho fungovania bol vo všeobecnosti dlho jasný: štiepna látka (plutónium alebo urán-235) mala byť v čase výbuchu prevedená do kritického stavu (aby došlo k reťazovej reakcii, hmotnosť náboj musí byť dokonca výrazne väčší ako kritický) a ožiarený neutrónovým lúčom, čo znamená spustenie reťazovej reakcie.

Podľa výpočtov kritická hmotnosť nálože presiahla 50 kilogramov, ale mohla byť výrazne znížená. Vo všeobecnosti je veľkosť kritického množstva silne ovplyvnená niekoľkými faktormi. Čím väčší je povrch náboja, tým viac neutrónov je zbytočne emitovaných do okolitého priestoru. najmenšia plocha povrch má guľu. V dôsledku toho majú sférické náboje, ak sú ostatné veci rovnaké, najmenšiu kritickú hmotnosť. Okrem toho hodnota kritickej hmotnosti závisí od čistoty a typu štiepnych materiálov. Je nepriamo úmerná druhej mocnine hustoty tohto materiálu, čo umožňuje napríklad zdvojnásobením hustoty znížiť kritickú hmotnosť štvornásobne. Požadovaný stupeň podkritickosti možno dosiahnuť napríklad zhutnením štiepneho materiálu v dôsledku výbuchu bežnej výbušnej nálože vytvorenej vo forme guľového obalu obklopujúceho jadrovú nálož. Kritická hmotnosť môže byť tiež znížená obklopením náboja clonou, ktorá dobre odráža neutróny. Ako takéto sito možno použiť olovo, berýlium, volfrám, prírodný urán, železo a mnohé ďalšie.

Jedna z možných konštrukcií atómovej bomby pozostáva z dvoch kusov uránu, ktoré po spojení vytvoria hmotnosť väčšiu ako je kritická. Aby ste spôsobili výbuch bomby, musíte ich čo najrýchlejšie spojiť. Druhá metóda je založená na použití smerom dovnútra konvergujúcej explózie. V tomto prípade prúd plynov z bežnej výbušniny smeroval na štiepny materiál nachádzajúci sa vo vnútri a stláčal ho, kým nedosiahol kritickú hmotnosť. Spojenie nálože a jej intenzívne ožarovanie neutrónmi, ako už bolo spomenuté, spôsobuje reťazovú reakciu, v dôsledku ktorej v prvej sekunde stúpne teplota na 1 milión stupňov. Počas tejto doby sa podarilo oddeliť len asi 5 % kritického množstva. Zvyšok nálože v skorých návrhoch bômb sa vyparil bez
nejaké dobré.

Prvá atómová bomba v histórii (dostala meno „Trinity“) bola zostavená v lete 1945. A 16. júna 1945 sa v púšti Alamogordo (Nové Mexiko) uskutočnil prvý atómový výbuch na Zemi. Bomba bola umiestnená v strede testovacieho miesta na vrchole 30-metrovej oceľovej veže. Okolo neho bolo vo veľkej vzdialenosti umiestnené nahrávacie zariadenie. Na 9 km bolo pozorovacie stanovište a na 16 km - veliteľské stanovište. Atómový výbuch urobil obrovský dojem na všetkých svedkov tejto udalosti. Podľa opisu očitých svedkov bol pocit, že veľa sĺnk sa spojilo do jedného a rozsvietilo polygón naraz. Potom sa nad planinou objavila obrovská ohnivá guľa a k nej sa začal pomaly a zlovestne dvíhať okrúhly oblak prachu a svetla.

Po vzlietnutí zo zeme vyletela táto ohnivá guľa za pár sekúnd do výšky viac ako tri kilometre. S každým okamihom sa zväčšoval, čoskoro jeho priemer dosiahol 1,5 km a pomaly stúpal do stratosféry. Ohnivá guľa potom ustúpila stĺpu víriaceho dymu, ktorý sa tiahol do výšky 12 km a mal podobu obrovskej huby. To všetko sprevádzal strašný rev, z ktorého sa triasla zem. Sila vybuchnutej bomby prekonala všetky očakávania.

Len čo to radiačná situácia dovolila, do priestoru výbuchu sa vrútilo niekoľko tankov Sherman, zvnútra obložených olovenými platňami. Na jednom z nich bol Fermi, ktorý dychtil vidieť výsledky svojej práce. Pred jeho očami sa objavila mŕtva spálená zem, na ktorej bol v okruhu 1,5 km zničený všetok život. Piesok sa spekal do sklovitej zelenkavej kôry, ktorá pokrývala zem. V obrovskom kráteri ležali zohavené zvyšky oceľovej podpornej veže. Sila výbuchu bola odhadnutá na 20 000 ton TNT.

Ďalším krokom malo byť bojové použitie atómovej bomby proti Japonsku, ktoré po kapitulácii fašistického Nemecka samo pokračovalo vo vojne s USA a ich spojencami. Vtedy neexistovali žiadne nosné rakety, takže bombardovanie sa muselo vykonávať z lietadla. Komponenty dvoch bômb prepravila s veľkou starostlivosťou USS Indianapolis na ostrov Tinian, kde sídlila 509. zložená skupina amerického letectva. Podľa typu náboja a konštrukcie sa tieto bomby od seba trochu líšili.

Prvá atómová bomba – „Baby“ – bola veľkorozmerná letecká bomba s atómovou náplňou vysoko obohateného uránu-235. Jeho dĺžka bola asi 3 m, priemer - 62 cm, hmotnosť - 4,1 tony.

Druhá atómová bomba - "Fat Man" - s náplňou plutónia-239 mala vajcovitý tvar s veľkorozmerným stabilizátorom. Jeho dĺžka
bola 3,2 m, priemer 1,5 m, hmotnosť - 4,5 tony.

6. augusta bombardér B-29 Enola Gay plukovníka Tibbetsa zhodil „Kid“ na veľké japonské mesto Hirošima. Bomba bola zhodená na padáku a explodovala, ako bolo plánované, vo výške 600 m od zeme.

Následky výbuchu boli strašné. Aj na samotných pilotov pôsobil pohľad na nimi v okamihu zničené pokojné mesto skľučujúcim dojmom. Neskôr jeden z nich priznal, že v tej chvíli videli to najhoršie, čo človek môže vidieť.

