Vzorec pre súčin kosínusov rôznych uhlov. Sínus, kosínus, tangenta: čo to je? Ako nájsť sínus, kosínus a tangens

Pojmy sínus (), kosínus (), tangens (), kotangens () sú neoddeliteľne spojené s pojmom uhol. Aby sme dobre porozumeli týmto na prvý pohľad zložitým pojmom (ktoré u mnohých školákov vyvolávajú hrôzu) a uistili sa, že „čert nie je taký strašidelný, ako ho namaľovali“, začnime od začiatku a pochopme pojem uhla.

Pojem uhla: radián, stupeň

Pozrime sa na obrázok. Vektor sa "otočil" vzhľadom na bod o určitú hodnotu. Takže miera tejto rotácie vzhľadom na počiatočnú polohu bude rohu.

Čo ešte potrebujete vedieť o koncepte uhla? No, jednotky uhla, samozrejme!

Uhol v geometrii aj trigonometrii možno merať v stupňoch a radiánoch.

Uhol (jeden stupeň) je stredový uhol v kruhu, založený na kruhovom oblúku, ktorý sa rovná časti kruhu. Celý kruh sa teda skladá z „kúskov“ kruhových oblúkov, alebo je uhol opísaný kruhom rovnaký.

To znamená, že obrázok vyššie ukazuje uhol, ktorý je rovnaký, to znamená, že tento uhol je založený na kruhovom oblúku s veľkosťou obvodu.

Uhol v radiánoch sa nazýva stredový uhol v kruhu na základe kruhového oblúka, ktorého dĺžka sa rovná polomeru kruhu. Dobre, pochopili ste? Ak nie, pozrime sa na obrázok.

Obrázok teda ukazuje uhol rovný radiánu, to znamená, že tento uhol je založený na kruhovom oblúku, ktorého dĺžka sa rovná polomeru kruhu (dĺžka sa rovná dĺžke alebo polomer sa rovná dĺžka oblúka). Dĺžka oblúka sa teda vypočíta podľa vzorca:

Kde je stredový uhol v radiánoch.

Keď to viete, viete odpovedať, koľko radiánov obsahuje uhol opísaný kruhom? Áno, na to si musíte zapamätať vzorec pre obvod kruhu. Tu je:

Teraz poďme dať do korelácie tieto dva vzorce a zistíme, že uhol opísaný kruhom je rovnaký. To znamená, že koreláciou hodnoty v stupňoch a radiánoch dostaneme to. Respektíve, . Ako vidíte, na rozdiel od „stupňov“ je vynechané slovo „radián“, pretože merná jednotka je zvyčajne jasná z kontextu.

Koľko je radiánov? To je správne!

Mám to? Potom upevnite dopredu:

Nejaké ťažkosti? Potom sa pozrite odpovede:

Pravý trojuholník: sínus, kosínus, tangens, kotangens uhla

Takže, s konceptom uhla prišiel na to. Aký je však sínus, kosínus, tangens, kotangens uhla? Poďme na to. K tomu nám pomôže pravouhlý trojuholník.

Ako sa nazývajú strany pravouhlého trojuholníka? Správne, prepona a nohy: prepona je strana, ktorá leží oproti pravému uhlu (v našom príklade je to strana); nohy sú dve zostávajúce strany a (tie susediace s pravý uhol), navyše, ak vezmeme do úvahy nohy vzhľadom na uhol, potom je noha susedná noha a noha je opačná. Takže teraz odpovedzme na otázku: aký je sínus, kosínus, tangens a kotangens uhla?

Sínus uhla je pomer opačnej (vzdialenej) nohy k prepone.

v našom trojuholníku.

Kosínus uhla- toto je pomer priľahlej (blízkej) nohy k prepone.

v našom trojuholníku.

Tangenta uhla- to je pomer opačnej (vzdialenej) nohy k susednej (blízkej).

v našom trojuholníku.

Kotangens uhla- toto je pomer priľahlej (blízkej) nohy k opačnej (ďalekej).

v našom trojuholníku.

Tieto definície sú potrebné zapamätaj si! Aby ste si ľahšie zapamätali, ktorú nohu čím rozdeliť, musíte tomu jasne rozumieť dotyčnica a kotangens sedia len nohy a prepona sa objavuje len v sínus a kosínus. A potom môžete prísť s reťazcom asociácií. Napríklad tento:

kosínus→dotyk→dotyk→priľahlý;

Kotangens→dotyk→dotyk→susedný.

V prvom rade je potrebné si uvedomiť, že sínus, kosínus, dotyčnica a kotangens ako pomery strán trojuholníka nezávisia od dĺžok týchto strán (pod jedným uhlom). Nedôveruj? Potom sa presvedčte pohľadom na obrázok:

Zoberme si napríklad kosínus uhla. Podľa definície z trojuholníka: , ale môžeme vypočítať kosínus uhla z trojuholníka: . Vidíte, dĺžky strán sú rôzne, ale hodnota kosínusu jedného uhla je rovnaká. Hodnoty sínus, kosínus, tangens a kotangens teda závisia výlučne od veľkosti uhla.

Ak rozumiete definíciám, pokračujte a opravte ich!

Pre trojuholník zobrazený na obrázku nižšie nájdeme.

Dobre, pochopili ste to? Potom to skúste sami: vypočítajte to isté pre roh.

