Дискриминант на уравнение. Квадратни уравнения. Решаване на пълни квадратни уравнения

Формули за корените на квадратно уравнение. Разглеждат се случаите на реални, кратни и комплексни корени. Факторизация квадратен тричлен. Геометрична интерпретация. Примери за определяне на корени и разлагане на множители.

Основни формули

Разгледайте квадратното уравнение:
(1) .
Корените на квадратно уравнение(1) се определят по формулите:
; .
Тези формули могат да се комбинират по следния начин:
.
Когато корените на квадратното уравнение са известни, тогава полиномът от втора степен може да бъде представен като произведение на фактори (факторизирани):
.

Освен това приемаме, че това са реални числа.
Обмисли дискриминант на квадратно уравнение:
.
Ако дискриминантът е положителен, тогава квадратното уравнение (1) има два различни реални корена:
; .
Тогава факторизацията на квадратния трином има формата:
.
Ако дискриминантът нула, , тогава квадратното уравнение (1) има два кратни (равни) реални корена:
.
Факторизация:
.
Ако дискриминантът е отрицателен, тогава квадратното уравнение (1) има два комплексно спрегнати корена:
;
.
Ето въображаемата единица, ;
и са реалните и въображаемите части на корените:
; .
Тогава

.

Графична интерпретация

Ако се изгради функционална графика
,
което е парабола, тогава точките на пресичане на графиката с оста ще бъдат корените на уравнението
.
Когато , графиката пресича абсцисната ос (ос) в две точки.
Когато , графиката докосва оста x в една точка.
Когато , графиката не пресича оста x.

По-долу са дадени примери за такива графики.

Полезни формули, свързани с квадратно уравнение

(f.1) ;
(f.2) ;
(f.3) .

Извеждане на формулата за корените на квадратно уравнение

Извършваме трансформации и прилагаме формули (f.1) и (f.3):




,
където
; .

И така, получихме формулата за полинома от втора степен във формата:
.
От това се вижда, че уравнението

извършва при
и .
Това е и са корените на квадратното уравнение
.

Примери за определяне на корените на квадратно уравнение

Пример 1


(1.1) .

Решение


.
Сравнявайки с нашето уравнение (1.1), намираме стойностите на коефициентите:
.
Намиране на дискриминанта:
.
Тъй като дискриминантът е положителен, уравнението има два реални корена:
;
;
.

От тук получаваме разлагането на квадратния трином на множители:

.

Графика на функцията y = 2 х 2 + 7 х + 3пресича оста x в две точки.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Той пресича оста x (ос) в две точки:
и .
Тези точки са корените на първоначалното уравнение (1.1).

Отговор

;
;
.

Пример 2

Намерете корените на квадратно уравнение:
(2.1) .

Решение

Записваме квадратното уравнение в общ изглед:
.
Сравнявайки с оригиналното уравнение (2.1), намираме стойностите на коефициентите:
.
Намиране на дискриминанта:
.
Тъй като дискриминантът е нула, уравнението има два кратни (равни) корена:
;
.

Тогава факторизацията на тринома има формата:
.

Графика на функцията y = x 2 - 4 х + 4докосва оста x в една точка.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Той докосва оста x (ос) в една точка:
.
Тази точка е коренът на първоначалното уравнение (2.1). Тъй като този корен се разлага два пъти:
,
тогава такъв корен се нарича кратно. Тоест те считат, че има два равни корена:
.

Отговор

;
.

Пример 3

Намерете корените на квадратно уравнение:
(3.1) .

Решение

Записваме квадратното уравнение в общ вид:
(1) .
Нека пренапишем първоначалното уравнение (3.1):
.
Сравнявайки с (1), намираме стойностите на коефициентите:
.
Намиране на дискриминанта:
.
Дискриминантът е отрицателен, . Следователно няма истински корени.

Можете да намерите сложни корени:
;
;
.

Тогава


.

Графиката на функцията не пресича оста x. Няма истински корени.

Нека начертаем функцията
.
Графиката на тази функция е парабола. Не пресича абсцисата (оста). Следователно няма истински корени.

Отговор

Няма истински корени. Сложни корени:
;
;
.

Копьевская селска гимназия

10 начина за решаване на квадратни уравнения

Ръководител: Патрикеева Галина Анатолиевна,

учител по математика

с.Копиево, 2007г

1. История на развитието на квадратните уравнения

1.1 Квадратни уравнения в древен Вавилон

1.2 Как Диофант съставя и решава квадратни уравнения

1.3 Квадратни уравнения в Индия

1.4 Квадратни уравнения в ал-Хорезми

1.5 Квадратни уравнения в Европа XIII - XVII век

1.6 За теоремата на Виета

2. Методи за решаване на квадратни уравнения

Заключение

Литература

1. История на развитието на квадратните уравнения

1.1 Квадратни уравнения в древен Вавилон

Необходимостта от решаване на уравнения не само от първа, но и от втора степен в древността е била причинена от необходимостта от решаване на проблеми, свързани с намирането на площи на земя и земни работи от военен характер, както и от развитието на астрономията и самата математика. Квадратните уравнения са били в състояние да решават около 2000 г. пр.н.е. д. вавилонци.

Прилагайки съвременна алгебрична нотация, можем да кажем, че в техните клинописни текстове има, освен непълни, такива, например, пълни квадратни уравнения:

х 2 + х = ¾; х 2 - х = 14,5

Правилото за решаване на тези уравнения, изложено във вавилонските текстове, съвпада по същество със съвременното, но не е известно как вавилонците са стигнали до това правило. Почти всички клинописни текстове, открити досега, дават само задачи с решения, посочени под формата на рецепти, без индикация как са намерени.