Pre tých, ktorí boli na zemi, to, čo sa dialo, vyzeralo ako skutočné peklo. V prvom rade nad Hirošimou prešla vlna horúčav. Jeho pôsobenie trvalo len niekoľko okamihov, ale bolo také silné, že roztavilo aj dlaždice a kryštály kremeňa v žulových doskách, premenilo telefónne stĺpy na uhlie na vzdialenosť 4 km a napokon tak spálilo ľudské telá, že z nich zostali len tiene. na asfalte chodníkov alebo na stenách domov. Potom spod ohnivej gule unikol príšerný poryv vetra a prehnal sa nad mesto rýchlosťou 800 km/h a zmietol všetko, čo mu stálo v ceste. Domy, ktoré nevydržali jeho zúrivý nápor, sa zrútili ako vyrúbané. V obrovskom kruhu s priemerom 4 km nezostala neporušená ani jedna budova. Pár minút po výbuchu sa nad mestom spustil čierny rádioaktívny dážď – táto vlhkosť sa zmenila na paru skondenzovanú vo vysokých vrstvách atmosféry a padala na zem v podobe veľkých kvapiek zmiešaných s rádioaktívnym prachom.

Po daždi zasiahol mesto nový nárazový vietor, ktorý tentoraz fúkal v smere epicentra. Bol slabší ako prvý, ale stále dosť silný na to, aby vyvracal stromy. Vietor rozdúchal gigantický oheň, v ktorom horelo všetko, čo mohlo horieť. Zo 76 000 budov bolo 55 000 úplne zničených a vyhorených. Svedkovia tejto hroznej katastrofy si spomínali na ľudové pochodne, z ktorých padali na zem obhorené šaty s kúskami kože, a na davy rozrušených ľudí, pokrytých strašnými popáleninami, ktorí sa s krikom hnali ulicami. Vo vzduchu bol cítiť dusivý zápach spáleného ľudského mäsa. Ľudia ležali všade, mŕtvi a umierali. Bolo veľa takých, ktorí boli slepí a hluchí a štuchajúc na všetky strany nedokázali nič rozoznať v chaose, ktorý okolo vládol.

Nešťastníci, ktorí boli od epicentra vo vzdialenosti až 800 m, vyhoreli v zlomku sekundy v doslovnom zmysle slova - ich vnútro sa vyparilo a ich telá sa zmenili na hrudky dymiaceho uhlíka. Nachádzali sa vo vzdialenosti 1 km od epicentra a postihla ich choroba z ožiarenia v mimoriadne ťažkej forme. V priebehu pár hodín začali silno vracať, teplota vyskočila na 39-40 stupňov, objavila sa dýchavičnosť a krvácanie. Potom sa na koži objavili nehojace sa vredy, zloženie krvi sa dramaticky zmenilo a vlasy vypadli. Po hroznom utrpení, zvyčajne na druhý alebo tretí deň, nastala smrť.

Celkovo zomrelo na výbuch a choroby z ožiarenia asi 240 tisíc ľudí. Asi 160 tisíc dostalo chorobu z ožiarenia v ľahšej forme – ich bolestivá smrť sa oddialila o niekoľko mesiacov či rokov. Keď sa správa o katastrofe rozšírila po celej krajine, celé Japonsko bolo paralyzované strachom. Ešte viac sa zvýšil po tom, čo lietadlo Box Car majora Sweeneyho zhodilo 9. augusta druhú bombu na Nagasaki. Zahynulo a zranilo sa tu aj niekoľko stotisíc obyvateľov. Japonská vláda nedokázala odolať novým zbraniam a kapitulovala – atómová bomba ukončila druhú svetovú vojnu.

Vojna skončila. Trvalo to len šesť rokov, no dokázalo zmeniť svet a ľudí takmer na nepoznanie.

Ľudská civilizácia pred rokom 1939 a ľudská civilizácia po roku 1945 sa od seba nápadne líšia. Existuje na to veľa dôvodov, ale jedným z najdôležitejších je objavenie sa jadrových zbraní. Bez preháňania možno povedať, že tieň Hirošimy leží nad celou druhou polovicou 20. storočia. Stala sa hlbokou morálnou popáleninou pre mnoho miliónov ľudí, tak pre tých, ktorí boli súčasníkmi tejto katastrofy, ako aj pre tých, ktorí sa narodili desaťročia po nej. Moderný človek už nemôže o svete rozmýšľať tak, ako o ňom uvažoval pred 6. augustom 1945 – až príliš jasne chápe, že tento svet sa môže za pár okamihov zmeniť na nič.

Moderný človek sa nemôže pozerať na vojnu, ako to sledovali jeho starí otcovia a pradedovia – s istotou vie, že táto vojna bude posledná a nebudú v nej ani víťazi, ani porazení. Jadrové zbrane zanechali stopy vo všetkých sférach verejný život a moderná civilizácia nemôže žiť podľa rovnakých zákonov ako pred šesťdesiatimi či osemdesiatimi rokmi. Nikto tomu nerozumel lepšie ako samotní tvorcovia atómovej bomby.

„Ľudia našej planéty Robert Oppenheimer napísal, by sa mal zjednotiť. Zasiata hrôza a skaza posledná vojna, nadiktujte nám túto myšlienku. Výbuchy atómových bômb to dokazovali so všetkou krutosťou. Iní ľudia inokedy povedali podobné slová - len o iných zbraniach a iných vojnách. Neuspeli. Kto však dnes hovorí, že tieto slová sú zbytočné, je oklamaný peripetiami dejín. Nemôžeme sa o tom presvedčiť. Výsledky našej práce neponechávajú ľudstvu inú možnosť, ako vytvoriť jednotný svet. Svet založený na práve a humanizme.“

Po skončení 2. svetovej vojny v krajine protihitlerovskej koalície sa rýchlo snažili predbehnúť jeden druhého vo vývoji silnejšej jadrovej bomby.

Prvý test, ktorý uskutočnili Američania na skutočných objektoch v Japonsku, vyhrotil situáciu medzi ZSSR a USA na maximum. Silné výbuchy, ktoré zahrmeli v japonských mestách a prakticky zničili všetok život v nich, prinútili Stalina vzdať sa mnohých nárokov na svetovej scéne. Väčšina sovietskych fyzikov bola naliehavo „vrhnutá“ na vývoj jadrových zbraní.

Kedy a ako sa objavili jadrové zbrane

Rok 1896 možno považovať za rok zrodu atómovej bomby. Vtedy francúzsky chemik A. Becquerel zistil, že urán je rádioaktívny. Reťazová reakcia uránu vytvára silnú energiu, ktorá slúži ako základ pre hrozný výbuch. Je nepravdepodobné, že by si Becquerel predstavoval, že jeho objav povedie k vytvoreniu jadrových zbraní - najstrašnejšej zbrane na celom svete.

