Kolmý rovnobežnosten. Rovnobežník, kocka. Podrobná teória s príkladmi. Zachovanie vášho súkromia na úrovni spoločnosti

Hranol je tzv rovnobežnosten ak sú jeho základne rovnobežníky. Cm. Obr.1.

Vlastnosti boxu:

    Protiľahlé strany rovnobežnostena sú rovnobežné (t. j. ležia v rovnobežných rovinách) a rovnaké.

    Uhlopriečky rovnobežnostena sa pretínajú v jednom bode a pretínajú tento bod.

Susedné strany krabice sú dve plochy, ktoré majú spoločnú hranu.

Opačné strany rovnobežnostena– tváre, ktoré nemajú spoločné hrany.

Opačné vrcholy krabice sú dva vrcholy, ktoré nepatria k tej istej ploche.

Uhlopriečka krabiceÚsečka, ktorá spája opačné vrcholy.

Ak sú bočné hrany kolmé na roviny podstavcov, potom sa nazýva rovnobežnosten priamy.

Pravý rovnobežnosten, ktorého základňami sú obdĺžniky, sa nazýva pravouhlý. Nazýva sa hranol, ktorého všetky plochy sú štvorcové kocka.

Rovnobežníkovité Hranol, ktorého základňami sú rovnobežníky.

Pravý rovnobežnosten- rovnobežnosten, ktorého bočné okraje sú kolmé na rovinu podstavy.

kváder je pravý rovnobežnosten, ktorého základňami sú obdĺžniky.

Kocka je pravouhlý rovnobežnosten s rovnakými hranami.

Rovnobežníkovité nazýva sa hranol, ktorého základňou je rovnobežník; teda rovnobežnosten má šesť plôch a všetky sú rovnobežníky.

Protiľahlé plochy sú v pároch rovnaké a rovnobežné. Rovnobežník má štyri uhlopriečky; všetky sa pretínajú v jednom bode a v ňom sa delia na polovicu. Ako základ možno použiť akúkoľvek tvár; objem sa rovná súčinu základnej plochy a výšky: V = Sh.

Rovnobežník, ktorého štyri bočné strany sú obdĺžniky, sa nazýva pravý hranol.

Pravý rovnobežnosten, v ktorom všetkých šesť plôch sú obdĺžniky, sa nazýva pravouhlý. Cm. Obr.2.

Objem (V) pravého kvádra sa rovná súčinu základnej plochy (S) a výšky (h): V = Sh .

Pre pravouhlý rovnobežnosten navyše vzorec V=abc, kde a,b,c sú hrany.

Uhlopriečka (d) kvádra súvisí s jeho okrajmi vzťahom d 2 \u003d a 2 + b 2 + c 2 .

kváder- rovnobežnosten, ktorého bočné okraje sú kolmé na základne a základne sú obdĺžniky.

Vlastnosti kvádra:

    V kvádri je všetkých šesť plôch obdĺžniky.

    Všetky dihedrálne uhly pravouhlé rovnobežnostenské priame čiary.

    Štvorec uhlopriečky kvádra sa rovná súčtuštvorce jeho troch rozmerov (dĺžky troch hrán, ktoré majú spoločný vrchol).

    Uhlopriečky pravouhlého rovnobežnostena sú rovnaké.

Obdĺžnikový hranol, ktorého všetky strany sú štvorcové, sa nazýva kocka. Všetky hrany kocky sú rovnaké; objem (V) kocky je vyjadrený vzorcom V = a 3, kde a je hrana kocky.

Jednoducho povedané, ide o zeleninu varenú vo vode podľa špeciálnej receptúry. Zvážim dve počiatočné zložky (zeleninový šalát a vodu) a konečný výsledok - boršč. Geometricky to môže byť znázornené ako obdĺžnik, v ktorom jedna strana označuje šalát a druhá strana vodu. Súčet týchto dvoch strán bude označovať boršč. Uhlopriečka a plocha takéhoto obdĺžnika „boršč“ sú čisto matematické pojmy a nikdy sa nepoužívajú v receptoch na boršč.


Ako sa z matematického hľadiska zmení šalát a voda na boršč? Ako sa môže súčet dvoch segmentov zmeniť na trigonometriu? Aby sme to pochopili, potrebujeme funkcie lineárnych uhlov.