Jednotkový (trigonometrický) kruh

Pochopením pojmov stupňov a radiánov sme uvažovali o kružnici s polomerom rovným. Takýto kruh sa nazýva slobodný. Je veľmi užitočný pri štúdiu trigonometrie. Preto sa mu budeme venovať trochu podrobnejšie.

Ako vidíte, tento kruh je zabudovaný karteziánsky systém súradnice. Polomer kruhu je rovný jednej, zatiaľ čo stred kruhu leží v počiatku, počiatočná poloha vektora polomeru je pevná pozdĺž kladného smeru osi (v našom príklade je to polomer).

Každý bod kruhu zodpovedá dvom číslam: súradnici pozdĺž osi a súradnici pozdĺž osi. Aké sú tieto súradnicové čísla? A vo všeobecnosti, čo majú spoločné s danou témou? Aby ste to dosiahli, nezabudnite na uvažovaný pravouhlý trojuholník. Na obrázku vyššie môžete vidieť dva celé pravouhlé trojuholníky. Zvážte trojuholník. Je obdĺžnikový, pretože je kolmý na os.

Čo sa rovná z trojuholníka? To je správne. Okrem toho vieme, že je to polomer jednotkovej kružnice, a preto . Dosaďte túto hodnotu do nášho kosínusového vzorca. Čo sa stane:

A čo sa rovná z trojuholníka? No, samozrejme,! Do tohto vzorca dosaďte hodnotu polomeru a získajte:

Môžete mi teda povedať, aké sú súradnice bodu, ktorý patrí do kruhu? No, v žiadnom prípade? A ak si to uvedomujete a sú to len čísla? Akej súradnici to zodpovedá? No, samozrejme, súradnice! Akej súradnici to zodpovedá? Správne, koordinovať! Teda pointa.

A čo sú si potom rovné a? Správne, použime príslušné definície tangens a kotangens a získajme to, a.

Čo ak je uhol väčší? Tu, napríklad, ako na tomto obrázku:

Čo sa zmenilo v tomto príklade? Poďme na to. Za týmto účelom sa opäť obrátime na správny trojuholník. Uvažujme pravouhlý trojuholník: uhol (ako susediaci s uhlom). Akú hodnotu má sínus, kosínus, tangens a kotangens uhla? Správne, dodržiavame príslušné definície goniometrické funkcie:

No, ako vidíte, hodnota sínusu uhla stále zodpovedá súradnici; hodnota kosínusu uhla - súradnice; a hodnoty tangens a kotangens k príslušným pomerom. Tieto vzťahy sú teda použiteľné pre akékoľvek rotácie vektora polomeru.

Už bolo spomenuté, že počiatočná poloha vektora polomeru je pozdĺž kladného smeru osi. Doteraz sme tento vektor otáčali proti smeru hodinových ručičiek, ale čo sa stane, ak ho otočíme v smere hodinových ručičiek? Nič mimoriadne, získate aj uhol určitej veľkosti, ale iba negatívny. Pri otáčaní vektora polomeru proti smeru hodinových ručičiek teda dostaneme kladné uhly a pri otáčaní v smere hodinových ručičiek - negatívne.

Vieme teda, že celá otáčka vektora polomeru okolo kružnice je alebo. Je možné otočiť vektor polomeru o alebo o? No, samozrejme, že môžete! V prvom prípade teda vektor polomeru urobí jednu úplnú otáčku a zastaví sa v polohe resp.

V druhom prípade, to znamená, že vektor polomeru vykoná tri úplné otáčky a zastaví sa v polohe resp.

Z vyššie uvedených príkladov teda môžeme vyvodiť záver, že uhly, ktoré sa líšia o alebo (kde je akékoľvek celé číslo), zodpovedajú rovnakej polohe vektora polomeru.

Obrázok nižšie ukazuje uhol. Rovnaký obrázok zodpovedá rohu atď. Tento zoznam môže pokračovať donekonečna. Všetky tieto uhly možno zapísať všeobecným vzorcom alebo (kde je akékoľvek celé číslo)

Teraz, keď poznáte definície základných goniometrických funkcií a použijete jednotkový kruh, skúste odpovedať na to, čomu sa hodnoty rovnajú:

Tu je kruh jednotiek, ktorý vám pomôže:

Nejaké ťažkosti? Potom poďme na to prísť. Takže vieme, že:

Odtiaľ určíme súradnice bodov zodpovedajúcich určitým mieram uhla. No, začnime po poriadku: roh v odpovedá bodu so súradnicami, teda:

Neexistuje;

Ďalej, pri dodržaní rovnakej logiky, zistíme, že rohy v zodpovedajú bodom so súradnicami, resp. S týmto vedomím je ľahké určiť hodnoty goniometrických funkcií v zodpovedajúcich bodoch. Najprv si to vyskúšajte a potom skontrolujte odpovede.