Въпреки високо ниворазвитието на алгебрата във Вавилон, концепцията за отрицателно число и общите методи за решаване на квадратни уравнения отсъстват в клинописните текстове.

1.2 Как Диофант съставя и решава квадратни уравнения.

Аритметиката на Диофант не съдържа систематично изложение на алгебрата, но съдържа систематична поредица от задачи, придружени от обяснения и решени чрез формулиране на уравнения от различни степени.

Когато съставя уравнения, Диофант умело избира неизвестни, за да опрости решението.

Ето например една от задачите му.

Задача 11.„Намерете две числа, като знаете, че сборът им е 20, а произведението им е 96“

Диофант аргументира следното: от условието на задачата следва, че желаните числа не са равни, тъй като ако бяха равни, тогава техният продукт ще бъде равен не на 96, а на 100. Така едно от тях ще бъде повече от половината от сумата им, т.е. 10+x, другият е по-малък, т.е. 10-те. Разликата между тях 2x .

Следователно уравнението:

(10 + x)(10 - x) = 96

100 - х 2 = 96

x 2 - 4 = 0 (1)

Оттук х = 2. Едно от желаните числа е 12 , друго 8 . Решение х = -2за Диофант не съществува, тъй като гръцката математика познава само положителни числа.

Ако решим тази задача, като изберем едно от желаните числа като неизвестно, тогава ще стигнем до решението на уравнението

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Ясно е, че като избира полуразликата на желаните числа като неизвестно, Диофант опростява решението; той успява да сведе проблема до решаване на непълно квадратно уравнение (1).

1.3 Квадратни уравнения в Индия

Задачи за квадратни уравнения се намират вече в астрономическия трактат "Арябхатам", съставен през 499 г. от индийския математик и астроном Арябхатта. Друг индийски учен, Брахмагупта (7 век), очерта общото правило за решаване на квадратни уравнения, сведени до една канонична форма:

ах 2+ b x = c, a > 0. (1)

В уравнение (1) коефициентите, с изключение на а, може да бъде и отрицателен. Правилото на Брахмагупта по същество съвпада с нашето.

AT древна индияпубличните състезания при решаването на трудни проблеми са често срещани. В една от старите индийски книги за такива състезания се казва следното: „Както слънцето засенчва звездите с блясъка си, така учен човекзасенчват славата на друг в публични събрания, предлагайки и решавайки алгебрични проблеми. Задачите често бяха облечени в поетична форма.

Ето един от проблемите на известния индийски математик от XII век. Бхаскара.

Задача 13.

„Бързо стадо маймуни и дванадесет в лози ...

След като ядохте власт, се забавлявахте. Те започнаха да скачат, да висят ...

Част осма от тях в квадрат Колко маймуни имаше,

Забавление на поляната. Ти ми кажи, в това стадо?

Решението на Бхаскара показва, че той е знаел за двузначността на корените на квадратните уравнения (фиг. 3).

Уравнението, съответстващо на задача 13 е:

( х /8) 2 + 12 = х

Бхаскара пише под прикритието на:

x 2 - 64x = -768

и за да завърши лявата страна на това уравнение до квадрат, той добавя към двете страни 32 2 , получавайки след това:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Квадратни уравнения в ал-Хорезми

Алгебричният трактат на Ал-Хорезми дава класификация на линейни и квадратни уравнения. Авторът изброява 6 вида уравнения, като ги изразява по следния начин:

1) „Квадратите са равни на корени“, т.е. брадва 2 + c = b Х.

2) „Квадратите са равни на число“, т.е. брадва 2 = s.

3) „Корените са равни на числото“, т.е. ах = s.

4) „Квадратите и числата са равни на корени“, т.е. брадва 2 + c = b Х.

5) „Квадратите и корените са равни на числото“, т.е. ах 2+ bx = s.

6) „Корените и числата са равни на квадрати“, т.е. bx + c \u003d брадва 2.

За ал-Хорезми, който избягва използването на отрицателни числа, членовете на всяко от тези уравнения са събираеми, а не изваждания. В този случай уравненията, които нямат положителни решения, очевидно не се вземат предвид. Авторът излага методите за решаване на тези уравнения, използвайки методите на ал-джабр и ал-мукабала. Неговите решения, разбира се, не съвпадат напълно с нашите. Да не говорим за факта, че е чисто риторично, трябва да се отбележи, например, че при решаване на непълно квадратно уравнение от първи тип

ал-Хорезми, както всички математици преди 17-ти век, не взема предвид нулевото решение, вероятно защото то няма значение при конкретни практически проблеми. При решаването на пълни квадратни уравнения ал-Хорезми излага правилата за решаване и след това геометрични доказателства, използвайки конкретни числени примери.

Задача 14.„Квадратът и числото 21 са равни на 10 корена. Намерете корена" (приемайки корена на уравнението x 2 + 21 = 10x).

Решението на автора е нещо подобно: разделете броя на корените наполовина, получавате 5, умножете 5 по себе си, извадете 21 от продукта, остава 4. Вземете корен от 4, получавате 2. Извадете 2 от 5, вие получите 3, това ще бъде желаният корен. Или добавете 2 към 5, което ще даде 7, това също е корен.

Трактатът ал-Хорезми е първата книга, достигнала до нас, в която систематично е изложена класификацията на квадратните уравнения и са дадени формули за тяхното решаване.

1.5 Квадратни уравнения в Европа XIII - XVII векове

Формулите за решаване на квадратни уравнения по модела на ал-Хорезми в Европа са изложени за първи път в "Книгата на абака", написана през 1202 г. от италианския математик Леонардо Фибоначи. Тази обемна работа, която отразява влиянието на математиката, както на страните на исляма, така и на Древна Гърция, се различава както по пълнота, така и по яснота на представянето. Авторът самостоятелно разработва някои нови алгебрични примери за решаване на задачи и е първият в Европа, който подходи към въвеждането на отрицателни числа. Книгата му допринася за разпространението на алгебричните знания не само в Италия, но и в Германия, Франция и други европейски страни. Много задачи от "Книгата на абака" са преминали в почти всички европейски учебници от 16-17 век. и отчасти XVIII.