Koniec 19. - začiatok 20. storočia bol prelomom v histórii vynálezu jadrových zbraní. Práve v tomto období vedci z rôznych krajín sveta dokázali objaviť tieto zákony, lúče a prvky:

  • Alfa, gama a beta lúče;
  • Bolo objavených veľa izotopov chemických prvkov s rádioaktívnymi vlastnosťami;
  • Bol objavený zákon rádioaktívneho rozpadu, ktorý určuje časovú a kvantitatívnu závislosť intenzity rádioaktívneho rozpadu v závislosti od počtu rádioaktívnych atómov v testovanej vzorke;
  • Zrodila sa jadrová izometria.

V 30. rokoch 20. storočia po prvý raz dokázali rozštiepiť atómové jadro uránu absorbovaním neutrónov. Zároveň boli objavené pozitróny a neuróny. To všetko dalo silný impulz vývoju zbraní, ktoré využívali atómovú energiu. V roku 1939 bol patentovaný prvý dizajn atómovej bomby na svete. Urobil to francúzsky fyzik Frederic Joliot-Curie.

V dôsledku ďalšieho výskumu a vývoja v tejto oblasti sa zrodila jadrová bomba. Sila a rozsah ničenia moderných atómových bômb je taká veľká, že ju krajina, ktorá má jadrový potenciál, prakticky nepotrebuje mocná armáda keďže jedna atómová bomba je schopná zničiť celý štát.

Ako funguje atómová bomba

Atómová bomba pozostáva z mnohých prvkov, z ktorých hlavné sú:

  • zbor pre atómovú bombu;
  • Automatizačný systém, ktorý riadi proces výbuchu;
  • Jadrová nálož alebo hlavica.

Automatizačný systém je umiestnený v tele atómovej bomby spolu s jadrovou náložou. Konštrukcia trupu musí byť dostatočne spoľahlivá, aby chránila hlavicu pred rôznymi vonkajšími faktormi a vplyvmi. Napríklad rôzne mechanické, tepelné alebo podobné vplyvy, ktoré môžu viesť k neplánovanej explózii veľkej sily, schopnej zničiť všetko naokolo.

Úloha automatizácie zahŕňa úplnú kontrolu nad výbuchom v správnom čase, takže systém pozostáva z nasledujúcich prvkov:

  • Zariadenie zodpovedné za núdzovú detonáciu;
  • Napájanie automatizačného systému;
  • Senzorový systém podkopávania;
  • napínacie zariadenie;
  • Bezpečnostné zariadenie.

Keď sa uskutočnili prvé testy, jadrové bomby doručili lietadlá, ktoré mali čas opustiť postihnutú oblasť. Moderné atómové bomby sú také silné, že ich možno dopraviť iba pomocou krídlových, balistických alebo dokonca protilietadlových rakiet.

Atómové bomby využívajú rôzne detonačné systémy. Najjednoduchším z nich je jednoduché zariadenie, ktoré sa spustí, keď projektil zasiahne cieľ.

Jednou z hlavných charakteristík jadrových bômb a rakiet je ich rozdelenie do kalibrov, ktoré sú troch typov:

  • Malá, sila atómových bômb tohto kalibru je ekvivalentná niekoľkým tisícom ton TNT;
  • Stredná (sila výbuchu - niekoľko desiatok tisíc ton TNT);
  • Veľký, ktorého nabíjacia sila sa meria v miliónoch ton TNT.

Je zaujímavé, že sila všetkých jadrových bômb sa najčastejšie meria presne v ekvivalente TNT, pretože neexistuje žiadna stupnica na meranie sily výbuchu pre atómové zbrane.

Algoritmy na prevádzku jadrových bômb

Akákoľvek atómová bomba funguje na princípe využitia jadrovej energie, ktorá sa uvoľňuje pri jadrovej reakcii. Tento postup je založený buď na štiepení ťažkých jadier alebo na syntéze pľúc. Keďže táto reakcia uvoľňuje obrovské množstvo energie a v čo najkratšom čase, polomer zničenia jadrovej bomby je veľmi pôsobivý. Kvôli tejto vlastnosti sú jadrové zbrane klasifikované ako zbrane hromadného ničenia.

V procese, ktorý začína výbuchom atómovej bomby, sú dva hlavné body:

  • Toto je bezprostredné centrum výbuchu, kde prebieha jadrová reakcia;
  • Epicentrum výbuchu, ktoré sa nachádza na mieste, kde vybuchla bomba.

Jadrová energia uvoľnená pri výbuchu atómovej bomby je taká silná, že na zemi začínajú seizmické otrasy. Tieto otrasy zároveň prinášajú priamu deštrukciu až na vzdialenosť niekoľkých stoviek metrov (hoci vzhľadom na silu výbuchu samotnej bomby už tieto otrasy nič neovplyvňujú).

Faktory poškodenia pri jadrovom výbuchu

Výbuch jadrovej bomby prináša nielen strašnú okamžitú skazu. Následky tohto výbuchu pocítia nielen ľudia, ktorí spadli do postihnutej oblasti, ale aj ich deti, ktoré sa narodili po atómovom výbuchu. Typy ničenia atómovými zbraňami sú rozdelené do nasledujúcich skupín:

  • Svetelné žiarenie, ktoré sa vyskytuje priamo počas výbuchu;
  • Rázová vlna sa šírila bombou bezprostredne po výbuchu;
  • Elektromagnetický impulz;
  • prenikajúce žiarenie;
  • Rádioaktívna kontaminácia, ktorá môže trvať desaťročia.

Aj keď na prvý pohľad záblesk svetla predstavuje najmenšiu hrozbu, v skutočnosti vzniká v dôsledku uvoľnenia obrovského množstva tepelnej a svetelnej energie. Jeho sila a sila ďaleko prevyšuje silu slnečných lúčov, takže porážka svetla a tepla môže byť fatálna na vzdialenosť niekoľkých kilometrov.

Veľmi nebezpečné je aj žiarenie, ktoré sa pri výbuchu uvoľňuje. Hoci netrvá dlho, dokáže infikovať všetko naokolo, pretože jeho penetračná schopnosť je neuveriteľne vysoká.

rázová vlna pri atómový výbuch pôsobí ako rovnaká vlna pri konvenčných výbuchoch, len jej sila a polomer zničenia sú oveľa väčšie. Za pár sekúnd spôsobí nenapraviteľné škody nielen na ľuďoch, ale aj na zariadeniach, budovách a okolitej prírode.

Prenikajúce žiarenie vyvoláva rozvoj choroby z ožiarenia a elektromagnetický impulz je nebezpečný iba pre zariadenia. Kombinácia všetkých týchto faktorov plus sila výbuchu robí z atómovej bomby najnebezpečnejšiu zbraň na svete.