Odpovede:

Neexistuje

Neexistuje

Neexistuje

Neexistuje

Môžeme teda zostaviť nasledujúcu tabuľku:

Nie je potrebné si pamätať všetky tieto hodnoty. Stačí si zapamätať zhodu medzi súradnicami bodov na jednotkovej kružnici a hodnotami trigonometrických funkcií:

Ale hodnoty goniometrických funkcií uhlov v a uvedené v tabuľke nižšie, treba pamätať:

Nebojte sa, teraz si ukážeme jeden z príkladov pomerne jednoduché zapamätanie zodpovedajúcich hodnôt:

Ak chcete použiť túto metódu, je dôležité zapamätať si hodnoty sínusu pre všetky tri miery uhla (), ako aj hodnotu tangenty uhla v. Keď poznáte tieto hodnoty, je celkom jednoduché obnoviť celú tabuľku - hodnoty kosínusu sa prenášajú v súlade so šípkami, to znamená:

Keď to viete, môžete obnoviť hodnoty pre. Čitateľ „ “ sa bude zhodovať a menovateľ „ “ sa bude zhodovať. Hodnoty kotangens sa prenášajú v súlade so šípkami znázornenými na obrázku. Ak tomu rozumiete a pamätáte si diagram so šípkami, bude stačiť zapamätať si celú hodnotu z tabuľky.

Súradnice bodu na kružnici

Je možné nájsť bod (jeho súradnice) na kružnici, poznať súradnice stredu kružnice, jej polomer a uhol natočenia?

No, samozrejme, že môžete! Poďme vyviesť všeobecný vzorec nájsť súradnice bodu.

Tu máme napríklad taký kruh:

Máme dané, že bod je stredom kruhu. Polomer kruhu je rovnaký. Je potrebné nájsť súradnice bodu získané otočením bodu o stupne.

Ako je zrejmé z obrázku, dĺžka segmentu zodpovedá súradniciam bodu. Dĺžka segmentu zodpovedá súradnici stredu kruhu, to znamená, že sa rovná. Dĺžka segmentu môže byť vyjadrená pomocou definície kosínusu:

Potom to máme pre bod súradnice.

Podľa rovnakej logiky nájdeme hodnotu súradnice y pre bod. Touto cestou,

Takže v všeobecný pohľad súradnice bodov sú určené vzorcami:

Súradnice stredu kruhu,

polomer kruhu,

Uhol natočenia vektora polomeru.

Ako vidíte, pre jednotkový kruh, ktorý uvažujeme, sú tieto vzorce výrazne znížené, pretože súradnice stredu sú nulové a polomer sa rovná jednej:

Nuž, skúsme si ochutnať tieto vzorce, precvičiť si hľadanie bodov na kruhu?

1. Nájdite súradnice bodu na jednotkovej kružnici získanej otočením bodu.

2. Nájdite súradnice bodu na jednotkovej kružnici získanej rotáciou bodu.

3. Nájdite súradnice bodu na jednotkovej kružnici získanej otočením bodu.

4. Bod - stred kruhu. Polomer kruhu je rovnaký. Je potrebné nájsť súradnice bodu získané otočením vektora počiatočného polomeru o.

5. Bod - stred kruhu. Polomer kruhu je rovnaký. Je potrebné nájsť súradnice bodu získané otočením vektora počiatočného polomeru o.

Máte problém nájsť súradnice bodu na kruhu?

Vyriešte týchto päť príkladov (alebo riešeniu dobre pochopte) a naučíte sa ich nájsť!

1.

Je to vidieť. A vieme, čo zodpovedá úplnému otočeniu východiskového bodu. Požadovaný bod bude teda v rovnakej polohe ako pri otáčaní. Keď to vieme, nájdeme požadované súradnice bodu:

2. Kruh je jednotka so stredom v bode, čo znamená, že môžeme použiť zjednodušené vzorce:

Je to vidieť. Vieme, čo zodpovedá dvom úplným rotáciám počiatočného bodu. Požadovaný bod bude teda v rovnakej polohe ako pri otáčaní. Keď to vieme, nájdeme požadované súradnice bodu:

Sínus a kosínus sú tabuľkové hodnoty. Pamätáme si ich hodnoty a dostávame:

Požadovaný bod má teda súradnice.

3. Kruh je jednotka so stredom v bode, čo znamená, že môžeme použiť zjednodušené vzorce:

Je to vidieť. Znázornime uvažovaný príklad na obrázku:

Polomer zviera s osou uhly rovné a. Keď vieme, že tabuľkové hodnoty kosínusu a sínusu sú rovnaké, a keď sme určili, že kosínus tu má zápornú hodnotu a sínus je kladný, máme:

Podobné príklady sú podrobnejšie analyzované pri štúdiu vzorcov na zníženie goniometrických funkcií v téme.

Požadovaný bod má teda súradnice.

4.

Uhol natočenia vektora polomeru (podľa podmienky)

Na určenie zodpovedajúcich znamienok sínusu a kosínusu zostrojíme jednotkový kruh a uhol:

Ako vidíte, hodnota, to jest, je kladná a hodnota, teda záporná. Keď poznáme tabuľkové hodnoty zodpovedajúcich goniometrických funkcií, získame, že:

Nahraďte získané hodnoty do nášho vzorca a nájdime súradnice:

Požadovaný bod má teda súradnice.

5. Na vyriešenie tohto problému používame vzorce vo všeobecnom tvare, kde

Súradnice stredu kruhu (v našom príklade

Polomer kruhu (podľa podmienky)

Uhol natočenia vektora polomeru (podľa podmienky).

Nahraďte všetky hodnoty vo vzorci a získajte:

a - tabuľkové hodnoty. Zapamätáme si ich a dosadíme do vzorca:

Požadovaný bod má teda súradnice.