Общото правило за решаване на квадратни уравнения, намалено до една канонична форма:

х 2+ bx = с,

за всички възможни комбинации от знаци на коефициентите b , се формулиран в Европа едва през 1544 г. от M. Stiefel.

Vieta има общо извеждане на формулата за решаване на квадратно уравнение, но Vieta признава само положителни корени. Италианските математици Тарталия, Кардано, Бомбели са сред първите през 16 век. Вземете под внимание, в допълнение към положителното, и отрицателни корени. Едва през XVII век. Благодарение на работата на Жирар, Декарт, Нютон и други учени начинът за решаване на квадратни уравнения придобива съвременен вид.

1.6 За теоремата на Виета

Теоремата, изразяваща връзката между коефициентите на квадратно уравнение и неговите корени, носеща името на Виета, е формулирана от него за първи път през 1591 г., както следва: „Ако б + думножено по А - А 2 , се равнява BD, тогава Асе равнява ATи равни д ».

За да разберете Виета, трябва да запомните това НО, като всяка гласна, означаваше за него неизвестното (нашата х), гласните AT, д- коефициенти за неизвестното. На езика на съвременната алгебра горната формулировка на Виета означава: ако

(а + b )x - x 2 = аб ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Изразяване на връзката между корените и коефициентите на уравненията общи формули, написан с помощта на символи, Виет установява еднаквост в методите за решаване на уравнения. Символиката на Виета обаче все още е далеч от съвременния си вид. Той не признаваше отрицателните числа и затова при решаването на уравнения разглеждаше само случаите, когато всички корени са положителни.

2. Методи за решаване на квадратни уравнения

Квадратните уравнения са основата, върху която се крепи величествената сграда на алгебрата. Квадратните уравнения се използват широко при решаване на тригонометрични, експоненциални, логаритмични, ирационални и трансцендентни уравнения и неравенства. Всички знаем как да решаваме квадратни уравнения от училище (8 клас) до завършването.

Квадратно уравнение- лесно за решаване! *По-нататък в текста „КУ“.Приятели, изглежда, че в математиката може да бъде по-лесно от решаването на такова уравнение. Но нещо ми подсказа, че много хора имат проблеми с него. Реших да видя колко импресии Yandex дава на заявка на месец. Ето какво се случи, вижте:


Какво означава? Това означава, че месечно се търсят около 70 000 души тази информация, какво общо има това лято и какво ще се случи сред учебна година- заявките ще бъдат два пъти повече. Това не е изненадващо, защото онези момчета и момичета, които отдавна са завършили училище и се подготвят за изпита, търсят тази информация, а учениците също се опитват да освежат паметта си.

Въпреки факта, че има много сайтове, които казват как се решава това уравнение, реших също да допринеса и да публикувам материала. Първо, искам посетителите да идват на сайта ми по тази заявка; второ, в други статии, когато се появи речта „KU“, ще дам връзка към тази статия; трето, ще ви разкажа малко повече за неговото решение, отколкото обикновено се посочва в други сайтове. Да започваме!Съдържанието на статията:

Квадратно уравнение е уравнение от формата:

където коефициентите a,bи с произволни числа, с a≠0.

В училищния курс материалът е даден в следната форма - разделянето на уравненията в три класа е условно:

1. Имате два корена.

2. * Има само един корен.

3. Нямат корени. Тук си струва да се отбележи, че те нямат истински корени

Как се изчисляват корените? Просто!

Изчисляваме дискриминанта. Под тази "ужасна" дума се крие много проста формула:

Формулите на корените са както следва:

*Тези формули трябва да се знаят наизуст.

Можете веднага да запишете и решите:

Пример:


1. Ако D > 0, тогава уравнението има два корена.

2. Ако D = 0, тогава уравнението има един корен.

3. Ако Д< 0, то уравнение не имеет действительных корней.

Нека да разгледаме уравнението:


от този повод, когато дискриминантът е нула, в училищния курс се казва, че се получава един корен, тук той е равен на девет. Така е, но...

Това представяне е донякъде неправилно. Всъщност има два корена. Да, да, не се изненадвайте, оказват се два равни корена и за да бъдете математически точни, тогава два корена трябва да бъдат написани в отговора:

x 1 = 3 x 2 = 3

Но това е така - малко отклонение. В училище можете да запишете и да кажете, че има само един корен.

Сега следният пример:


Както знаем, коренът на отрицателно число не се извлича, така че решенията в този случайне.

Това е целият процес на вземане на решение.

Квадратична функция.

Ето как геометрично изглежда решението. Това е изключително важно да се разбере (в бъдеще, в една от статиите, ще анализираме подробно решението на квадратно неравенство).

Това е функция на формата:

където x и y са променливи

а, б, в - дадени числа, където a ≠ 0

Графиката е парабола:

Тоест, оказва се, че чрез решаване на квадратно уравнение с "y" равно на нула, намираме точките на пресичане на параболата с оста x. Може да има две от тези точки (дискриминантът е положителен), една (дискриминантът е нула) или нито една (дискриминантът е отрицателен). Повече за квадратичната функция Можете да видитестатия от Инна Фелдман.

Помислете за примери:

Пример 1: Решете 2x 2 +8 х–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Отговор: x 1 = 8 x 2 = -12

* Можете веднага да напуснете и правилната странаразделете уравнението на 2, тоест го опростете. Изчисленията ще бъдат по-лесни.