Prvý test jadrových zbraní na svete

Prvou krajinou, ktorá vyvinula a testovala jadrové zbrane, boli Spojené štáty americké. Bola to americká vláda, ktorá pridelila obrovské peňažné dotácie na vývoj sľubných nových zbraní. Do konca roku 1941 bolo do USA pozvaných mnoho významných vedcov v oblasti vývoja atómov, ktorí do roku 1945 dokázali predstaviť prototyp atómovej bomby vhodnú na testovanie.

Prvý test atómovej bomby vybavenej výbušným zariadením na svete sa uskutočnil v púšti v štáte Nové Mexiko. Bomba s názvom „Gadget“ bola odpálená 16. júla 1945. Výsledok testu bol pozitívny, hoci armáda požadovala testovanie jadrovej bomby v skutočných bojových podmienkach.

Keďže Pentagon videl, že do víťazstva v nacistickej koalícii zostáva už len jeden krok a viac takých príležitostí už nie je, rozhodol sa poskytnúť jadrový úder posledným spojencom nacistické Nemecko- Japonsko. Okrem toho, použitie jadrovej bomby malo vyriešiť niekoľko problémov naraz:

  • Aby sa predišlo zbytočnému krviprelievaniu, ku ktorému by nevyhnutne došlo, keby americké jednotky vkročili na japonské cisárske územie;
  • Zraziť nekompromisných Japoncov jedným úderom na kolená a prinútiť ich súhlasiť s podmienkami priaznivými pre USA;
  • Ukážte ZSSR (ako možnému rivalovi v budúcnosti), že americká armáda má jedinečnú zbraň, ktorá dokáže vymazať akékoľvek mesto z povrchu zemského;
  • A samozrejme v praxi vidieť, čoho sú schopné jadrové zbrane v reálnych bojových podmienkach.

6. augusta 1945 bola na japonské mesto Hirošima zhodená prvá atómová bomba na svete, ktorá bola použitá pri vojenských operáciách. Táto bomba sa volala „Baby“, keďže jej hmotnosť bola 4 tony. Zhodenie bomby bolo starostlivo naplánované a zasiahlo presne tam, kde bolo plánované. Tie domy, ktoré výbuch nezničil, zhoreli, pretože kachle, ktoré spadli do domov, vyvolali požiare a celé mesto zachvátili plamene.

Po jasnom záblesku nasledovala vlna horúčav, ktorá spálila všetok život v okruhu 4 kilometrov a rázová vlna, ktorá ju nasledovala, zničila väčšinu budov.

Tých, ktorých zasiahol úpal v okruhu 800 metrov, upálili zaživa. Tlaková vlna mnohým strhla spálenú kožu. O pár minút neskôr sa spustil zvláštny čierny dážď, ktorý pozostával z pary a popola. Tí, ktorí padli pod čierny dážď, dostali nevyliečiteľné popáleniny.

Tých pár, ktorí mali to šťastie, že prežili, ochorelo na chorobu z ožiarenia, ktorá v tom čase nielenže nebola skúmaná, ale bola aj úplne neznáma. Ľudia začali mať horúčku, vracanie, nevoľnosť a záchvaty slabosti.

9. augusta 1945 bola na mesto Nagasaki zhodená druhá americká bomba s názvom „Fat Man“. Táto bomba mala približne rovnakú silu ako prvá a následky jej výbuchu boli rovnako ničivé, hoci ľudí zomrelo o polovicu menej.

Dve atómové bomby zhodené na japonské mestá sa ukázali ako prvý a jediný prípad použitia atómových zbraní vo svete. V prvých dňoch po bombardovaní zomrelo viac ako 300 000 ľudí. Ďalších asi 150 tisíc zomrelo na choroby z ožiarenia.

Po jadrovom bombardovaní japonských miest zažil Stalin poriadny šok. Bolo mu jasné, že otázka vývoja jadrových zbraní v sovietskom Rusku je bezpečnostnou otázkou pre celú krajinu. Už 20. augusta 1945 začal pracovať osobitný výbor pre atómovú energiu, ktorý urgentne vytvoril I. Stalin.

Hoci výskum v jadrovej fyzike realizovala skupina nadšencov ešte v cárskom Rusku, v r Sovietsky čas nedostávala dostatok pozornosti. V roku 1938 bol celý výskum v tejto oblasti úplne zastavený a mnohí nukleárni vedci boli potláčaní ako nepriatelia ľudu. Po jadrových výbuchoch v Japonsku sovietska vláda náhle začala s obnovou jadrového priemyslu v krajine.

Existujú dôkazy, že vývoj jadrových zbraní sa uskutočnil v nacistickom Nemecku a boli to nemeckí vedci, ktorí dokončili „surovú“ americkú atómovú bombu, takže vláda USA odstránila všetkých jadrových špecialistov a všetky dokumenty súvisiace s vývojom jadrových zbraní. Nemecko.

Sovietska spravodajská škola, ktorá počas vojny dokázala obísť všetky zahraničné spravodajské služby, už v roku 1943 preniesla do ZSSR tajné dokumenty súvisiace s vývojom jadrových zbraní. Sovietski agenti boli zároveň uvedení do všetkých veľkých amerických centier jadrového výskumu.

V dôsledku všetkých týchto opatrení boli už v roku 1946 pripravené referenčné podmienky na výrobu dvoch sovietskych jadrových bômb:

  • RDS-1 (s plutóniovou náplňou);
  • RDS-2 (s dvoma časťami uránovej náplne).

Skratka „RDS“ bola dešifrovaná ako „Rusko robí samo“, čo takmer úplne zodpovedalo realite.

Správa, že ZSSR je pripravený uvoľniť svoje jadrové zbrane, prinútila americkú vládu prijať drastické opatrenia. V roku 1949 bol vypracovaný trojanský plán, podľa ktorého sa plánovalo zhodiť atómové bomby na 70 najväčších miest ZSSR. Realizácii tohto plánu zabránila len obava z odvetného úderu.

Tieto alarmujúce informácie pochádzajúce od sovietskych spravodajských dôstojníkov prinútili vedcov pracovať v núdzovom režime. Už v auguste 1949 bola otestovaná prvá atómová bomba vyrobená v ZSSR. Keď sa USA dozvedeli o týchto testoch, plán trójskych koní bol odložený na neurčito. Začala sa éra konfrontácie dvoch superveľmocí, v histórii známa ako studená vojna.