SÚHRN A ZÁKLADNÝ VZOREC

Sínus uhla je pomer opačnej (vzdialenej) nohy k prepone.

Kosínus uhla je pomer priľahlého (blízkeho) ramena k prepone.

Tangenta uhla je pomer protiľahlej (vzdialenej) nohy k susednej (blízkej).

Kotangens uhla je pomer susednej (blízkej) nohy k opačnej (ďalekej).


V tomto článku sa komplexne pozrieme na . Hlavné trigonometrické identity sú rovnosti, ktoré vytvárajú vzťah medzi sínusom, kosínusom, tangensom a kotangensom jedného uhla a umožňujú vám nájsť ktorúkoľvek z týchto goniometrických funkcií prostredníctvom známeho iného uhla.

Okamžite uvádzame hlavné trigonometrické identity, ktoré budeme analyzovať v tomto článku. Zapíšeme ich do tabuľky a nižšie uvedieme odvodenie týchto vzorcov a uvedieme potrebné vysvetlenia.

Navigácia na stránke.

Vzťah medzi sínusom a kosínusom jedného uhla

Niekedy nehovoria o základných trigonometrických identitách uvedených v tabuľke vyššie, ale o jednej jedinej základná trigonometrická identita milý . Vysvetlenie tejto skutočnosti je celkom jednoduché: rovnosti sa získajú zo základnej goniometrickej identity po vydelení oboch jej častí pomocou resp. a vyplývajú z definícií sínus, kosínus, tangens a kotangens. Tomu sa budeme podrobnejšie venovať v nasledujúcich odsekoch.

To znamená, že je to rovnosť, ktorá je obzvlášť zaujímavá a ktorá dostala názov hlavnej trigonometrickej identity.

Pred dokázaním základnej goniometrickej identity uvádzame jej formuláciu: súčet druhých mocnín sínusu a kosínusu jedného uhla je zhodne rovný jednej. Teraz to dokážme.

Veľmi často sa používa základná trigonometrická identita v transformácia trigonometrické výrazy . Umožňuje nahradiť súčet druhých mocnín sínusu a kosínusu jedného uhla jednotkou. Nemenej často sa základná trigonometrická identita používa v opačnom poradí: jednotka je nahradená súčtom druhých mocnín sínusu a kosínusu ľubovoľného uhla.

Tangenta a kotangens cez sínus a kosínus

Identity spájajúce tangens a kotangens so sínusom a kosínusom jedného uhla tvaru a bezprostredne vyplývajú z definícií sínus, kosínus, tangens a kotangens. Podľa definície je sínus ordináta y, kosínus je úsečka x, dotyčnica je pomer ordináty k úsečke, tj. a kotangens je pomer úsečky k zvislej osi, tj. .

Vzhľadom na túto samozrejmosť identít a často sa definície tangens a kotangens neuvádzajú prostredníctvom pomeru úsečky a ordináty, ale prostredníctvom pomeru sínusu a kosínusu. Tangenta uhla je teda pomer sínusu ku kosínusu tohto uhla a kotangens je pomer kosínusu a sínusu.

Na záver tejto časti treba poznamenať, že identity a platí pre všetky také uhly, pre ktoré majú goniometrické funkcie v nich zmysel. Vzorec teda platí pre akúkoľvek inú ako (inak bude menovateľ nula a my sme nedefinovali delenie nulou) a vzorec - pre všetky , odlišné od , kde z je ľubovoľné .

Vzťah medzi tangentom a kotangensom

Ešte zreteľnejšou trigonometrickou identitou ako dve predchádzajúce je identita spájajúca tangentu a kotangens jedného uhla tvaru . Je jasné, že prebieha pre akékoľvek iné uhly ako , inak nie je definovaná ani dotyčnica, ani kotangens.

Dôkaz vzorca veľmi jednoduché. Podľa definície a odkiaľ . Dôkaz mohol byť vykonaný trochu iným spôsobom. Od a , potom .

Takže tangens a kotangens jedného uhla, pri ktorých dávajú zmysel, je.

Jednou z oblastí matematiky, s ktorou sa školáci vyrovnávajú s najväčšími ťažkosťami, je trigonometria. Niet divu: na slobodné zvládnutie tejto oblasti vedomostí potrebujete priestorové myslenie, schopnosť nájsť sínus, kosínus, tangens, kotangens pomocou vzorcov, zjednodušiť výrazy a byť schopný používať pi vo výpočtoch. Navyše pri dokazovaní viet musíte vedieť aplikovať trigonometriu, a to si vyžaduje buď rozvinutú matematickú pamäť, alebo schopnosť odvodzovať zložité logické reťazce.

Počiatky trigonometrie

Zoznámenie sa s touto vedou by malo začať definíciou sínusu, kosínusu a tangensu uhla, ale najprv musíte zistiť, čo robí trigonometria vo všeobecnosti.

Historicky boli pravouhlé trojuholníky hlavným predmetom štúdia v tejto časti matematickej vedy. Prítomnosť uhla 90 stupňov umožňuje vykonávať rôzne operácie, ktoré umožňujú určiť hodnoty všetkých parametrov uvažovaného obrázku pomocou dvoch strán a jedného uhla alebo dvoch uhlov a jednej strany. V minulosti si tento vzor ľudia všimli a začali ho aktívne využívať pri stavbe budov, navigácii, astronómii a dokonca aj v umení.

