Cantitatea de căldură cheltuită pentru încălzirea formulei corporale. Cantitatea de căldură. Ecuația de echilibru termic

După cum știți, în timpul diferitelor procese mecanice, există o schimbare a energiei mecanice W meh. Măsura schimbării energiei mecanice este munca forțelor aplicate sistemului:

\(~\Delta W_(meh) = A.\)

În timpul transferului de căldură, are loc o schimbare a energiei interne a corpului. Măsura modificării energiei interne în timpul transferului de căldură este cantitatea de căldură.

Cantitatea de căldură este o măsură a modificării energiei interne pe care corpul o primește (sau o dă) în procesul de transfer de căldură.

Astfel, atât munca cât și cantitatea de căldură caracterizează schimbarea energiei, dar nu sunt identice cu energia. Ele nu caracterizează starea sistemului în sine, ci determină procesul de tranziție a energiei de la o formă la alta (de la un corp la altul) atunci când starea se schimbă și depind în esență de natura procesului.

Principala diferență dintre muncă și cantitatea de căldură este că munca caracterizează procesul de modificare a energiei interne a sistemului, însoțită de transformarea energiei de la un tip la altul (de la mecanic la intern). Cantitatea de căldură caracterizează procesul de transfer al energiei interne de la un corp la altul (de la mai încălzit la mai puțin încălzit), neînsoțit de transformări energetice.

Experiența arată că cantitatea de căldură necesară pentru a încălzi un corp cu o masă m temperatura T 1 la temperatură T 2 se calculează prin formula

\(~Q = cm (T_2 - T_1) = cm \Delta T, \qquad (1)\)

Unde c - căldura specifică substanțe;

\(~c = \frac(Q)(m (T_2 - T_1)).\)

Unitatea SI a căldurii specifice este joule pe kilogram-Kelvin (J/(kg K)).

Căldura specifică c este numeric egală cu cantitatea de căldură care trebuie transmisă unui corp cu masa de 1 kg pentru a-l încălzi cu 1 K.

Capacitate termica corp C T este numeric egal cu cantitatea de căldură necesară pentru a modifica temperatura corpului cu 1 K:

\(~C_T = \frac(Q)(T_2 - T_1) = cm.\)

Unitatea SI a capacității termice a unui corp este joule pe Kelvin (J/K).

Pentru a transforma un lichid într-un vapor la o temperatură constantă, cantitatea de căldură necesară este

\(~Q = Lm, \qquad (2)\)

Unde L - căldura specifică vaporizare. Când aburul se condensează, se eliberează aceeași cantitate de căldură.

Pentru a topi un corp cristalin cu o masă m la punctul de topire, este necesar ca organismul să raporteze cantitatea de căldură

\(~Q = \lambda m, \qquad (3)\)

Unde λ - căldură specifică de fuziune. În timpul cristalizării unui corp, se eliberează aceeași cantitate de căldură.

Cantitatea de căldură care este eliberată în timpul arderii complete a masei de combustibil m,

\(~Q = qm, \qquad (4)\)

Unde q- caldura specifica de ardere.

Unitatea SI a căldurilor specifice de vaporizare, topire și ardere este joule pe kilogram (J/kg).

Literatură

Aksenovich L. A. Fizica în liceu: Teorie. Sarcini. Teste: Proc. indemnizație pentru instituțiile care oferă general. medii, educație / L. A. Aksenovich, N. N. Rakina, K. S. Farino; Ed. K. S. Farino. - Mn.: Adukatsia i vykhavanne, 2004. - C. 154-155.

« Fizica - clasa a 10-a "

În ce procese are loc transformarea agregată a materiei?
Cum te poți schimba starea de agregare substante?

Puteți schimba energia internă a oricărui corp lucrând, încălzindu-l sau, dimpotrivă, răcindu-l.
Astfel, la forjarea unui metal, se lucrează și acesta este încălzit, în timp ce metalul poate fi încălzit în același timp peste o flacără care arde.

De asemenea, dacă pistonul este fix (Fig. 13.5), atunci volumul de gaz nu se modifică atunci când este încălzit și nu se lucrează. Dar temperatura gazului și, prin urmare, energia sa internă, crește.

Energia internă poate crește și scădea, astfel încât cantitatea de căldură poate fi pozitivă sau negativă.