V učebniciach matematiky nenájdete nič o lineárnych uhlových funkciách. Ale bez nich nemôže existovať matematika. Zákony matematiky, rovnako ako zákony prírody, fungujú, či už vieme, že existujú alebo nie.

Lineárne uhlové funkcie sú zákony sčítania. Pozrite sa, ako sa algebra mení na geometriu a geometria na trigonometriu.

Je možné sa zaobísť bez lineárnych uhlových funkcií? Môžete, pretože matematici sa zaobídu aj bez nich. Trik matematikov spočíva v tom, že nám vždy hovoria len o tých problémoch, ktoré sami dokážu vyriešiť, a nikdy nám nehovoria o problémoch, ktoré nevedia vyriešiť. Pozri. Ak poznáme výsledok sčítania a jedného člena, pomocou odčítania nájdeme druhý člen. Všetko. Iné problémy nepoznáme a nie sme schopní ich riešiť. Čo robiť, ak poznáme len výsledok sčítania a nepoznáme oba pojmy? V tomto prípade je potrebné výsledok sčítania rozložiť na dva členy pomocou lineárnych uhlových funkcií. Ďalej si sami vyberáme, čo môže byť jeden člen, a lineárne uhlové funkcie ukazujú, aký by mal byť druhý člen, aby výsledok sčítania bol presne taký, aký potrebujeme. Takýchto dvojíc výrazov môže byť nekonečné množstvo. V bežnom živote nám to ide veľmi dobre bez rozkladu súčtu, stačí nám odčítanie. Ale pri vedecký výskum prírodnými zákonmi môže byť rozklad súčtu na pojmy veľmi užitočné.

Ďalší zákon sčítania, o ktorom matematici neradi hovoria (ďalší ich trik), vyžaduje, aby výrazy mali rovnakú mernú jednotku. Pre šalát, vodu a boršč to môžu byť jednotky hmotnosti, objemu, ceny alebo mernej jednotky.

Obrázok ukazuje dve úrovne rozdielu pre matematiku. Prvou úrovňou sú rozdiely v poli čísel, ktoré sú uvedené a, b, c. Toto robia matematici. Druhou úrovňou sú rozdiely v oblasti merných jednotiek, ktoré sú uvedené v hranatých zátvorkách a sú označené písmenom U. Toto robia fyzici. Môžeme chápať tretiu rovinu – rozdiely v rozsahu popisovaných objektov. Rôzne objekty môžu mať rovnaký počet rovnakých merných jednotiek. Aké dôležité to je, môžeme vidieť na príklade borščovej trigonometrie. Ak k rovnakému označeniu merných jednotiek pre rôzne objekty pridáme dolné indexy, môžeme presne povedať, ktoré matematická hodnota opisuje konkrétny objekt a ako sa mení v priebehu času alebo v súvislosti s našimi činmi. list W Vodu označím písmenom SŠalát označím písmenom B- boršč. Tu je návod, ako by vyzerali funkcie lineárneho uhla pre boršč.

Ak zoberieme časť vody a časť šalátu, razom sa premenia na jednu porciu boršču. Tu vám navrhujem, aby ste si trochu oddýchli od boršču a zaspomínali si na svoje vzdialené detstvo. Pamätáte si, ako nás učili spájať zajačiky a kačice? Bolo potrebné zistiť, koľko zvierat sa ukáže. Čo nás potom naučili robiť? Naučili nás oddeľovať jednotky od čísel a sčítať čísla. Áno, k akémukoľvek inému číslu je možné pridať akékoľvek číslo. Toto je priama cesta k autizmu modernej matematiky – nerozumieme čomu, nie je jasné prečo, a veľmi zle chápeme, ako to súvisí s realitou, pretože matematici fungujú len na jednej úrovni. Bude správnejšie naučiť sa prechádzať z jednej meracej jednotky do druhej.

A zajačiky, kačice a malé zvieratká sa dajú spočítať na kusy. Jedna spoločná jednotka merania pre rôzne objekty nám umožňuje ich sčítanie. Toto je detská verzia problému. Pozrime sa na podobný problém pre dospelých. Čo získate, keď pridáte zajačikov a peniaze? Tu sú dve možné riešenia.