Prvé štádium

Spočiatku ľudia hovorili o vzťahu uhlov a strán výlučne na príklade pravouhlých trojuholníkov. Potom boli objavené špeciálne vzorce, ktoré umožnili rozšíriť hranice použitia v každodennom živote tejto časti matematiky.

Štúdium trigonometrie v škole sa dnes začína pravouhlým trojuholníkom, po ktorom získané vedomosti využívajú študenti vo fyzike a riešení abstraktných goniometrických rovníc, s ktorými sa začína už na strednej škole.

Sférická trigonometria

Neskôr, keď veda dosiahla ďalší stupeň vývoja, začali sa vzorce so sínusom, kosínusom, dotyčnicou, kotangensom používať v sférickej geometrii, kde platia iné pravidlá a súčet uhlov v trojuholníku je vždy viac ako 180 stupňov. Táto sekcia sa na škole neštuduje, no o jej existencii je potrebné vedieť prinajmenšom preto zemského povrchu a povrch akejkoľvek inej planéty je konvexný, čo znamená, že akékoľvek označenie povrchu bude mať v trojrozmernom priestore „oblúkový tvar“.

Vezmite zemeguľu a nite. Pripojte niť na ľubovoľné dva body na zemeguli tak, aby bola napnutá. Venujte pozornosť - získala tvar oblúka. Práve takýmito formami sa zaoberá sférická geometria, ktorá sa využíva v geodézii, astronómii a iných teoretických a aplikovaných odboroch.

Správny trojuholník

Keď sme sa trochu naučili o spôsoboch používania trigonometrie, vráťme sa k základnej trigonometrii, aby sme ďalej pochopili, čo sú sínus, kosínus, tangens, aké výpočty možno s ich pomocou vykonávať a aké vzorce použiť.

Prvým krokom je pochopenie pojmov súvisiacich s pravouhlým trojuholníkom. Po prvé, prepona je strana opačná k uhlu 90 stupňov. Je najdlhšia. Pamätáme si, že podľa Pytagorovej vety sa jej číselná hodnota rovná odmocnine súčtu druhých mocnín ostatných dvoch strán.

Napríklad, ak sú dve strany 3 a 4 centimetre, dĺžka prepony bude 5 centimetrov. Mimochodom, starí Egypťania o tom vedeli asi pred štyri a pol tisíc rokmi.

Dve zostávajúce strany, ktoré tvoria pravý uhol, sa nazývajú nohy. Okrem toho si musíme uvedomiť, že súčet uhlov v trojuholníku v pravouhlom súradnicovom systéme je 180 stupňov.

Definícia

Nakoniec, so solídnym pochopením geometrickej základne, môžeme prejsť k definícii sínusu, kosínusu a tangensu uhla.

Sínus uhla je pomer protiľahlej vetvy (t.j. strany oproti požadovanému uhlu) k prepone. Kosínus uhla je pomer priľahlého ramena k prepone.

Pamätajte, že sínus ani kosínus nemôžu byť väčšie ako jedna! prečo? Pretože prepona je štandardne najdlhšia, bez ohľadu na dĺžku nohy bude kratšia ako prepona, čo znamená, že ich pomer bude vždy menší ako jedna. Ak teda v odpovedi na úlohu dostanete sínus alebo kosínus s hodnotou väčšou ako 1, hľadajte chybu vo výpočtoch alebo uvažovaní. Táto odpoveď je jednoznačne nesprávna.

Nakoniec tangens uhla je pomer protiľahlej strany k susednej strane. Rovnaký výsledok poskytne delenie sínusu kosínusom. Pozrite sa: podľa vzorca delíme dĺžku strany preponou, potom delíme dĺžkou druhej strany a násobíme preponou. Dostaneme teda rovnaký pomer ako pri definícii dotyčnice.

Kotangens je pomer strany susediacej s rohom k opačnej strane. Rovnaký výsledok dostaneme vydelením jednotky dotyčnicou.

Takže sme zvážili definície toho, čo sú sínus, kosínus, tangens a kotangens, a môžeme sa zaoberať vzorcami.

Najjednoduchšie vzorce

V trigonometrii sa bez vzorcov nezaobídeme – ako bez nich nájsť sínus, kosínus, tangens, kotangens? A to je presne to, čo sa vyžaduje pri riešení problémov.

Prvý vzorec, ktorý potrebujete vedieť, keď začnete študovať trigonometriu, hovorí, že súčet druhých mocnín sínusu a kosínusu uhla sa rovná jednej. Tento vzorec je priamym dôsledkom Pytagorovej vety, ale šetrí čas, ak chcete poznať hodnotu uhla, nie strany.

Veľa žiakov si nevie zapamätať druhý vzorec, ktorý je tiež veľmi obľúbený pri riešení školské úlohy: súčet jednej a druhej mocniny tangens uhla sa rovná jednej delenej druhou mocninou kosínusu uhla. Pozrime sa bližšie: ide predsa o rovnaký výrok ako v prvom vzorci, len obe strany identity boli rozdelené druhou mocninou kosínusu. Ukazuje sa, že jednoduchá matematická operácia robí trigonometrický vzorec úplne nerozoznateľným. Pamätajte: keď viete, čo sú sínus, kosínus, tangens a kotangens, aké sú pravidlá prevodu a niekoľko základných vzorcov, môžete kedykoľvek odvodiť požadované ďalšie zložité vzorce na kúsku papiera.