Пример 2: Реши x2–22 х+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получихме, че x 1 \u003d 11 и x 2 \u003d 11

В отговора е допустимо да напишете x = 11.

Отговор: x = 11

Пример 3: Реши x 2 –8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминантът е отрицателен, няма решение в реални числа.

Отговор: няма решение

Дискриминантът е отрицателен. Има решение!

Тук ще говорим за решаването на уравнението в случай, когато се получи отрицателен дискриминант. Знаете ли нещо за комплексните числа? Тук няма да навлизам в подробности защо и къде са възникнали и каква е тяхната конкретна роля и необходимост в математиката, това е тема за голяма отделна статия.

Понятието комплексно число.

Малко теория.

Комплексно число z е число от формата

z = a + bi

където a и b са реални числа, i е така наречената имагинерна единица.

а+би е ЕДИНСТВЕНО ЧИСЛО, а не събиране.

Въображаемата единица е равна на корен от минус едно:

Сега разгледайте уравнението:


Вземете два спрегнати корена.

Непълно квадратно уравнение.

Помислете за специални случаи, това е, когато коефициентът "b" или "c" е равен на нула (или и двата са равни на нула). Решават се лесно без никакви дискриминанти.

Случай 1. Коефициент b = 0.

Уравнението приема формата:

Нека трансформираме:

Пример:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

Случай 2. Коефициент c = 0.

Уравнението приема формата:

Трансформиране, факторизиране:

*Произведението е равно на нула, когато поне един от факторите е равен на нула.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коефициенти b = 0 и c = 0.

Тук е ясно, че решението на уравнението винаги ще бъде x = 0.

Полезни свойства и модели на коефициентите.

Има свойства, които позволяват решаване на уравнения с големи коефициенти.

ах 2 + bx+ ° С=0 равенство

а + b+ c = 0,тогава

— ако за коефициентите на уравнението ах 2 + bx+ ° С=0 равенство

а+ с =b, тогава

Тези свойства помагат за решаването на определен вид уравнение.

Пример 1: 5001 х 2 –4995 х – 6=0

Сумата на коефициентите е 5001+( 4995)+( 6) = 0, така че

Пример 2: 2501 х 2 +2507 х+6=0

Равенство а+ с =b, означава

Закономерности на коефициентите.

1. Ако в уравнението ax 2 + bx + c \u003d 0 коефициентът "b" е (a 2 +1), а коефициентът "c" е числено равен на коефициента "a", тогава неговите корени са

ax 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Пример. Разгледайте уравнението 6x 2 +37x+6 = 0.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Ако в уравнението ax 2 - bx + c \u003d 0, коефициентът "b" е (a 2 +1), а коефициентът "c" е числено равен на коефициента "a", тогава неговите корени са

ax 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Пример. Разгледайте уравнението 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ако в уравнението ax 2 + bx - c = 0 коефициент "b" е равно на (a 2 – 1), и коефициентът „c“ числено равен на коефициента "а", тогава неговите корени са равни

ax 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Пример. Разгледайте уравнението 17x 2 + 288x - 17 = 0.

x 1 \u003d - 17 x 2 \u003d 1/17.

4. Ако в уравнението ax 2 - bx - c \u003d 0, коефициентът "b" е равен на (a 2 - 1), а коефициентът c е числено равен на коефициента "a", тогава неговите корени са

ax 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Пример. Разгледайте уравнението 10x2 - 99x -10 = 0.

x 1 \u003d 10 x 2 \u003d - 1/10

Теорема на Виета.

Теоремата на Виета е кръстена на известния френски математик Франсоа Виета. Използвайки теоремата на Vieta, човек може да изрази сумата и произведението на корените на произволен KU по отношение на неговите коефициенти.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Общо числото 14 дава само 5 и 9. Това са корените. С определено умение, използвайки представената теорема, можете да решите много квадратни уравнения веднага устно.

Освен това теоремата на Виета. удобно, защото след решаване на квадратното уравнение по обичайния начин (чрез дискриминанта), получените корени могат да бъдат проверени. Препоръчвам да правите това през цялото време.

МЕТОД ЗА ПРЕХВЪРЛЯНЕ

При този метод коефициентът "а" се умножава по свободния член, като че ли се "прехвърля" върху него, поради което се нарича метод на прехвърляне.Този метод се използва, когато е лесно да се намерят корените на уравнение с помощта на теоремата на Виета и най-важното, когато дискриминантът е точен квадрат.

Ако а± b+c≠ 0, тогава се използва техниката на прехвърляне, например:

2х 2 – 11x+ 5 = 0 (1) => х 2 – 11x+ 10 = 0 (2)

Съгласно теоремата на Vieta в уравнение (2) е лесно да се определи, че x 1 \u003d 10 x 2 \u003d 1

Получените корени на уравнението трябва да се разделят на 2 (тъй като двете са "хвърлени" от x 2), получаваме

x 1 \u003d 5 x 2 \u003d 0,5.

Каква е обосновката? Вижте какво става.

Дискриминантите на уравнения (1) и (2) са:

Ако погледнете корените на уравненията, тогава се получават само различни знаменатели и резултатът зависи точно от коефициента при x 2:


Вторите (модифицирани) корени са 2 пъти по-големи.

Следователно, разделяме резултата на 2.

*Ако хвърлим три от един вид, тогава разделяме резултата на 3 и т.н.

Отговор: x 1 = 5 x 2 = 0,5

кв. ur-ie и изпита.

Ще кажа накратко за важността му - ТРЯБВА ДА МОЖЕТЕ ДА РЕШАВАТЕ бързо и без да мислите, трябва да знаете формулите на корените и дискриминанта наизуст. Голяма част от задачите, които са част от задачите за USE, се свеждат до решаване на квадратно уравнение (включително геометрични).