Se numește procesul de transfer de energie de la un corp la altul fără a lucra schimb de caldura.

Măsura cantitativă a modificării energiei interne în timpul transferului de căldură se numește cantitatea de căldură.


Imaginea moleculară a transferului de căldură.


În timpul schimbului de căldură la granița dintre corpuri, moleculele care se mișcă încet ale unui corp rece interacționează cu moleculele care se mișcă rapid ale unui corp fierbinte. Ca urmare, energiile cinetice ale moleculelor sunt egalizate și vitezele moleculelor unui corp rece cresc, în timp ce cele ale unui corp fierbinte scad.

În timpul schimbului de căldură, nu există nicio conversie a energiei de la o formă la alta, o parte din energia internă a unui corp mai fierbinte este transferată unui corp mai puțin încălzit.


Cantitatea de căldură și capacitatea de căldură.

Știți deja că pentru a încălzi un corp cu masa m de la temperatura t 1 la temperatura t 2, este necesar să se transfere în el cantitatea de căldură:

Q \u003d cm (t 2 - t 1) \u003d cm Δt. (13,5)

Când corpul se răcește, temperatura sa finală t 2 se dovedește a fi mai mică decât temperatura inițială t 1 și cantitatea de căldură degajată de corp este negativă.

Se numește coeficientul c din formula (13.5). capacitatea termică specifică substante.

Căldura specifică- aceasta este o valoare egală numeric cu cantitatea de căldură pe care o primește sau o degajă o substanță cu masa de 1 kg atunci când temperatura sa se schimbă cu 1 K.

Capacitatea termică specifică a gazelor depinde de procesul prin care este transferată căldura. Dacă încălziți un gaz la presiune constantă, acesta se va extinde și va funcționa. Pentru a încălzi un gaz cu 1 °C la presiune constantă, trebuie să transfere mai multă căldură decât să-l încălzească la un volum constant, când gazul se va încălzi doar.

Lichidele și solidele se extind ușor când sunt încălzite. Capacitățile lor specifice de căldură la volum constant și presiune constantă diferă puțin.


Căldura specifică de vaporizare.


Pentru a transforma un lichid în vapori în timpul procesului de fierbere, este necesar să îi transferați o anumită cantitate de căldură. Temperatura unui lichid nu se schimbă atunci când fierbe. Transformarea lichidului în vapori la o temperatură constantă nu duce la o creștere a energiei cinetice a moleculelor, ci este însoțită de o creștere a energiei potențiale a interacțiunii lor. La urma urmei, distanța medie dintre moleculele de gaz este mult mai mare decât între moleculele lichide.

Valoarea egală numeric cu cantitatea de căldură necesară pentru a transforma un lichid de 1 kg în abur la o temperatură constantă se numește căldură specifică de vaporizare.

Procesul de evaporare a lichidului are loc la orice temperatură, în timp ce cele mai rapide molecule părăsesc lichidul, iar acesta se răcește în timpul evaporării. Căldura specifică de vaporizare este egală cu căldura specifică de vaporizare.

Această valoare este notă cu litera r și este exprimată în jouli pe kilogram (J / kg).

Căldura specifică de vaporizare a apei este foarte mare: r H20 = 2,256 10 6 J/kg la o temperatură de 100 °C. În alte lichide, precum alcoolul, eterul, mercurul, kerosenul, căldura specifică de vaporizare este de 3-10 ori mai mică decât cea a apei.

Pentru a transforma un lichid cu masa m în abur, este necesară o cantitate de căldură egală cu:

Q p \u003d rm. (13,6)

Când aburul se condensează, se eliberează aceeași cantitate de căldură:

Q k \u003d -rm. (13,7)


Căldura specifică de fuziune.


Când un corp cristalin se topește, toată căldura furnizată acestuia duce la creșterea energiei potențiale de interacțiune a moleculelor. Energia cinetică a moleculelor nu se modifică, deoarece topirea are loc la o temperatură constantă.

O valoare egală numeric cu cantitatea de căldură necesară pentru transformare substanță cristalină cântărind 1 kg la punctul de topire într-un lichid, se numește căldură specifică de fuziuneși sunt notate cu litera λ.

În timpul cristalizării unei substanțe cu o masă de 1 kg, se eliberează exact aceeași cantitate de căldură cum este absorbită în timpul topirii.