Vzorce dvojitého uhla a pridanie argumentov

Dva ďalšie vzorce, ktoré sa musíte naučiť, súvisia s hodnotami sínusu a kosínusu pre súčet a rozdiel uhlov. Sú znázornené na obrázku nižšie. Upozorňujeme, že v prvom prípade sa sínus a kosínus oba razy vynásobia a v druhom prípade sa pripočíta párový súčin sínusu a kosínusu.

Vo formulári sú tiež spojené vzorce s argumentmi dvojitý uhol. Sú úplne odvodené od predchádzajúcich - ako prax sa ich snažte získať sami tým, že vezmete uhol alfa rovný uhlu beta.

Nakoniec si všimnite, že vzorce s dvojitým uhlom možno previesť na zníženie stupňa sínusu, kosínusu a dotyčnice alfa.

Vety

Dve hlavné vety v základnej trigonometrii sú sínusová a kosínusová. Pomocou týchto teorémov môžete ľahko pochopiť, ako nájsť sínus, kosínus a tangens, a teda aj plochu obrázku a veľkosť každej strany atď.

Sínusová veta hovorí, že v dôsledku delenia dĺžky každej zo strán trojuholníka hodnotou opačného uhla dostaneme rovnaké číslo. Navyše sa toto číslo bude rovnať dvom polomerom kružnice opísanej, teda kružnice obsahujúcej všetky body daného trojuholníka.

Kosínusová veta zovšeobecňuje Pytagorovu vetu a premieta ju na ľubovoľné trojuholníky. Ukazuje sa, že od súčtu štvorcov dvoch strán odčítajte ich súčin, vynásobený dvojitým kosínusom uhla susediaceho s nimi - výsledná hodnota sa bude rovnať štvorcu tretej strany. Pytagorova veta sa teda ukazuje ako špeciálny prípad kosínusovej vety.

Chyby v dôsledku nepozornosti

Aj keď vieme, čo sú sínus, kosínus a tangenta, je ľahké urobiť chybu kvôli neprítomnosti alebo chybe v najjednoduchších výpočtoch. Aby sme sa vyhli takýmto chybám, zoznámime sa s najpopulárnejšími z nich.

Po prvé, nemali by ste prevádzať bežné zlomky na desatinné miesta, kým sa nedosiahne konečný výsledok - odpoveď môžete ponechať vo forme spoločný zlomok pokiaľ nie je v podmienkach uvedené inak. Takúto transformáciu nemožno nazvať chybou, ale treba pamätať na to, že v každej fáze úlohy sa môžu objaviť nové korene, ktoré by sa podľa myšlienky autora mali znížiť. V tomto prípade budete strácať čas zbytočnými matematickými operáciami. To platí najmä pre hodnoty, ako je koreň troch alebo dvoch, pretože sa vyskytujú v úlohách na každom kroku. To isté platí aj o zaokrúhľovaní „škaredých“ čísel.

Ďalej si všimnite, že kosínusová veta sa vzťahuje na akýkoľvek trojuholník, ale nie na Pytagorovu vetu! Ak omylom zabudnete odpočítať dvojnásobok súčinu strán vynásobeného kosínusom uhla medzi nimi, dostanete nielen úplne nesprávny výsledok, ale preukážete aj úplné nepochopenie témy. Toto je horšie ako neopatrná chyba.

Po tretie, nezamieňajte hodnoty uhlov 30 a 60 stupňov pre sínusy, kosínusy, tangens, kotangens. Zapamätajte si tieto hodnoty, pretože sínus 30 stupňov sa rovná kosínusu 60 a naopak. Je ľahké ich zamiešať, v dôsledku čoho nevyhnutne získate chybný výsledok.

Aplikácia

Mnoho študentov sa neponáhľa so štúdiom trigonometrie, pretože jej nerozumejú aplikovaný zmysel. Čo je sínus, kosínus, tangens pre inžiniera alebo astronóma? Ide o koncepty, vďaka ktorým môžete vypočítať vzdialenosť k vzdialeným hviezdam, predpovedať pád meteoritu, poslať výskumnú sondu na inú planétu. Bez nich nie je možné postaviť budovu, navrhnúť auto, vypočítať zaťaženie povrchu alebo trajektóriu objektu. A to sú len tie najzreteľnejšie príklady! Koniec koncov, trigonometria v tej či onej forme sa používa všade, od hudby po medicínu.

Konečne

Takže ste sínus, kosínus, tangenta. Môžete ich použiť pri výpočtoch a úspešne vyriešiť školské úlohy.

Celá podstata trigonometrie sa scvrkáva na skutočnosť, že neznáme parametre sa musia vypočítať zo známych parametrov trojuholníka. Celkovo existuje šesť parametrov: dĺžky troch strán a veľkosti troch uhlov. Celý rozdiel v úlohách spočíva v tom, že sú dané rôzne vstupné údaje.

Ako nájsť sínus, kosínus, tangens na základe známych dĺžok nôh alebo prepony, teraz viete. Keďže tieto výrazy neznamenajú nič iné ako pomer a pomer je zlomok, hlavný cieľ hľadanie koreňov obyčajnej rovnice alebo sústavy rovníc sa stáva trigonometrickým problémom. A tu vám pomôže obyčajná školská matematika.