Какво си струва да се отбележи!

1. Формата на уравнението може да бъде "неявна". Например е възможен следният запис:

15+ 9x 2 - 45x = 0 или 15x+42+9x 2 - 45x=0 или 15 -5x+10x 2 = 0.

Трябва да го доведете до стандартна форма (за да не се объркате при решаването).

2. Запомнете, че x е неизвестна стойност и може да се обозначи с всяка друга буква - t, q, p, h и др.

| Повече ▼ по прост начин. За да направите това, извадете z от скоби. Получавате: z(az + b) = 0. Коефициентите могат да бъдат записани: z=0 и az + b = 0, тъй като и двата могат да доведат до нула. В записа az + b = 0 преместваме втория надясно с различен знак. От тук получаваме z1 = 0 и z2 = -b/а. Това са корените на оригинала.

Ако има непълно уравнениепод формата az² + c = 0, в този случай те се намират чрез просто прехвърляне на свободния член в дясната страна на уравнението. Променете и знака му. Получавате записа az² \u003d -s. Експресирайте z² = -c/a. Извадете корена и запишете две решения - положителна и отрицателна стойност на квадратния корен.

Забележка

Ако в уравнението има дробни коефициенти, умножете цялото уравнение по съответния коефициент, за да се отървете от дробите.

Да знаете как да решавате квадратни уравнения е необходимо както за ученици, така и за студенти, понякога може да помогне на възрастен в ежедневието. Има няколко специфични метода за вземане на решения.

Решаване на квадратни уравнения

Квадратно уравнение във формата a*x^2+b*x+c=0. Коефициентът x е желаната променлива, a, b, c - числови коефициенти. Не забравяйте, че знакът "+" може да се промени на знака "-".

За да разрешите това уравнение, трябва да използвате теоремата на Vieta или да намерите дискриминанта. Най-често срещаният начин е да се намери дискриминанта, тъй като за някои стойности на a, b, c не е възможно да се използва теоремата на Vieta.

За да намерите дискриминанта (D), трябва да напишете формулата D=b^2 - 4*a*c. Стойността на D може да бъде по-голяма, по-малка или равна на нула. Ако D е по-голямо или по-малко от нула, тогава ще има два корена, ако D = 0, тогава остава само един корен, по-точно можем да кажем, че D в този случай има два еквивалентни корена. Заместете известните коефициенти a, b, c във формулата и изчислете стойността.

След като сте намерили дискриминанта, за да намерите x, използвайте формулите: x(1) = (- b+sqrt(D))/2*a; x(2) = (- b-sqrt(D))/2*a където sqrt е функцията за извличане на корен квадратен от даденото число. След като изчислите тези изрази, ще намерите двата корена на вашето уравнение, след което уравнението се счита за решено.

Ако D е по-малко от нула, то все още има корени. В училище този раздел практически не се изучава. Студентите трябва да са наясно с това, което се появява отрицателно числопод корена. Ние се отърваваме от него, като отделяме имагинерната част, тоест -1 под корена винаги е равно на имагинерния елемент "i", който се умножава по корена със същото положително число. Например, ако D=sqrt(-20), след трансформацията се получава D=sqrt(20)*i. След тази трансформация решението на уравнението се свежда до същото намиране на корените, както е описано по-горе.

Теоремата на Vieta се състои в избора на стойности x(1) и x(2). Използват се две идентични уравнения: x(1) + x(2)= -b; x(1)*x(2)=s. Освен това, много важен момент е знакът пред коефициента b, не забравяйте, че този знак е противоположен на този в уравнението. На пръв поглед изглежда, че изчисляването на x(1) и x(2) е много просто, но при решаването ще се сблъскате с факта, че числата ще трябва да бъдат избрани точно.

Елементи за решаване на квадратни уравнения

Според правилата на математиката някои могат да бъдат разложени на множители: (a + x (1)) * (b-x (2)) = 0, ако сте успели да конвертирате с помощта на математически формули По подобен начинтова квадратно уравнение, тогава не се колебайте да запишете отговора. x(1) и x(2) ще бъдат равни на съседните коефициенти в скоби, но с обратен знак.

Също така не забравяйте за непълните квадратни уравнения. Може да пропускате някои от членовете, ако е така, тогава всичките му коефициенти са просто равни на нула. Ако x^2 или x не се предхожда от нищо, тогава коефициентите a и b са равни на 1.

Първо ниво

Квадратни уравнения. Изчерпателно ръководство (2019)

В термина "квадратно уравнение" ключовата дума е "квадратно уравнение". Това означава, че уравнението трябва задължително да съдържа променлива (същия X) в квадрата и в същото време не трябва да има Xs в трета (или по-висока) степен.

Решаването на много уравнения се свежда до решаването на квадратни уравнения.

Нека се научим да определяме, че имаме квадратно уравнение, а не някое друго.

Пример 1

Отървете се от знаменателя и умножете всеки член на уравнението по

Нека преместим всичко в лявата страна и подредим членовете в низходящ ред на степени на x

Сега можем да кажем с увереност, че това уравнение е квадратно!

Пример 2

Умножете лявата и дясната страна по:

Това уравнение, въпреки че първоначално е в него, не е квадрат!

Пример 3

Нека умножим всичко по:

Страшен? Четвъртата и втората степен ... Въпреки това, ако направим замяна, ще видим, че имаме просто квадратно уравнение:

Пример 4

Изглежда, че е, но нека погледнем по-отблизо. Нека преместим всичко отляво:

Виждате ли, тя се е свила - и сега е просто линейно уравнение!