Căldura specifică de topire a gheții este destul de mare: 3,34 10 5 J/kg.

„Dacă gheața nu ar avea o căldură mare de fuziune, atunci în primăvară întreaga masă de gheață ar trebui să se topească în câteva minute sau secunde, deoarece căldura este transferată continuu în gheață din aer. Consecințele acestui lucru ar fi cumplite; căci chiar și în situația actuală, din topirea unor mase mari de gheață sau zăpadă apar mari inundații și torenți mari de apă.” R. Black, secolul al XVIII-lea

Pentru a topi un corp cristalin de masa m, este necesară o cantitate de căldură egală cu:

Qpl \u003d λm. (13,8)

Cantitatea de căldură eliberată în timpul cristalizării corpului este egală cu:

Q cr = -λm (13,9)


Ecuația de echilibru termic.


Luați în considerare schimbul de căldură în cadrul unui sistem format din mai multe corpuri având inițial temperaturi diferite, de exemplu, schimbul de căldură între apa dintr-un vas și o minge fierbinte de fier coborâtă în apă. Conform legii conservării energiei, cantitatea de căldură degajată de un corp este numeric egală cu cantitatea de căldură primită de altul.

Cantitatea dată de căldură este considerată negativă, cantitatea de căldură primită este considerată pozitivă. Prin urmare, cantitatea totală de căldură Q1 + Q2 = 0.

Dacă schimbul de căldură are loc între mai multe corpuri dintr-un sistem izolat, atunci

Q 1 + Q 2 + Q 3 + ... = 0. (13.10)

Ecuația (13.10) se numește ecuația de echilibru termic.

Aici Q 1 Q 2 , Q 3 - cantitatea de căldură primită sau eliberată de corpuri. Aceste cantități de căldură sunt exprimate prin formula (13.5) sau formulele (13.6) - (13.9), dacă în procesul de transfer de căldură au loc diverse transformări de fază ale substanței (topire, cristalizare, vaporizare, condensare).

Ce se încălzește mai repede pe aragaz - un ceainic sau o găleată cu apă? Răspunsul este evident - un ibric. Atunci a doua întrebare este de ce?

Răspunsul nu este mai puțin evident - deoarece masa de apă din ibric este mai mică. Excelent. Și acum poți face cea mai reală experiență fizică chiar tu acasă. Pentru a face acest lucru, veți avea nevoie de două cratițe mici identice, o cantitate egală de apă și ulei vegetal, de exemplu, o jumătate de litru fiecare și un aragaz. Puneți oale cu ulei și apă pe același foc. Și acum uitați-vă doar ce se va încălzi mai repede. Dacă există un termometru pentru lichide, îl poți folosi, dacă nu, poți doar să încerci din când în când temperatura cu degetul, doar ai grijă să nu te arzi. În orice caz, vei vedea în curând că uleiul se încălzește semnificativ. mai repede decât apa. Și încă o întrebare, care poate fi implementată și sub formă de experiență. Care fierbe mai repede - apa calda sau rece? Totul este din nou evident - cel cald va fi primul care va termina. De ce toate aceste întrebări și experimente ciudate? Pentru a defini cantitate fizica, numită „cantitatea de căldură”.

Cantitatea de căldură

Cantitatea de căldură este energia pe care corpul o pierde sau o câștigă în timpul transferului de căldură. Acest lucru este clar din nume. La răcire, corpul va pierde o anumită cantitate de căldură, iar atunci când este încălzit, va absorbi. Și răspunsurile la întrebările noastre ne-au arătat de ce depinde cantitatea de caldura?În primul rând, cu cât masa corpului este mai mare, cu atât este mai mare cantitatea de căldură care trebuie consumată pentru a-și schimba temperatura cu un grad. În al doilea rând, cantitatea de căldură necesară pentru a încălzi un corp depinde de substanța din care este compus, adică de felul de substanță. Și în al treilea rând, diferența de temperatură a corpului înainte și după transferul de căldură este, de asemenea, importantă pentru calculele noastre. Pe baza celor de mai sus, putem determinați cantitatea de căldură cu formula:

Q=cm(t_2-t_1),

unde Q este cantitatea de căldură,
m - greutatea corporală,
(t_2-t_1) - diferența dintre temperatura inițială și cea finală a corpului,
c - capacitatea termică specifică a substanței, se regăsește din tabelele aferente.