Vzorce pre súčet a rozdiel sínusov a kosínusov pre dva uhly α a β umožňujú prejsť od súčtu uvedených uhlov k súčinu uhlov α + β 2 a α - β 2 . Hneď si všimneme, že by ste si nemali zamieňať vzorce pre súčet a rozdiel sínusov a kosínusov so vzorcami pre sínusy a kosínusy súčtu a rozdielu. Nižšie uvádzame zoznam týchto vzorcov, uvádzame ich odvodenie a ukazujeme príklady použitia na konkrétne problémy.

Yandex.RTB R-A-339285-1

Vzorce pre súčet a rozdiel sínusov a kosínusov

Napíšme si, ako vyzerajú súčtové a rozdielové vzorce pre sínusy a kosínusy

Vzorce súčtu a rozdielu pre sínusy

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Vzorce súčtu a rozdielu pre kosínusy

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2, cos α - cos β = 2 sin α + β 2 β - α 2

Tieto vzorce platia pre všetky uhly α a β. Uhly α + β 2 a α - β 2 sa nazývajú polovičný súčet a polovičný rozdiel uhlov alfa a beta. Pre každý vzorec uvádzame formuláciu.

Definície súčtových a rozdielových vzorcov pre sínusy a kosínusy

Súčet sínusov dvoch uhlov sa rovná dvojnásobku súčinu sínusu polovičného súčtu týchto uhlov a kosínusu polovičného rozdielu.

Rozdiel sínusov dvoch uhlov sa rovná dvojnásobku súčinu sínusu polovičného rozdielu týchto uhlov a kosínusu polovičného súčtu.

Súčet kosínusov dvoch uhlov sa rovná dvojnásobku súčinu kosínusu polovičného súčtu a kosínusu polovičného rozdielu týchto uhlov.

Rozdiel kosínusov dvoch uhlov sa rovná dvojnásobku súčinu sínusu polovičného súčtu a kosínusu polovičného rozdielu týchto uhlov, brané so záporným znamienkom.

Odvodenie vzorcov pre súčet a rozdiel sínusov a kosínusov

Na odvodenie vzorcov pre súčet a rozdiel sínusu a kosínusu dvoch uhlov sa používajú sčítacie vzorce. Uvádzame ich nižšie

sin (α + β) = sin α cos β + cos α sin β sin (α - β) = sin α cos β - cos α sin β cos (α + β) = cos α cos β - sin α sin β cos ( α - β) = cos α cos β + sin α sin β

Samotné uhly reprezentujeme aj ako súčet polovičných súčtov a polovičných rozdielov.

α \u003d α + β 2 + α - β 2 \u003d α 2 + β 2 + α 2 - β 2 β \u003d α + β 2 - α - β 2 \u003d α 2 + α 2 + 2 - α

Pristúpime priamo k odvodeniu súčtových a rozdielových vzorcov pre sin a cos.

Odvodenie vzorca pre súčet sínusov

V súčte sin α + sin β nahradíme α a β výrazmi pre tieto uhly uvedené vyššie. Získajte

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Teraz použijeme sčítací vzorec na prvý výraz a sínusový vzorec rozdielov uhlov na druhý (pozri vzorce vyššie)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Kroky na odvodenie zvyšných vzorcov sú podobné.

Odvodenie vzorca pre rozdiel sínusov

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = hriech α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Odvodenie vzorca pre súčet kosínusov

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Odvodenie kosínusového rozdielového vzorca

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Príklady riešenia praktických problémov

Na začiatok skontrolujeme jeden zo vzorcov tak, že do neho nahradíme konkrétne hodnoty uhla. Nech α = π 2 , β = π 6 . Vypočítajme hodnotu súčtu sínusov týchto uhlov. Najprv použijeme tabuľku základných hodnôt goniometrických funkcií a potom použijeme vzorec pre súčet sínusov.

Príklad 1. Kontrola vzorca pre súčet sínusov dvoch uhlov

α \u003d π 2, β \u003d π 6 sin π 2 + sin π 6 \u003d 1 + 1 2 \u003d 3 2 sin π 2 + sin π 6 \u003d 2 sin π π 2 + π π π 2 + 6 2 \u003d 2 sin π 3 cos π 6 \u003d 2 3 2 3 2 \u003d 3 2

Uvažujme teraz o prípade, keď sa hodnoty uhlov líšia od základných hodnôt uvedených v tabuľke. Nech α = 165°, β = 75°. Vypočítajme hodnotu rozdielu medzi sínusmi týchto uhlov.

Príklad 2. Použitie vzorca sínusového rozdielu

α = 165 ° , β = 75 ° hriech α - hriech β = hriech 165 ° - hriech 75 ° hriech 165 - hriech 75 = 2 hriech 165 ° - hriech 75 ° 2 čos 165 ° + hriech 75 ° 2 = 2 hriech ° cos 120 ° = 2 2 2 - 1 2 = 2 2

Pomocou vzorcov pre súčet a rozdiel sínusov a kosínusov môžete prejsť od súčtu alebo rozdielu k súčinu goniometrických funkcií. Často sa tieto vzorce nazývajú vzorce na prechod od súčtu k súčinu. Vzorce pre súčet a rozdiel sínusov a kosínusov sa široko používajú pri riešení goniometrických rovníc a pri prevode goniometrických výrazov.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter


Pomery medzi hlavnými goniometrickými funkciami - sínus, kosínus, tangens a kotangens - sú uvedené trigonometrické vzorce. A keďže medzi goniometrickými funkciami je pomerne veľa spojení, vysvetľuje to aj množstvo goniometrických vzorcov. Niektoré vzorce spájajú goniometrické funkcie rovnakého uhla, iné - funkcie viacnásobného uhla, iné - umožňujú znížiť stupeň, štvrtý - vyjadriť všetky funkcie prostredníctvom tangens polovičného uhla atď.