Сега се опитайте да определите сами кои от следните уравнения са квадратни и кои не:

Примери:

Отговори:

  1. квадрат;
  2. квадрат;
  3. не е квадратна;
  4. не е квадратна;
  5. не е квадратна;
  6. квадрат;
  7. не е квадратна;
  8. квадрат.

Математиците условно разделят всички квадратни уравнения на следните видове:

  • Пълни квадратни уравнения- уравнения, в които коефициентите и, както и свободният член c, не са равни на нула (както в примера). Освен това сред пълните квадратни уравнения има даденоса уравнения, в които коефициентът (уравнението от пример едно е не само пълно, но и намалено!)
  • Непълни квадратни уравнения- уравнения, в които коефициентът и/или свободният член c са равни на нула:

    Те са непълни, защото в тях липсва някакъв елемент. Но уравнението винаги трябва да съдържа x на квадрат !!! В противен случай това вече няма да е квадратно, а някакво друго уравнение.

Защо са измислили такова разделение? Изглежда, че има Х на квадрат и добре. Такова разделение се дължи на методите на решение. Нека разгледаме всеки от тях по-подробно.

Решаване на непълни квадратни уравнения

Първо, нека се съсредоточим върху решаването на непълни квадратни уравнения - те са много по-прости!

Непълните квадратни уравнения са от видове:

  1. , в това уравнение коефициентът е равен.
  2. , в това уравнение свободният член е равен на.
  3. , в това уравнение коефициентът и свободният член са равни.

1. i. Тъй като знаем как да извличаме Корен квадратен, тогава нека изразим от това уравнение

Изразът може да бъде както отрицателен, така и положителен. Числото на квадрат не може да бъде отрицателно, защото при умножаване на две отрицателни или две положителни числа резултатът винаги ще бъде положително число, така че: ако, тогава уравнението няма решения.

И ако, тогава получаваме два корена. Тези формули не трябва да се запомнят. Основното е, че винаги трябва да знаете и да помните, че не може да бъде по-малко.

Нека се опитаме да решим някои примери.

Пример 5:

Решете уравнението

Сега остава да извлечете корена от лявата и дясната част. Все пак помните ли как се извличат корените?

Отговор:

Никога не забравяйте за корените с отрицателен знак!!!

Пример 6:

Решете уравнението

Отговор:

Пример 7:

Решете уравнението

Ох! Квадратът на число не може да бъде отрицателен, което означава, че уравнението

без корени!

За такива уравнения, в които няма корени, математиците излязоха със специална икона - (празен набор). И отговорът може да бъде написан така:

Отговор:

По този начин това квадратно уравнение има два корена. Тук няма ограничения, тъй като не сме извлекли корена.
Пример 8:

Решете уравнението

Нека извадим общия множител извън скобите:

По този начин,

Това уравнение има два корена.

Отговор:

Най-простият тип непълни квадратни уравнения (въпреки че всички те са прости, нали?). Очевидно това уравнение винаги има само един корен:

Тук ще се справим без примери.

Решаване на пълни квадратни уравнения

Напомняме ви, че пълното квадратно уравнение е уравнение от вида уравнение където

Решаването на пълни квадратни уравнения е малко по-сложно (само малко) от дадените.

Помня, всяко квадратно уравнение може да бъде решено с помощта на дискриминанта! Дори непълна.

Останалите методи ще ви помогнат да го направите по-бързо, но ако имате проблеми с квадратни уравнения, първо овладейте решението с помощта на дискриминанта.

1. Решаване на квадратни уравнения с помощта на дискриминанта.

Решаването на квадратни уравнения по този начин е много просто, основното е да запомните последователността от действия и няколко формули.

Ако, тогава уравнението има корен.Специално внимание трябва да се обърне на стъпката. Дискриминантът () ни казва броя на корените на уравнението.

  • Ако, тогава формулата на стъпката ще бъде намалена до. Така уравнението ще има само корен.
  • Ако, тогава няма да можем да извлечем корена на дискриминанта на стъпката. Това показва, че уравнението няма корени.

Нека се върнем към нашите уравнения и да разгледаме няколко примера.

Пример 9:

Решете уравнението

Етап 1пропуснете.

Стъпка 2

Намиране на дискриминанта:

Така че уравнението има два корена.

Стъпка 3

Отговор:

Пример 10:

Решете уравнението

Уравнението е в стандартна форма, така че Етап 1пропуснете.

Стъпка 2

Намиране на дискриминанта:

Така че уравнението има един корен.

Отговор:

Пример 11:

Решете уравнението

Уравнението е в стандартна форма, така че Етап 1пропуснете.

Стъпка 2

Намиране на дискриминанта:

Това означава, че няма да можем да извлечем корена от дискриминанта. Няма корени на уравнението.

Сега знаем как да записваме правилно такива отговори.

Отговор:без корени

2. Решаване на квадратни уравнения с помощта на теоремата на Виета.

Ако си спомняте, тогава има такъв тип уравнения, които се наричат ​​намалени (когато коефициентът a е равен на):

Такива уравнения са много лесни за решаване с помощта на теоремата на Vieta:

Сумата от корените даденоквадратно уравнение е равно и произведението на корените е равно.

Пример 12:

Решете уравнението

Това уравнение е подходящо за решение с помощта на теоремата на Виета, тъй като .

Сумата от корените на уравнението е, т.е. получаваме първото уравнение:

А продуктът е:

Нека създадем и решим системата:

  • и. Сумата е;
  • и. Сумата е;
  • и. Сумата е равна.

и са решението на системата:

Отговор: ; .

Пример 13:

Решете уравнението

Отговор:

Пример 14:

Решете уравнението

Уравнението е намалено, което означава:

Отговор:

КВАДРАТНИ УРАВНЕНИЯ. СРЕДНО НИВО

Какво е квадратно уравнение?