Prvá možnosť. Určíme trhovú hodnotu zajačikov a pripočítame ju k dostupnej hotovosti. Dostali sme celkovú hodnotu nášho bohatstva v peniazoch.

Druhá možnosť. K počtu bankoviek, ktoré máme, môžete pridať počet zajačikov. Množstvo hnuteľného majetku dostaneme na kusy.

Ako vidíte, rovnaký zákon sčítania vám umožňuje získať rôzne výsledky. Všetko závisí od toho, čo presne chceme vedieť.

Ale späť k nášmu boršču. Teraz môžeme vidieť, čo sa stane pre rôzne hodnoty uhla funkcií lineárneho uhla.

Rohový nula. Máme šalát, ale bez vody. Nemôžeme variť boršč. Množstvo boršču je tiež nulové. To vôbec neznamená, že nulový boršč sa rovná nule vody. Nulový boršč môže byť aj pri nulovom šaláte (pravom uhle).


Pre mňa osobne je to hlavný matematický dôkaz toho, že . Nula po pridaní číslo nezmení. Je to preto, že samotné sčítanie je nemožné, ak existuje iba jeden výraz a druhý výraz chýba. Môžete sa k tomu vzťahovať ako chcete, ale pamätajte – všetky matematické operácie s nulou vymysleli sami matematici, takže zahoďte logiku a hlúpo napchajte definície vymyslené matematikmi: „delenie nulou je nemožné“, „akékoľvek číslo vynásobené nulou“ rovná sa nule“ , „za bodom nula“ a iné nezmysly. Stačí si raz zapamätať, že nula nie je číslo, a už nikdy nebudete mať otázku, či je nula prirodzené číslo alebo nie, pretože takáto otázka vo všeobecnosti stráca zmysel: ako možno považovať číslo za číslo, ktoré nie je číslo? . Je to ako pýtať sa, akej farbe pripísať neviditeľnú farbu. Pridanie nuly k číslu je ako maľovanie farbou, ktorá neexistuje. Zamávali suchým štetcom a všetkým povedali, že „máme natreté“. Ale to som trochu odbočil.

Uhol je väčší ako nula, ale menší ako štyridsaťpäť stupňov. Máme veľa šalátu, ale málo vody. V dôsledku toho získame hustý boršč.

Uhol je štyridsaťpäť stupňov. Máme rovnaké množstvo vody a šalátu. Toto je perfektný boršč (nech mi kuchárky odpustia, je to len matematika).

Uhol je väčší ako štyridsaťpäť stupňov, ale menší ako deväťdesiat stupňov. Máme veľa vody a málo šalátu. Získajte tekutý boršč.

Pravý uhol. Máme vodu. Na šalát ostali len spomienky, keďže pokračujeme v meraní uhla od čiary, ktorá kedysi šalát označovala. Nemôžeme variť boršč. Množstvo boršču je nulové. V takom prípade vydržte a pite vodu, kým je k dispozícii)))

Tu. Niečo také. Môžem tu rozprávať ďalšie príbehy, ktoré tu budú viac než vhodné.

Dvaja priatelia mali svoje podiely v spoločnom obchode. Po vražde jedného z nich prešlo všetko k druhému.

Vznik matematiky na našej planéte.

Všetky tieto príbehy sú rozprávané jazykom matematiky pomocou lineárnych uhlových funkcií. Inokedy vám ukážem skutočné miesto týchto funkcií v štruktúre matematiky. Medzitým sa vráťme k trigonometrii boršču a zvážme projekcie.

Sobota 26. októbra 2019

Streda 7. augusta 2019

Na záver rozhovoru o , musíme zvážiť nekonečnú množinu. Z toho vyplýva, že pojem „nekonečno“ pôsobí na matematikov ako boa constrictor na králika. Chvejúca sa hrôza z nekonečna pripravuje matematikov o zdravý rozum. Tu je príklad:

Pôvodný zdroj sa nachádza. Alfa označuje reálne číslo. Znamienko rovnosti vo vyššie uvedených výrazoch znamená, že ak k nekonečnu pridáte číslo alebo nekonečno, nič sa nezmení, výsledkom bude rovnaké nekonečno. Ak si vezmeme ako príklad nekonečnú množinu prirodzené čísla, uvažované príklady môžu byť prezentované v tejto forme:

Aby matematici vizuálne dokázali svoj prípad, prišli s mnohými rôznymi metódami. Osobne sa na všetky tieto metódy pozerám ako na tance šamanov s tamburínami. V podstate všetci prídu na to, že buď nie sú niektoré izby obsadené a usadia sa v nich noví hostia, alebo časť návštevníkov vyhodí na chodbu, aby uvoľnili miesto pre hostí (veľmi ľudsky). Svoj pohľad na takéto rozhodnutia som prezentovala formou fantastického príbehu o Blondínke. Na čom je založená moja úvaha? Presun nekonečného počtu návštevníkov trvá nekonečne dlho. Po tom, ako uvoľníme prvú hosťovskú izbu, bude vždy jeden z návštevníkov chodiť po chodbe zo svojej izby do ďalšej až do konca vekov. Časový faktor sa samozrejme dá hlúpo ignorovať, ale toto už bude z kategórie „zákon nie je písaný pre hlupákov“. Všetko závisí od toho, čo robíme: prispôsobujeme realitu matematických teórií alebo naopak.

Čo je to „nekonečný hotel“? Infinite Hotel je hotel, ktorý má vždy ľubovoľný počet voľné miesta, bez ohľadu na to, koľko izieb je obsadených. Ak sú všetky izby v nekonečnej chodbe „pre návštevy“ obsadené, je tu ďalšia nekonečná chodba s izbami pre „hostí“. Takýchto chodieb bude nekonečne veľa. Zároveň má „nekonečný hotel“ nekonečný počet poschodí v nekonečnom množstve budov na nekonečnom počte planét v nekonečnom množstve vesmírov vytvorených nekonečným počtom Bohov. Matematici sa na druhej strane nedokážu vzdialiť od banálnych každodenných problémov: Boh-Alah-Budha je vždy len jeden, hotel je jeden, chodba je len jedna. Matematici sa teda pokúšajú žonglovať s poradovými číslami hotelových izieb a presviedčajú nás, že je možné „strčiť do nešťastia“.

Logiku môjho uvažovania vám predvediem na príklade nekonečnej množiny prirodzených čísel. Najprv musíte odpovedať na veľmi jednoduchú otázku: koľko množín prirodzených čísel existuje - jedna alebo veľa? Na túto otázku neexistuje správna odpoveď, keďže sme sami vymysleli čísla, v prírode žiadne čísla nie sú. Áno, príroda vie perfektne počítať, ale na to používa iné matematické nástroje, ktoré nám nie sú známe. Ako si príroda myslí, to vám poviem inokedy. Keďže sme vymysleli čísla, sami rozhodneme, koľko množín prirodzených čísel existuje. Zvážte obe možnosti, ako sa na skutočného vedca patrí.

Možnosť jedna. „Dajme nám“ jednu množinu prirodzených čísel, ktorá pokojne leží na poličke. Berieme túto sadu z police. To je všetko, na poličke nezostali žiadne ďalšie prirodzené čísla a nie je ich ani kde vziať. Do tejto sady nemôžeme pridať jeden, pretože ho už máme. Čo ak naozaj chcete? Žiaden problém. Môžeme zobrať jednotku z už odobratej sady a vrátiť ju do police. Potom môžeme z police vybrať jednotku a pridať ju k tomu, čo nám zostalo. Výsledkom je, že opäť dostaneme nekonečnú množinu prirodzených čísel. Všetky naše manipulácie môžete napísať takto:

Zapísal som operácie v algebraickom zápise a zápise teórie množín s podrobným zoznamom prvkov množiny. Dolný index naznačuje, že máme jednu a jedinú množinu prirodzených čísel. Ukazuje sa, že množina prirodzených čísel zostane nezmenená iba vtedy, ak sa od nej jedno odčíta a rovnaké sa pridá.