V tomto článku uvedieme v poradí všetky hlavné trigonometrické vzorce, ktoré sú dostatočné na vyriešenie veľkej väčšiny problémov s trigonometriou. Pre ľahšie zapamätanie a používanie ich zoskupíme podľa účelu a zapíšeme do tabuliek.

Navigácia na stránke.

Základné goniometrické identity

Základné goniometrické identity nastavte vzťah medzi sínusom, kosínusom, tangentom a kotangensom jedného uhla. Vyplývajú z definície sínusu, kosínusu, tangensu a kotangensu, ako aj z pojmu jednotkový kruh. Umožňujú vám vyjadriť jednu goniometrickú funkciu prostredníctvom ktorejkoľvek inej.

Podrobný popis týchto trigonometrických vzorcov, ich odvodenie a príklady použitia nájdete v článku.

Odlievané vzorce




Odlievané vzorce vyplývajú z vlastností sínusu, kosínusu, dotyčnice a kotangensu, to znamená, že odrážajú vlastnosť periodicity goniometrických funkcií, vlastnosť symetrie a tiež vlastnosť posunu o daný uhol. Tieto trigonometrické vzorce vám umožňujú prejsť od práce s ľubovoľnými uhlami k práci s uhlami v rozsahu od nuly do 90 stupňov.

Zdôvodnenie týchto vzorcov, mnemotechnické pravidlo na ich zapamätanie a príklady ich použitia si môžete prečítať v článku.

Vzorce na sčítanie

Goniometrické sčítacie vzorce ukážte, ako sú goniometrické funkcie súčtu alebo rozdielu dvoch uhlov vyjadrené pomocou goniometrických funkcií týchto uhlov. Tieto vzorce slúžia ako základ pre odvodenie nasledujúcich goniometrických vzorcov.

Vzorce pre dvojité, trojité atď. uhol



Vzorce pre dvojité, trojité atď. uhla (nazývajú sa aj vzorce s viacerými uhlami) ukazujú, ako goniometrické funkcie dvojitého, trojitého atď. uhly () sú vyjadrené ako trigonometrické funkcie jedného uhla. Ich odvodenie je založené na adičných vzorcoch.

Podrobnejšie informácie sú zhromaždené vo vzorcoch článku pre dvojité, trojité atď. uhol .

Vzorce polovičného uhla

Vzorce polovičného uhla ukazujú, ako sú goniometrické funkcie polovičného uhla vyjadrené ako kosínus celočíselného uhla. Tieto trigonometrické vzorce vyplývajú zo vzorcov dvojitého uhla.

Ich záver a príklady aplikácie nájdete v článku.

Redukčné vzorce


Trigonometrické vzorce na znižovanie stupňov sú navrhnuté tak, aby uľahčili prechod od prirodzených mocnín goniometrických funkcií na sínusy a kosínusy v prvom stupni, ale s viacerými uhlami. Inými slovami, umožňujú znížiť mocniny goniometrických funkcií na prvé.

Vzorce pre súčet a rozdiel goniometrických funkcií


hlavný cieľ súčtové a rozdielové vzorce pre goniometrické funkcie spočíva v prechode na súčin funkcií, čo je veľmi užitočné pri zjednodušovaní goniometrických výrazov. Tieto vzorce sú tiež široko používané pri riešení goniometrických rovníc, pretože umožňujú faktorizáciu súčtu a rozdielu sínusov a kosínusov.

Vzorce na súčin sínusov, kosínusov a sínus po kosínu


Prechod od súčinu goniometrických funkcií k súčtu alebo rozdielu sa uskutočňuje prostredníctvom vzorcov pre súčin sínusov, kosínusov a sínus po kosínusu.

  • Bašmakov M.I. Algebra a začiatok analýzy: Proc. pre 10-11 buniek. priem. školy - 3. vyd. - M.: Osveta, 1993. - 351 s.: chor. - ISBN 5-09-004617-4.
  • Algebra a začiatok rozboru: Proc. pre 10-11 buniek. všeobecné vzdelanie inštitúcie / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn a ďalší; Ed. A. N. Kolmogorova.- 14. vyd.- M.: Osveta, 2004.- 384 s.: ill.- ISBN 5-09-013651-3.
  • Gusev V. A., Mordkovich A. G. Matematika (príručka pre uchádzačov o štúdium na technických školách): Proc. príspevok.- M.; Vyššie škola, 1984.-351 s., ill.
  • Autorské práva šikovných študentov

    Všetky práva vyhradené.
    Chránené autorským zákonom. Žiadna časť www.site, vrátane interných materiálov a vonkajšieho dizajnu, nesmie byť reprodukovaná v žiadnej forme ani použitá bez predchádzajúceho písomného súhlasu držiteľa autorských práv.