Najsilnejšia jadrová bomba na svete, známa ako „cárska bomba“, patrí práve do obdobia „ studená vojna". Sovietski vedci vytvorili najsilnejšiu bombu v histórii ľudstva. Jeho kapacita bola 60 megaton, hoci sa plánovalo vytvoriť bombu s kapacitou 100 kiloton. Táto bomba bola testovaná v októbri 1961. Priemer ohnivej gule počas explózie bol 10 kilometrov a tlaková vlna trikrát obletela zemeguľu. Práve tento test prinútil väčšinu krajín sveta podpísať dohodu o ukončení jadrových testov nielen v zemskej atmosfére, ale dokonca aj vo vesmíre.

Atómové zbrane sú síce výborným prostriedkom na zastrašovanie agresívnych krajín, na druhej strane sú však schopné uhasiť akékoľvek vojenské konflikty v zárodku, keďže všetky strany konfliktu môžu byť zničené atómovým výbuchom.

Severná Kórea pohrozila USA testom supervýkonných vodíkových bômb Tichý oceán. Japonsko, ktoré by testy mohlo utrpieť, označilo plány Severnej Kórey za absolútne neprijateľné. Prezidenti Donald Trump a Kim Čong-un v rozhovoroch nadávajú a hovoria o otvorenom vojenskom konflikte. Pre tých, ktorí nerozumejú jadrovým zbraniam, ale chcú byť v tejto téme, zostavil „Futurista“ sprievodcu.

Ako fungujú jadrové zbrane?

Ako bežná tyčinka dynamitu, aj jadrová bomba využíva energiu. Len to nie je uvoľnené v priebehu primitíva chemická reakcia, ale v zložitých jadrových procesoch. Existujú dva hlavné spôsoby získavania jadrovej energie z atómu. AT jadrové štiepenie jadro atómu sa neutrónom rozdelí na dva menšie fragmenty. Jadrová fúzia - proces, pri ktorom Slnko generuje energiu - zahŕňa spojenie dvoch menších atómov za vzniku väčšieho. Pri akomkoľvek procese, štiepení alebo fúzii, sa uvoľňuje veľké množstvo tepelnej energie a žiarenia. Podľa toho, či sa používa jadrové štiepenie alebo fúzia, sa bomby delia na jadrový (atómový) a termonukleárna .

Môžete priblížiť jadrové štiepenie?

Výbuch atómovej bomby nad Hirošimou (1945)

Ako si pamätáte, atóm sa skladá z troch typov subatomárnych častíc: protónov, neutrónov a elektrónov. Stred atómu sa nazýva jadro , sa skladá z protónov a neutrónov. Protóny sú nabité kladne, elektróny záporne a neutróny nemajú vôbec žiadny náboj. Pomer protón-elektrón je vždy jedna ku jednej, takže atóm ako celok má neutrálny náboj. Napríklad atóm uhlíka má šesť protónov a šesť elektrónov. Častice drží pohromade základná sila - silná jadrová sila .

Vlastnosti atómu sa môžu značne líšiť v závislosti od toho, koľko rôznych častíc obsahuje. Ak zmeníte počet protónov, budete mať iný chemický prvok. Ak zmeníte počet neutrónov, dostanete izotop ten istý prvok, ktorý máte vo svojich rukách. Napríklad uhlík má tri izotopy: 1) uhlík-12 (šesť protónov + šesť neutrónov), stabilná a často sa vyskytujúca forma prvku, 2) uhlík-13 (šesť protónov + sedem neutrónov), ktorý je stabilný, ale zriedkavý, a 3) uhlík -14 (šesť protónov + osem neutrónov), ktorý je zriedkavý a nestabilný (alebo rádioaktívny).

Väčšina atómových jadier je stabilná, ale niektoré sú nestabilné (rádioaktívne). Tieto jadrá spontánne emitujú častice, ktoré vedci nazývajú žiarenie. Tento proces sa nazýva rádioaktívny rozpad . Existujú tri typy rozpadu:

Alfa rozpad : Jadro vyvrhne alfa časticu – dva protóny a dva neutróny spojené dohromady. beta rozpad : neutrón sa mení na protón, elektrón a antineutríno. Vyvrhnutý elektrón je beta častica. Spontánne rozdelenie: jadro sa rozpadne na niekoľko častí a vyžaruje neutróny a tiež vyžaruje impulz elektromagnetickej energie - gama lúč. Práve posledný typ rozpadu sa používa v jadrovej bombe. Začínajú voľné neutróny emitované štiepením reťazová reakcia ktorý uvoľňuje obrovské množstvo energie.

Z čoho sú jadrové bomby vyrobené?

Môžu byť vyrobené z uránu-235 a plutónia-239. Urán sa v prírode vyskytuje ako zmes troch izotopov: 238U (99,2745 % prírodného uránu), 235U (0,72 %) a 234U (0,0055 %). Najbežnejšia 238 U nepodporuje reťazovú reakciu: tej je schopná iba 235 U. Na dosiahnutie maximálnej sily výbuchu je potrebné, aby obsah 235 U v „náplni“ bomby bol aspoň 80 %. Preto urán padá umelo obohatiť . Na tento účel sa zmes izotopov uránu rozdelí na dve časti tak, že jedna z nich obsahuje viac ako 235 U.

Zvyčajne, keď sú izotopy oddelené, existuje veľa ochudobneného uránu, ktorý nemôže spustiť reťazovú reakciu - existuje však spôsob, ako to urobiť. Faktom je, že plutónium-239 sa v prírode nevyskytuje. Dá sa však získať bombardovaním 238 U neutrónmi.

Ako sa meria ich sila?

Sila jadrovej a termonukleárnej nálože sa meria v ekvivalente TNT - množstvo trinitrotoluénu, ktoré musí byť odpálené, aby sa dosiahol podobný výsledok. Meria sa v kilotónoch (kt) a megatónoch (Mt). Sila ultra malých jadrových zbraní je menšia ako 1 kt, zatiaľ čo supervýkonné bomby dávajú viac ako 1 Mt.

Sila sovietskej cárskej bomby sa podľa rôznych zdrojov pohybovala od 57 do 58,6 megaton TNT, sila termonukleárnej bomby, ktorú KĽDR testovala začiatkom septembra, bola asi 100 kiloton.

Kto vytvoril jadrové zbrane?

Americký fyzik Robert Oppenheimer a generál Leslie Groves

V 30. rokoch taliansky fyzik Enrico Fermi demonštrovali, že prvky bombardované neutrónmi možno premeniť na nové prvky. Výsledkom tejto práce bol objav pomalé neutróny , ako aj objavovanie nových prvkov, ktoré nie sú prezentované na periodická tabuľka. Krátko po objave Fermiho nemeckí vedci Otto Hahn a Fritz Strassmann bombardovali urán neutrónmi, čo malo za následok vznik rádioaktívneho izotopu bária. Dospeli k záveru, že neutróny s nízkou rýchlosťou spôsobujú rozpad jadra uránu na dva menšie kúsky.