Možnosť dva. Na poličke máme veľa rôznych nekonečných množín prirodzených čísel. Zdôrazňujem – INÉ, napriek tomu, že sú prakticky na nerozoznanie. Berieme jednu z týchto sád. Potom vezmeme jedno z inej množiny prirodzených čísel a pridáme ho k množine, ktorú sme už zobrali. Môžeme dokonca sčítať dve sady prirodzených čísel. Tu je to, čo získame:

Dolné indexy „jeden“ a „dva“ označujú, že tieto prvky patrili do rôznych súborov. Áno, ak pridáte jednu do nekonečnej množiny, výsledkom bude tiež nekonečná množina, ale nebude rovnaká ako pôvodná množina. Ak sa k jednej nekonečnej množine pridá ďalšia nekonečná množina, výsledkom je nová nekonečná množina pozostávajúca z prvkov prvých dvoch množín.

Množina prirodzených čísel sa používa na počítanie rovnako ako pravítko na meranie. Teraz si predstavte, že ste pridali jeden centimeter na pravítko. Toto už bude iný riadok, ktorý sa nebude rovnať pôvodnému.

Môžete prijať alebo neprijať moje odôvodnenie - je to vaša vec. Ale ak niekedy narazíte na matematické problémy, zvážte, či nie ste na ceste falošného uvažovania, šliapaného generáciami matematikov. Hodiny matematiky v nás totiž v prvom rade vytvárajú ustálený stereotyp myslenia a až potom nám pridávajú rozumové schopnosti (alebo naopak oberajú o slobodné myslenie).

pozg.ru

Nedeľa 4. augusta 2019

Písal som dodatok k článku o a videl som tento úžasný text na Wikipédii:

Čítame: „... bohatý teoretické pozadie Babylonská matematika nemala holistický charakter a bola zredukovaná na súbor rôznorodých techník, bez spoločný systém a dôkazovú základňu.

Wow! Akí sme šikovní a ako dobre vieme vidieť nedostatky druhých. Je pre nás slabé pozerať sa na modernú matematiku v rovnakom kontexte? Mierne parafrázujúc vyššie uvedený text, osobne som dostal nasledovné:

Bohatý teoretický základ modernej matematiky nemá holistický charakter a je redukovaný na súbor nesúrodých sekcií, bez spoločného systému a dôkazovej základne.

Nebudem chodiť ďaleko, aby som potvrdil svoje slová - má jazyk a symboly, ktoré sa líšia od jazyka a symbolov mnoho ďalších odvetví matematiky. Rovnaké názvy v rôznych odvetviach matematiky môžu mať rôzny význam. Najzrejmejším omylom modernej matematiky chcem venovať celý cyklus publikácií. Do skorého videnia.

Sobota 3. augusta 2019

Ako rozdeliť množinu na podmnožiny? Ak to chcete urobiť, musíte zadať novú mernú jednotku, ktorá sa nachádza v niektorých prvkoch vybranej sady. Zvážte príklad.

Nech máme veľa ALE pozostávajúci zo štyroch ľudí. Tento súbor je tvorený na základe "ľudí" Označme prvky tohto súboru prostredníctvom písmena a, dolný index s číslom bude označovať poradové číslo každej osoby v tomto súbore. Predstavme si novú mernú jednotku „sexuálna charakteristika“ a označme ju písmenom b. Keďže sexuálne vlastnosti sú vlastné všetkým ľuďom, znásobujeme každý prvok súboru ALE o pohlaví b. Všimnite si, že naša množina „ľudia“ sa teraz stala množinou „ľudia s pohlavím“. Potom môžeme rozdeliť pohlavné znaky na mužské bm a dámske bw rodové charakteristiky. Teraz môžeme použiť matematický filter: vyberieme jednu z týchto sexuálnych charakteristík, nezáleží na tom, ktorá je mužská alebo ženská. Ak je v človeku prítomný, tak ho vynásobíme jednou, ak taký znak neexistuje, vynásobíme ho nulou. A potom aplikujeme obvyklú školskú matematiku. Pozrite sa, čo sa stalo.

Po vynásobení, redukciách a preskupeniach sme dostali dve podmnožiny: mužskú podmnožinu bm a podskupina žien bw. Približne rovnakým spôsobom uvažujú matematici, keď aplikujú teóriu množín v praxi. Ale nepúšťajú nás do detailov, ale dávajú nám konečný výsledok – „veľa ľudí pozostáva z podmnožiny mužov a podskupiny žien“. Prirodzene, môžete mať otázku, ako správne aplikovať matematiku vo vyššie uvedených transformáciách? Dovolím si vás ubezpečiť, že v skutočnosti sú transformácie urobené správne, stačí poznať matematické opodstatnenie aritmetiky, Booleovej algebry a iných úsekov matematiky. Čo to je? Inokedy vám o tom poviem.