С други думи, квадратното уравнение е уравнение от вида, където - неизвестно, - някои числа, освен това.

Числото се нарича най-високото или първи коефициентквадратно уравнение, - втори коефициент, а - безплатен член.

Защо? Защото ако, уравнението веднага ще стане линейно, защото ще изчезне.

В този случай и може да бъде равно на нула. В това уравнение на изпражненията се нарича непълно. Ако всички членове са налице, това означава, че уравнението е пълно.

Решения на различни видове квадратни уравнения

Методи за решаване на непълни квадратни уравнения:

Като начало ще анализираме методите за решаване на непълни квадратни уравнения - те са по-прости.

Могат да се разграничат следните видове уравнения:

I. , в това уравнение коефициентът и свободният член са равни.

II. , в това уравнение коефициентът е равен.

III. , в това уравнение свободният член е равен на.

Сега разгледайте решението на всеки от тези подтипове.

Очевидно това уравнение винаги има само един корен:

Число на квадрат не може да бъде отрицателно, защото при умножаване на две отрицателни или две положителни числа резултатът винаги ще бъде положително число. Ето защо:

ако, тогава уравнението няма решения;

ако имаме два корена

Тези формули не трябва да се запомнят. Основното нещо, което трябва да запомните, е, че не може да бъде по-малко.

Примери:

Решения:

Отговор:

Никога не забравяйте за корените с отрицателен знак!

Квадратът на число не може да бъде отрицателен, което означава, че уравнението

без корени.

За да напишем накратко, че проблемът няма решения, използваме иконата за празен набор.

Отговор:

И така, това уравнение има два корена: и.

Отговор:

Нека извадим общия множител извън скобите:

Произведението е равно на нула, ако поне един от множителите е равен на нула. Това означава, че уравнението има решение, когато:

И така, това квадратно уравнение има два корена: и.

Пример:

Решете уравнението.

Решение:

Разлагаме лявата страна на уравнението и намираме корените:

Отговор:

Методи за решаване на пълни квадратни уравнения:

1. Дискриминант

Решаването на квадратни уравнения по този начин е лесно, основното е да запомните последователността от действия и няколко формули. Не забравяйте, че всяко квадратно уравнение може да бъде решено с помощта на дискриминанта! Дори непълна.

Забелязахте ли корена на дискриминанта във формулата за корен? Но дискриминантът може да бъде отрицателен. Какво да правя? Трябва да обърнем специално внимание на стъпка 2. Дискриминантът ни казва броя на корените на уравнението.

  • Ако, тогава уравнението има корен:
  • Ако, тогава уравнението има същия корен, но всъщност един корен:

    Такива корени се наричат ​​двойни корени.

  • Ако, тогава коренът на дискриминанта не се извлича. Това показва, че уравнението няма корени.

Защо е възможно различно количествокорени? Да се ​​обърнем към геометричен смисълквадратно уравнение. Графиката на функцията е парабола:

В частен случай, който е квадратно уравнение, . И това означава, че корените на квадратното уравнение са точките на пресичане с оста x (ос). Параболата може изобщо да не пресича оста или да я пресича в една (когато върхът на параболата лежи върху оста) или две точки.

В допълнение, коефициентът е отговорен за посоката на клоновете на параболата. Ако, тогава клоните на параболата са насочени нагоре, а ако - тогава надолу.

Примери:

Решения:

Отговор:

Отговор: .

Отговор:

Това означава, че няма решения.

Отговор: .

2. Теорема на Виета

Използването на теоремата на Vieta е много лесно: просто трябва да изберете двойка числа, чийто продукт е равен на свободния член на уравнението, а сумата е равна на втория коефициент, взет с обратен знак.

Важно е да запомните, че теоремата на Виета може да се приложи само към дадени квадратни уравнения ().

Нека да разгледаме няколко примера:

Пример #1:

Решете уравнението.

Решение:

Това уравнение е подходящо за решение с помощта на теоремата на Виета, тъй като . Други коефициенти: ; .

Сумата от корените на уравнението е:

А продуктът е:

Нека изберем такива двойки числа, чийто продукт е равен, и проверим дали сборът им е равен:

  • и. Сумата е;
  • и. Сумата е;
  • и. Сумата е равна.

и са решението на системата:

Така и са корените на нашето уравнение.

Отговор: ; .

Пример #2:

Решение:

Избираме такива двойки числа, които дават в продукта, и след това проверяваме дали сумата им е равна:

и: дайте общо.

и: дайте общо. За да го получите, просто трябва да промените знаците на предполагаемите корени: и в крайна сметка продукта.

Отговор:

Пример #3:

Решение:

Свободният член на уравнението е отрицателен и следователно произведението на корените е отрицателно число. Това е възможно само ако единият от корените е отрицателен, а другият е положителен. Така че сумата от корените е разлики в техните модули.

Избираме такива двойки числа, които дават в продукта и чиято разлика е равна на:

и: разликата им е - неподходящи;

и: - неподходящи;

и: - неподходящи;

и: - подходящи. Остава само да запомните, че един от корените е отрицателен. Тъй като сборът им трябва да е равен, то коренът, който е по-малък по абсолютна стойност, трябва да е отрицателен: . Ние проверяваме:

Отговор:

Пример #4:

Решете уравнението.

Решение:

Уравнението е намалено, което означава:

Свободният член е отрицателен и следователно произведението на корените е отрицателно. А това е възможно само когато единият корен на уравнението е отрицателен, а другият е положителен.

Избираме такива двойки числа, чийто продукт е равен, и след това определяме кои корени трябва да имат отрицателен знак:

Очевидно само корени и са подходящи за първото условие:

Отговор:

Пример #5:

Решете уравнението.