Toto dielo nadchlo mysle celého sveta. Na Princetonskej univerzite Niels Bohr pracoval s John Wheeler vytvoriť hypotetický model štiepneho procesu. Navrhli, že urán-235 podlieha štiepeniu. Približne v rovnakom čase iní vedci zistili, že proces štiepenia produkoval ešte viac neutrónov. To podnietilo Bohra a Wheelera, aby položili dôležitú otázku: mohli by voľné neutróny vytvorené štiepením spustiť reťazovú reakciu, ktorá by uvoľnila obrovské množstvo energie? Ak áno, potom by sa dali vytvoriť zbrane nepredstaviteľnej sily. Ich predpoklady potvrdil francúzsky fyzik Frederic Joliot-Curie . Jeho záver bol impulzom pre vývoj jadrových zbraní.

Fyzici Nemecka, Anglicka, USA a Japonska pracovali na vytvorení atómových zbraní. Pred vypuknutím 2. svetovej vojny Albert Einstein napísal prezidentovi Spojených štátov amerických Franklin Roosevelt že nacistické Nemecko plánuje vyčistiť urán-235 a vytvoriť atómovú bombu. Teraz sa ukázalo, že Nemecko ani zďaleka neviedlo k reťazovej reakcii: pracovalo na „špinavej“, vysoko rádioaktívnej bombe. Nech je to akokoľvek, vláda USA vrhla všetko svoje úsilie na vytvorenie atómovej bomby v čo najkratšom čase. Bol spustený projekt Manhattan, ktorý viedol americký fyzik Robert Oppenheimer a všeobecné Leslie Groves . Zúčastnili sa ho významní vedci, ktorí emigrovali z Európy. Do leta 1945 bola vytvorená atómová zbraň založená na dvoch typoch štiepneho materiálu - urán-235 a plutónium-239. Jedna bomba, plutónium „Thing“, bola počas testov odpálená a ďalšie dve, uránová „Kid“ a plutónium „Fat Man“, boli zhodené na japonské mestá Hirošima a Nagasaki.

Ako funguje termonukleárna bomba a kto ju vynašiel?


Termonukleárna bomba je založená na reakcii jadrovej fúzie . Na rozdiel od jadrového štiepenia, ktoré môže prebiehať spontánne aj nedobrovoľne, je jadrová fúzia nemožná bez dodávky vonkajšej energie. Atómové jadrá sú kladne nabité, takže sa navzájom odpudzujú. Táto situácia sa nazýva Coulombova bariéra. Na prekonanie odpudzovania je potrebné tieto častice rozptýliť na šialenú rýchlosť. Dá sa to robiť pri veľmi vysokých teplotách – rádovo niekoľko miliónov kelvinov (odtiaľ názov). Existujú tri typy termonukleárnych reakcií: samoudržiavacie (prebiehajú vo vnútri hviezd), riadené a neriadené alebo výbušné – používajú sa vo vodíkových bombách.

Myšlienku termonukleárnej fúznej bomby iniciovanej atómovým nábojom navrhol Enrico Fermi svojmu kolegovi Edward Teller už v roku 1941, na samom začiatku projektu Manhattan. V tom čase však táto myšlienka nebola žiadaná. Tellerov vývoj sa zlepšil Stanislav Ulam , vďaka čomu je myšlienka termonukleárnej bomby realizovateľná v praxi. V roku 1952 bolo na atole Enewetok počas operácie Ivy Mike testované prvé termonukleárne výbušné zariadenie. Išlo však o laboratórnu vzorku, nevhodnú na boj. O rok neskôr Sovietsky zväz vybuchol prvú termonukleárnu bombu na svete, zostavenú podľa návrhu fyzikov. Andrej Sacharov a Júlia Kharitonová . Zariadenie pripomínalo poschodovú tortu, takže impozantná zbraň dostala prezývku „Puff“. V priebehu ďalšieho vývoja sa zrodila najsilnejšia bomba na Zemi, „Cár Bomba“ alebo „Kuzkinova matka“. V októbri 1961 bol testovaný na súostroví Novaya Zemlya.

Z čoho sú vyrobené termonukleárne bomby?

Ak si to myslel vodík a termonuklearne bomby su rozne veci, mylili ste sa. Tieto slová sú synonymá. Je to vodík (alebo skôr jeho izotopy - deutérium a trícium), ktorý je potrebný na uskutočnenie termonukleárnej reakcie. Je tu však problém: na odpálenie vodíkovej bomby je najprv potrebné získať vysokú teplotu pri klasickom jadrovom výbuchu – až potom začnú reagovať atómové jadrá. Preto v prípade termonukleárnej bomby hrá dôležitú úlohu dizajn.

Dve schémy sú všeobecne známe. Prvým je Sacharov „puf“. V strede bola jadrová rozbuška, ktorá bola obklopená vrstvami deuteridu lítneho zmiešaného s tríciom, ktoré boli rozptýlené vrstvami obohateného uránu. Tento dizajn umožnil dosiahnuť výkon do 1 Mt. Druhou je americká Teller-Ulamova schéma, kde boli jadrová bomba a izotopy vodíka umiestnené oddelene. Vyzeralo to takto: zdola - nádoba so zmesou tekutého deutéria a trícia, v strede ktorej bola "zapaľovacia sviečka" - plutóniová tyč, a zhora - konvenčná jadrová nálož, a to všetko v shell of Heavy metal(napríklad ochudobnený urán). Rýchle neutróny vznikajúce pri výbuchu spôsobujú štiepne reakcie atómov v uránovom obale a pridávajú energiu k celkovej energii výbuchu. Pridanie ďalších vrstiev deuteridu lítneho uránu-238 vám umožňuje vytvárať strely s neobmedzenou silou. V roku 1953 sovietsky fyzik Viktor Davidenko náhodne zopakoval myšlienku Teller-Ulam a na jej základe prišiel Sacharov s viacstupňovou schémou, ktorá umožnila vytvoriť zbrane bezprecedentnej sily. Podľa tejto schémy pracovala Kuzkinova matka.

Aké ďalšie bomby existujú?

Existujú aj neutrónové, ale to je vo všeobecnosti desivé. Neutrónová bomba je v skutočnosti termonukleárna bomba s nízkym výťažkom, ktorej 80 % energie výbuchu tvorí žiarenie (neutrónové žiarenie). Vyzerá ako obyčajná jadrová nálož s nízkou výťažnosťou, do ktorej je pridaný blok s izotopom berýlia – zdroj neutrónov. Keď jadrová zbraň vybuchne, spustí sa termonukleárna reakcia. Tento typ zbrane vyvinul americký fyzik Samuel Cohen . Verilo sa, že neutrónové zbrane ničia všetok život aj v úkrytoch, rozsah zničenia takýchto zbraní je však malý, pretože atmosféra rozptyľuje rýchle neutrónové toky a rázová vlna je silnejšia na veľké vzdialenosti.