Čo sa týka nadmnožín, je možné spojiť dve sady do jednej nadmnožiny výberom mernej jednotky, ktorá je prítomná v prvkoch týchto dvoch sád.

Ako vidíte, jednotky merania a bežná matematika robia z teórie množín minulosť. Znakom, že s teóriou množín nie je všetko v poriadku, je to, že matematici prišli s vlastným jazykom a notáciou pre teóriu množín. Matematici robili to, čo kedysi robili šamani. Len šamani vedia „správne“ uplatniť svoje „vedomosti“. Tieto „vedomosti“ nás učia.

Nakoniec vám chcem ukázať, ako matematici manipulujú .

Pondelok 7. januára 2019

V piatom storočí pred Kristom sformuloval staroveký grécky filozof Zenón z Elea svoje slávne apórie, z ktorých najznámejšia je aporia „Achilles a korytnačka“. Znie to takto:

Povedzme, že Achilles beží desaťkrát rýchlejšie ako korytnačka a je tisíc krokov za ňou. Počas doby, počas ktorej Achilles prebehne túto vzdialenosť, sa korytnačka plazí sto krokov rovnakým smerom. Keď Achilles prebehne sto krokov, korytnačka sa plazí ďalších desať krokov atď. Proces bude pokračovať donekonečna, Achilles korytnačku nikdy nedohoní.

Táto úvaha sa stala logickým šokom pre všetky nasledujúce generácie. Aristoteles, Diogenes, Kant, Hegel, Gilbert... Všetci tak či onak považovali Zenónove apórie. Šok bol taký silný, že " ... diskusie pokračujú aj v súčasnosti, vo vedeckej komunite sa zatiaľ nepodarilo dospieť k jednotnému názoru na podstatu paradoxov ... do skúmania problematiky bola zapojená matematická analýza, teória množín, nové fyzikálne a filozofické prístupy ; žiadna z nich sa nestala všeobecne akceptovaným riešením problému ..."[Wikipedia," Zeno's Aporias "]. Každý chápe, že je oklamaný, ale nikto nechápe, čo je to podvod.

Z pohľadu matematiky Zenón vo svojich apóriách jasne demonštroval prechod od hodnoty k. Tento prechod znamená použitie namiesto konštánt. Pokiaľ som pochopil, matematický aparát na aplikáciu premenných jednotiek merania buď ešte nebol vyvinutý, alebo nebol aplikovaný na Zenónove apórie. Aplikácia našej bežnej logiky nás vedie do pasce. My zotrvačnosťou myslenia aplikujeme konštantné jednotky času na recipročné. Z fyzikálneho hľadiska to vyzerá ako spomalenie času, až sa úplne zastaví v momente, keď Achilles dobehne korytnačku. Ak sa čas zastaví, Achilles už nemôže predbehnúť korytnačku.

Ak otočíme logiku, na ktorú sme zvyknutí, všetko zapadne na svoje miesto. Achilles beží konštantnou rýchlosťou. Každý nasledujúci segment jeho cesty je desaťkrát kratší ako predchádzajúci. Čas strávený na jeho prekonanie je teda desaťkrát kratší ako ten predchádzajúci. Ak v tejto situácii použijeme pojem „nekonečno“, potom by bolo správne povedať „Achilles nekonečne rýchlo predbehne korytnačku“.

Ako sa vyhnúť tejto logickej pasci? Zostaňte v konštantných jednotkách času a neprechádzajte na recipročné hodnoty. V Zenónovom jazyku to vyzerá takto:

Za čas, ktorý Achilles potrebuje prejsť tisíc krokov, sa korytnačka plazí sto krokov rovnakým smerom. Pre nasledujúci časový interval, rovná prvému Achilles prebehne ďalších tisíc krokov a korytnačka prejde sto krokov. Teraz je Achilles osemsto krokov pred korytnačkou.