Решение:

Уравнението е намалено, което означава:

Сборът на корените е отрицателен, което означава, че поне един от корените е отрицателен. Но тъй като техният продукт е положителен, това означава, че и двата корена са минус.

Избираме такива двойки числа, чийто продукт е равен на:

Очевидно корените са числата и.

Отговор:

Съгласете се, много е удобно - да измисляте корени устно, вместо да броите този неприятен дискриминант. Опитайте се да използвате теоремата на Vieta възможно най-често.

Но теоремата на Vieta е необходима, за да се улесни и ускори намирането на корените. За да ви бъде изгодно да го използвате, трябва да доведете действията до автоматизм. И за това решете още пет примера. Но не изневерявайте: не можете да използвате дискриминанта! Само теоремата на Виета:

Решения на задачи за самостоятелна работа:

Задача 1. ((x)^(2))-8x+12=0

Според теоремата на Виета:

Както обикновено, започваме селекцията с продукта:

Не е подходящ, защото количеството;

: сумата е това, от което се нуждаете.

Отговор: ; .

Задача 2.

И отново любимата ни теорема на Виета: сборът трябва да се получи, но произведението е равно.

Но тъй като трябва да бъде не, но, променяме знаците на корените: и (общо).

Отговор: ; .

Задача 3.

Хм... Къде е?

Необходимо е всички условия да се прехвърлят в една част:

Сборът от корените е равен на произведението.

Да, спри! Уравнението не е дадено. Но теоремата на Виета е приложима само в дадените уравнения. Така че първо трябва да въведете уравнението. Ако не можете да го изведете, зарежете тази идея и я решете по друг начин (например чрез дискриминанта). Позволете ми да ви напомня, че да приведете квадратно уравнение означава да направите водещия коефициент равен на:

Отлично. Тогава сумата на корените е равна и произведението.

Тук е по-лесно да вземете: все пак - просто число (съжалявам за тавтологията).

Отговор: ; .

Задача 4.

Свободният член е отрицателен. Какво му е толкова специалното? И фактът, че корените ще бъдат с различни знаци. И сега, по време на селекцията, ние проверяваме не сумата от корените, а разликата между техните модули: тази разлика е равна, но произведението.

И така, корените са равни и, но един от тях е с минус. Теоремата на Виета ни казва, че сборът от корените е равен на втория коефициент с противоположен знак, т.е. Това означава, че по-малкият корен ще има минус: и, тъй като.

Отговор: ; .

Задача 5.

Какво трябва да се направи първо? Точно така, дайте уравнението:

Отново: избираме факторите на числото и тяхната разлика трябва да бъде равна на:

Корените са равни и, но един от тях е минус. Който? Сборът им трябва да е равен, което означава, че с минус ще има по-голям корен.

Отговор: ; .

Нека да обобщя:
  1. Теоремата на Виета се използва само в дадените квадратни уравнения.
  2. Използвайки теоремата на Vieta, можете да намерите корените чрез избор, устно.
  3. Ако уравнението не е дадено или не е намерена подходяща двойка фактори на свободния член, тогава няма цели корени и трябва да го решите по друг начин (например чрез дискриминанта).

3. Метод за избор на пълен квадрат

Ако всички членове, съдържащи неизвестното, са представени като членове от формулите за съкратено умножение - квадрат на сбора или разликата - тогава след промяната на променливите уравнението може да бъде представено като непълно квадратно уравнение от типа.

Например:

Пример 1:

Решете уравнението: .

Решение:

Отговор:

Пример 2:

Решете уравнението: .

Решение:

Отговор:

Като цяло трансформацията ще изглежда така:

Това предполага: .

Нищо ли не ви напомня? Това е дискриминанта! Точно така се получи дискриминантната формула.

КВАДРАТНИ УРАВНЕНИЯ. НАКРАТКО ЗА ГЛАВНОТО

Квадратно уравнениее уравнение от формата, където е неизвестното, са коефициентите на квадратното уравнение, е свободният член.

Пълно квадратно уравнение- уравнение, в което коефициентите не са равни на нула.

Редуцирано квадратно уравнение- уравнение, в което коефициентът, тоест: .

Непълно квадратно уравнение- уравнение, в което коефициентът и/или свободният член c са равни на нула:

  • ако коефициентът, уравнението има формата: ,
  • ако е свободен член, уравнението има формата: ,
  • ако и, уравнението има формата: .

1. Алгоритъм за решаване на непълни квадратни уравнения

1.1. Непълно квадратно уравнение от формата, където, :

1) Изразете неизвестното: ,

2) Проверете знака на израза:

  • ако, тогава уравнението няма решения,
  • ако, тогава уравнението има два корена.

1.2. Непълно квадратно уравнение от формата, където, :

1) Нека извадим общия множител извън скобите: ,

2) Произведението е равно на нула, ако поне един от множителите е равен на нула. Следователно уравнението има два корена:

1.3. Непълно квадратно уравнение от формата, където:

Това уравнение винаги има само един корен: .

2. Алгоритъм за решаване на пълни квадратни уравнения от вида where

2.1. Решение с помощта на дискриминанта

1) Нека приведем уравнението към стандартната форма: ,

2) Изчислете дискриминанта по формулата: , която показва броя на корените на уравнението:

3) Намерете корените на уравнението:

  • ако, тогава уравнението има корен, който се намира по формулата:
  • ако, тогава уравнението има корен, който се намира по формулата:
  • ако, тогава уравнението няма корени.

2.2. Решение с помощта на теоремата на Виета

Сумата от корените на редуцираното квадратно уравнение (уравнение от вида, където) е равна, а произведението на корените е равно, т.е. , а.

2.3. Пълно квадратно решение