Ale čo kobaltová bomba?

Nie, synu, je to fantastické. Žiadna krajina oficiálne nemá kobaltové bomby. Teoreticky ide o termonukleárnu bombu s kobaltovým plášťom, ktorý zabezpečuje silnú rádioaktívnu kontamináciu oblasti aj pri relatívne slabom jadrovom výbuchu. 510 ton kobaltu môže infikovať celý povrch Zeme a zničiť všetok život na planéte. Fyzik Leo Szilard , ktorý tento hypotetický dizajn opísal v roku 1950, ho nazval „Stroj súdneho dňa“.

Čo je chladnejšie: jadrová bomba alebo termonukleárna?


Kompletný model "Car-bomba"

Vodíková bomba je oveľa vyspelejšia a technologicky vyspelejšia ako atómová bomba. Jeho výbušná sila ďaleko prevyšuje tú atómovú a je obmedzená iba počtom dostupných komponentov. Pri termonukleárnej reakcii sa na každý nukleón (takzvané základné jadrá, protóny a neutróny) uvoľní oveľa viac energie ako pri jadrovej reakcii. Napríklad pri štiepení jadra uránu pripadá na jeden nukleón 0,9 MeV (megaelektrónvolt) a pri syntéze jadra hélia z jadier vodíka sa uvoľní energia rovnajúca sa 6 MeV.

Ako bomby dodaťdo cieľa?

Najprv boli z lietadiel zhadzované, ale protivzdušná obrana sa neustále zlepšovala a dodávanie jadrových zbraní týmto spôsobom sa ukázalo ako nerozumné. S rastom výroby raketovej techniky boli všetky práva na dodávku jadrových zbraní prenesené na balistické a riadené strely rôznych základní. Preto už bomba nie je bomba, ale bojová hlavica.

Existuje názor, že severokórejská vodíková bomba je príliš veľká na to, aby sa dala nainštalovať na raketu – takže ak sa KĽDR rozhodne hrozbu priviesť k životu, prevezie ju loď na miesto výbuchu.

Aké sú dôsledky jadrovej vojny?

Hirošima a Nagasaki sú len malou časťou možnej apokalypsy. Napríklad známa hypotéza jadrová zima", ktorý predložili americký astrofyzik Carl Sagan a sovietsky geofyzik Georgij Golitsyn. Predpokladá sa, že výbuch niekoľkých jadrových hlavíc (nie v púšti alebo vo vode, ale v r. osady) dôjde k mnohým požiarom a do atmosféry sa dostane veľké množstvo dymu a sadzí, čo povedie ku globálnemu ochladeniu. Hypotéza je kritizovaná porovnaním účinku so sopečnou činnosťou, ktorá má malý vplyv na klímu. Niektorí vedci navyše poznamenávajú, že globálne otepľovanie je pravdepodobnejšie než ochladzovanie – obe strany však dúfajú, že sa to nikdy nedozvieme.

Sú povolené jadrové zbrane?

Po pretekoch v zbrojení v 20. storočí krajiny zmenili názor a rozhodli sa obmedziť používanie jadrových zbraní. OSN prijala zmluvy o nešírení jadrových zbraní a zákaze jadrových testov (ten nepodpísali mladé jadrové mocnosti India, Pakistan a KĽDR). V júli 2017 bola prijatá nová zmluva o zákaze jadrových zbraní.

„Žiadny zmluvný štát sa zaväzuje nikdy a za žiadnych okolností nevyvíjať, testovať, vyrábať, vyrábať, inak získavať, vlastniť alebo skladovať jadrové zbrane alebo iné jadrové výbušné zariadenia,“ uvádza sa v prvom článku zmluvy.

Dokument však nenadobudne platnosť, kým ho neratifikuje 50 štátov.

1. ATÓMOVÁ BOMBA: ZLOŽENIE, BOJOVÉ CHARAKTERISTIKY A ÚČEL TVORBY

Pred začatím štúdia štruktúry atómovej bomby je potrebné porozumieť terminológii o tejto problematike. Takže vo vedeckých kruhoch existujú špeciálne pojmy, ktoré odrážajú vlastnosti atómových zbraní. Spomedzi nich vyzdvihujeme nasledovné:

Atómová bomba – pôvodný názov leteckej jadrovej bomby, ktorej pôsobenie je založené na výbušnej reťazovej reakcii jadrového štiepenia. S príchodom takzvanej vodíkovej bomby, založenej na termonukleárnej fúznej reakcii, sa pre ne ustálil spoločný termín – jadrová bomba.

Jadrová bomba je letecká bomba s jadrovou náložou, ktorá má veľkú ničivú silu. Prvé dve jadrové bomby s ekvivalentom TNT asi 20 kt každá zhodili americké lietadlá na japonské mestá Hirošima a Nagasaki 6. a 9. augusta 1945 a spôsobili obrovské straty na životoch a zničenie. Moderné jadrové bomby majú ekvivalent TNT v desiatkach až miliónoch ton.

Jadrové alebo atómové zbrane sú výbušné zbrane založené na využití jadrovej energie uvoľnenej počas reťazovej jadrovej štiepnej reakcie ťažkých jadier alebo termonukleárnej fúznej reakcie ľahkých jadier.

Vzťahuje sa na zbrane hromadného ničenia (ZHN) spolu s biologickými a chemickými zbraňami.

Jadrové zbrane - súbor jadrových zbraní, prostriedky ich dodania na cieľ a ovládacie prvky. Týka sa zbraní hromadného ničenia; má obrovskú ničivú silu. Z vyššie uvedeného dôvodu USA a ZSSR výrazne investovali do vývoja jadrových zbraní. Podľa sily náloží a dosahu pôsobenia sa jadrové zbrane delia na taktické, operačno-taktické a strategické. Použitie jadrových zbraní vo vojne je katastrofou pre celé ľudstvo.

Jadrový výbuch je proces okamžitého uvoľnenia veľkého množstva vnútrojadrovej energie v obmedzenom objeme.

Pôsobenie atómových zbraní je založené na štiepnej reakcii ťažkých jadier (urán-235, plutónium-239 a v niektorých prípadoch aj urán-233).

Urán-235 sa používa v jadrových zbraniach, pretože na rozdiel od bežnejšieho izotopu uránu-238 dokáže uskutočniť samoudržiavaciu jadrovú reťazovú reakciu.