Tento prístup adekvátne popisuje realitu bez akýchkoľvek logických paradoxov. Ale nie je úplné riešenie Problémy. Einsteinov výrok o neprekonateľnosti rýchlosti svetla je veľmi podobný Zenónovej apórii „Achilles a korytnačka“. Tento problém musíme ešte študovať, prehodnotiť a vyriešiť. A riešenie treba hľadať nie donekonečna veľké čísla, ale v merných jednotkách.

Ďalšia zaujímavá aporia Zeno hovorí o lietajúcom šípe:

Letiaci šíp je nehybný, pretože v každom okamihu je v pokoji, a keďže je v každom okamihu v pokoji, je vždy v pokoji.

V tejto apórii je logický paradox prekonaný veľmi jednoducho - stačí objasniť, že letiaci šíp je v každom okamihu v pokoji v rôznych bodoch priestoru, čo je v skutočnosti pohyb. Tu je potrebné poznamenať ešte jeden bod. Z jednej fotografie auta na ceste nie je možné určiť ani skutočnosť jeho pohybu, ani vzdialenosť k nemu. Na určenie skutočnosti pohybu auta sú potrebné dve fotografie nasnímané z toho istého bodu v rôznych časových bodoch, ale nemožno ich použiť na určenie vzdialenosti. Na určenie vzdialenosti od auta potrebujete dve fotografie nasnímané z rôznych bodov v priestore súčasne, ale nemôžete z nich určiť skutočnosť pohybu (samozrejme, stále potrebujete ďalšie údaje na výpočty, pomôže vám trigonometria) . Chcem poukázať najmä na to, že dva body v čase a dva body v priestore sú dve rôzne veci, ktoré by sa nemali zamieňať, pretože poskytujú rôzne príležitosti na prieskum.
Postup ukážem na príklade. Vyberáme "červenú tuhú látku v pupienku" - to je náš "celok". Zároveň vidíme, že tieto veci sú s mašľou a sú bez mašle. Potom z "celku" vyberieme časť a zostavíme "s mašličkou". Takto sa šamani živia spájaním svojej teórie množín s realitou.

Teraz urobme malý trik. Zoberme si "pevné v pupienke s lukom" a zjednoťme tieto "celé" podľa farby, pričom vyberieme červené prvky. Dostali sme veľa „červenej“. Teraz záludná otázka: sú prijaté súpravy „s mašľou“ a „červenou“ tou istou súpravou alebo dvoma rôznymi súpravami? Odpoveď poznajú len šamani. Presnejšie, oni sami nič nevedia, ale ako sa hovorí, tak je.

Tento jednoduchý príklad ukazuje, že teória množín je úplne zbytočná, pokiaľ ide o realitu. Aké je to tajomstvo? Vytvorili sme sadu "červený pevný pupienok s mašľou". Formovanie prebiehalo podľa štyroch rôznych merných jednotiek: farba (červená), sila (plná), drsnosť (v hrboľke), ozdoby (s mašličkou). Iba súbor meracích jednotiek umožňuje adekvátne opísať skutočné objekty v jazyku matematiky. Takto to vyzerá.

Písmeno "a" s rôznymi indexmi označuje rôzne jednotky merania. V zátvorkách sú zvýraznené merné jednotky, podľa ktorých je „celok“ priradený v predbežnej fáze. Jednotka merania, podľa ktorej je zostava vytvorená, sa vyberie zo zátvoriek. Posledný riadok zobrazuje konečný výsledok - prvok sady. Ako vidíte, ak použijeme jednotky na vytvorenie množiny, potom výsledok nezávisí od poradia našich akcií. A toto je matematika a nie tance šamanov s tamburínami. Šamani môžu „intuitívne“ dospieť k rovnakému výsledku, argumentujúc „samozrejmosťou“, pretože merné jednotky nie sú zahrnuté v ich „vedeckom“ arzenáli.

Pomocou meracích jednotiek je veľmi jednoduché rozbiť jednu alebo spojiť niekoľko sád do jednej nadmnožiny. Pozrime sa bližšie na algebru tohto procesu.

V tejto lekcii budeme definovať krabicu, rozoberieme jej štruktúru a jej prvky (uhlopriečky krabice, strany krabice a ich vlastnosti). A tiež zvážte vlastnosti plôch a uhlopriečok rovnobežníka. Ďalej budeme riešiť typický problém pre konštrukciu rezu v rovnobežnostene.

Téma: Rovnobežnosť priamok a rovín

Lekcia: Rovnobežník. Vlastnosti plôch a uhlopriečok krabice

V tejto lekcii uvedieme definíciu kvádra, rozoberieme jeho štruktúru, vlastnosti a jeho prvky (strany, uhlopriečky).

Rovnobežník je vytvorený pomocou dvoch rovnakých rovnobežníkov ABCD a A 1 B 1 C 1 D 1, ktoré sú v rovnobežných rovinách. Označenie: ABCDА 1 B 1 C 1 D 1 alebo AD 1 (obr. 1.).

2. Festival pedagogické myšlienky"Verejná lekcia" ()

1. Geometria. 10. – 11. ročník: učebnica pre žiakov vzdelávacie inštitúcie(základ a úrovne profilu) / I. M. Smirnova, V. A. Smirnov. - 5. vydanie, opravené a doplnené - M.: Mnemozina, 2008. - 288 s.: ill.

Úlohy 10, 11, 12 strana 50

2. Zostrojte rez pravouhlého rovnobežnostena ABCDА1B1C1D1 rovina prechádzajúca bodmi

a) A, C, B1

b) B1, D1 a stredom rebra AA1.

3. Hrana kocky sa rovná a. Zostrojte rez kocky s rovinou prechádzajúcou stredmi troch hrán vychádzajúcich z toho istého vrcholu a vypočítajte jej obvod a plochu.

4. Aké obrazce možno získať ako výsledok priesečníka rovnobežnostena s rovinou?

alebo (ekvivalentne) mnohosten so šiestimi plochami, ktoré sú rovnobežníkmi. šesťuholník.

Rovnobežníky, ktoré tvoria rovnobežnosten, sú tváre tento rovnobežnosten, strany týchto rovnobežníkov sú rovnobežnostenové okraje, a vrcholy rovnobežníkov sú vrcholov rovnobežnosten. Každá strana rovnobežnostena je rovnobežník.

Spravidla sa rozlišujú a nazývajú akékoľvek 2. protiľahlé tváre základne rovnobežnostena a zvyšné tváre bočné strany rovnobežnostena. Okraje rovnobežnostena, ktoré nepatria k základniam, sú bočné rebrá.

2 strany kvádra, ktoré majú spoločnú hranu, sú súvisiace a tie, ktoré nemajú spoločné hrany - opak.

Segment, ktorý spája 2 vrcholy, ktoré nepatria do 1. plochy je uhlopriečka rovnobežnostena.

Dĺžky hrán kvádra, ktoré nie sú rovnobežné, sú lineárne rozmery (merania) rovnobežnosten. Obdĺžnikový hranol má 3 lineárne rozmery.

Typy rovnobežnostenov.

Existuje niekoľko typov rovnobežnostenov:

Priamy je rovnobežnosten s okrajom, kolmo na rovinu dôvodov.

Kváder so všetkými 3 rozmermi rovnako veľký je kocka. Každá z plôch kocky je rovnaká štvorcov .

Ľubovoľný rovnobežnosten. Objem a pomery v skew boxe sú väčšinou definované pomocou vektorovej algebry. Objem krabice sa rovná absolútnej hodnote zmiešaného súčinu 3 vektorov, ktoré sú určené 3 stranami krabice (ktoré pochádzajú z rovnakého vrcholu). Pomer medzi dĺžkami strán rovnobežnostena a uhlami medzi nimi ukazuje tvrdenie, že Gramov determinant daných 3 vektorov sa rovná druhej mocnine ich zmiešaného súčinu.

Vlastnosti rovnobežnostenu.

  • Rovnobežník je symetrický okolo stredu svojej uhlopriečky.
  • Akýkoľvek segment s koncami, ktoré patria k povrchu kvádra a ktorý prechádza stredom jeho uhlopriečky, je rozdelený na dve rovnaké časti. Všetky diagonály kvádra sa pretínajú v 1. bode a sú ním rozdelené na dve rovnaké časti.
  • Protiľahlé strany rovnobežnostena sú rovnobežné a majú rovnaké rozmery.
  • Druhá mocnina dĺžky uhlopriečky kvádra je