Plutónium-239 sa tiež označuje ako „plutónium zbraňovej kvality“, pretože je určený na vytvorenie jadrových zbraní a obsah izotopu 239Pu musí byť aspoň 93,5 %.

Na vyjadrenie štruktúry a zloženia atómovej bomby ako prototypu analyzujeme plutóniovú bombu „Fat Man“ (obr. 1) zhodenú 9. augusta 1945 na japonské mesto Nagasaki.

výbuch atómovej jadrovej bomby

Obrázok 1 - Atómová bomba "Fat Man"

Usporiadanie tejto bomby (typické pre plutóniovú jednofázovú muníciu) je približne nasledovné:

Neutrónový iniciátor - berýliová guľa s priemerom asi 2 cm, pokrytá tenkou vrstvou zliatiny ytria-polónia alebo kovu polónia-210 - primárny zdroj neutrónov pre prudký pokles kritickej hmotnosti a zrýchlenie nástupu reakciu. Vystrelí v momente prechodu bojového jadra do superkritického stavu (pri kompresii dochádza k zmesi polónia a berýlia s uvoľnením veľkého množstva neutrónov). V súčasnosti je okrem tohto typu iniciácie bežnejšia termonukleárna iniciácia (TI). Termonukleárny iniciátor (TI). Nachádza sa v strede nálože (podobne ako NI), kde sa nachádza malé množstvo termonukleárneho materiálu, ktorého stred je ohrievaný konvergujúcou rázovou vlnou a v procese termonukleárnej reakcie na pozadí teplôt ktoré vznikli, vzniká značné množstvo neutrónov, dostatočné na neutrónovú iniciáciu reťazovej reakcie (obr. 2).

Plutónium. Používa sa najčistejší izotop plutónia-239, aj keď pre zvýšenie stability fyzikálnych vlastností (hustoty) a zlepšenie stlačiteľnosti náboja je plutónium dopované malým množstvom gália.

Plášť (zvyčajne vyrobený z uránu), ktorý slúži ako reflektor neutrónov.

Kompresný plášť vyrobený z hliníka. Poskytuje väčšiu rovnomernosť stlačenia rázovou vlnou a zároveň chráni vnútorné časti nálože pred priamym kontaktom s výbušninami a horúcimi produktmi jej rozkladu.

Synchronizovaná je výbušnina so zložitým detonačným systémom, ktorý zabezpečuje detonáciu celej výbušniny. Synchronicita je nevyhnutná na vytvorenie striktne sférickej kompresnej (nasmerovanej vo vnútri lopty) rázovej vlny. Nesférická vlna vedie k vymršteniu materiálu loptičky v dôsledku nehomogenity a nemožnosti vytvorenia kritickej hmoty. Vytvorenie takéhoto systému na lokalizáciu výbušnín a detonácie bolo svojho času jednou z najťažších úloh. Používa sa kombinovaná schéma (systém šošoviek) „rýchlych“ a „pomalých“ výbušnín.

Telo vyrobené z duralových lisovaných prvkov - dva guľové kryty a remeň spojený skrutkami.

Obrázok 2 - Princíp činnosti plutóniovej bomby

Stred jadrového výbuchu je bod, v ktorom dôjde k záblesku alebo sa nachádza stred ohnivej gule, a epicentrum je projekcia centra výbuchu na zem alebo vodnú hladinu.

Jadrové zbrane sú najsilnejším a najnebezpečnejším typom zbraní hromadného ničenia, ktoré ohrozujú celé ľudstvo bezprecedentným zničením a zničením miliónov ľudí.

Ak dôjde k výbuchu na zemi alebo pomerne blízko jej povrchu, časť energie výbuchu sa prenesie na povrch Zeme vo forme seizmických vibrácií. Dochádza k javu, ktorý svojimi znakmi pripomína zemetrasenie. V dôsledku takéhoto výbuchu vznikajú seizmické vlny, ktoré sa šíria hrúbkou zeme na veľmi veľké vzdialenosti. Deštruktívny účinok vlny je obmedzený na polomer niekoľkých stoviek metrov.

V dôsledku extrémne vysokej teploty výbuchu dochádza k jasnému záblesku svetla, ktorého intenzita je stokrát väčšia ako intenzita slnečných lúčov dopadajúcich na Zem. Blesk uvoľňuje obrovské množstvo tepla a svetla. Svetelné žiarenie spôsobuje samovznietenie horľavých materiálov a spáli pokožku ľudí v okruhu mnohých kilometrov.

Jadrový výbuch vytvára žiarenie. Trvá asi minútu a má takú vysokú penetračnú silu, že sú potrebné výkonné a spoľahlivé úkryty na ochranu pred ním na blízku vzdialenosť.

Jadrový výbuch je schopný okamžite zničiť alebo zneškodniť nechránené osoby, otvorene stojace zariadenia, konštrukcie a rôzny materiál. Hlavné škodlivé faktory jadrového výbuchu (PFYAV) sú:

rázová vlna;

svetelné žiarenie;

prenikajúce žiarenie;

rádioaktívna kontaminácia oblasti;

elektromagnetický impulz (EMP).

Pri jadrovom výbuchu v atmosfére je rozdelenie uvoľnenej energie medzi PNF približne nasledovné: asi 50 % pre rázovú vlnu, 35 % pre podiel svetelného žiarenia, 10 % pre rádioaktívnu kontamináciu a 5 % pre prenikanie žiarenie a EMP.

Rádioaktívnu kontamináciu ľudí, vojenskej techniky, terénu a rôznych predmetov pri jadrovom výbuchu spôsobujú štiepne úlomky náložovej látky (Pu-239, U-235) a nezreagovaná časť nálože vypadávajúca z oblaku výbuchu, ako aj ako rádioaktívne izotopy vznikajúce v pôde a iných materiáloch pod vplyvom neutrónov – indukovaná aktivita. Postupom času aktivita štiepnych úlomkov rapídne klesá, najmä v prvých hodinách po výbuchu. Takže napríklad celková aktivita štiepnych úlomkov pri výbuchu 20 kT jadrovej zbrane bude za jeden deň niekoľkotisíckrát menšia ako za jednu minútu po výbuchu.

Analýza účinnosti integrovanej aplikácie opatrení proti rušeniu na zlepšenie stability fungovania komunikačných zariadení v podmienkach nepriateľských rádiových protiopatrení

Vzhľadom na úroveň technického vybavenia bude vykonaná analýza síl a prostriedkov elektronického boja pre prápor prieskumu a elektronického boja (R a EW) mechanizovanej divízie (MD) SV. Prieskumný a elektronický bojový prápor Ministerstva obrany USA zahŕňa)