Folosind această formulă, puteți calcula cantitatea de căldură necesară pentru a încălzi orice corp sau pe care acest corp o va elibera atunci când se răcește.

Cantitatea de căldură se măsoară în jouli (1 J), ca orice altă formă de energie. Cu toate acestea, această valoare a fost introdusă nu cu mult timp în urmă, iar oamenii au început să măsoare cantitatea de căldură mult mai devreme. Și au folosit o unitate care este utilizată pe scară largă în vremea noastră - o calorie (1 cal). 1 calorie este cantitatea de căldură necesară pentru a crește temperatura a 1 gram de apă cu 1 grad Celsius. Ghidați de aceste date, iubitorii numărării caloriilor din alimentele pe care le consumă pot, de dragul interesului, să calculeze câți litri de apă pot fi fierți cu energia pe care o consumă cu alimente în timpul zilei.

Energia internă a unui sistem termodinamic poate fi modificată în două moduri:

  1. comite peste funcționarea sistemului,
  2. prin interacțiunea termică.

Transferul de căldură către un corp nu este legat de efectuarea lucrărilor macroscopice asupra corpului. În acest caz, modificarea energiei interne este cauzată de faptul că moleculele individuale ale corpului cu o temperatură mai mare lucrează asupra unor molecule ale corpului, care au o temperatură mai scăzută. În acest caz, interacțiunea termică se realizează datorită conducției termice. Transferul de energie este posibil și cu ajutorul radiațiilor. Sistemul de procese microscopice (care nu se referă la întregul corp, ci la molecule individuale) se numește transfer de căldură. Cantitatea de energie care este transferată de la un corp la altul ca urmare a transferului de căldură este determinată de cantitatea de căldură care este transferată de la un corp la altul.

Definiție

căldură numită energia care este primită (sau dată) de către organism în procesul de schimb de căldură cu corpurile înconjurătoare (mediul). Căldura este indicată, de obicei, prin litera Q.

Aceasta este una dintre mărimile de bază în termodinamică. Căldura este inclusă în expresiile matematice ale primei și celei de-a doua legi ale termodinamicii. Se spune că căldura este energie sub formă de mișcare moleculară.

Căldura poate fi comunicată sistemului (corpului), sau poate fi preluată din acesta. Se crede că dacă căldura este transmisă sistemului, atunci aceasta este pozitivă.

Formula de calcul a căldurii cu o schimbare a temperaturii

Cantitatea elementară de căldură se notează cu . Rețineți că elementul de căldură pe care sistemul îl primește (degajă) cu o mică modificare a stării sale nu este o diferență totală. Motivul pentru aceasta este că căldura este o funcție a procesului de schimbare a stării sistemului.

Cantitatea elementară de căldură care este raportată sistemului, iar temperatura se schimbă de la T la T + dT, este:

unde C este capacitatea termică a corpului. Dacă corpul luat în considerare este omogen, atunci formula (1) pentru cantitatea de căldură poate fi reprezentată ca:

unde este căldura specifică a corpului, m este masa corpului, este capacitatea de căldură molară, - Masă molară substanță, este numărul de moli ai substanței.

Dacă corpul este omogen, iar capacitatea termică este considerată independentă de temperatură, atunci cantitatea de căldură () pe care o primește corpul atunci când temperatura acestuia crește cu o valoare poate fi calculată ca:

unde t 2 , t 1 temperatura corpului înainte și după încălzire. Vă rugăm să rețineți că atunci când găsiți diferența () în calcule, temperaturile pot fi înlocuite atât în ​​grade Celsius, cât și în kelvin.

Formula pentru cantitatea de căldură în timpul tranzițiilor de fază

Trecerea de la o fază a unei substanțe la alta este însoțită de absorbția sau eliberarea unei anumite cantități de căldură, care se numește căldura tranziției de fază.

Deci, pentru a transfera un element de materie din stat corp solidîn lichid, el ar trebui să fie informat cu privire la cantitatea de căldură () egală cu:

unde este căldura specifică de fuziune, dm este elementul de masă corporală. În acest caz, trebuie avut în vedere faptul că organismul trebuie să aibă o temperatură egală cu punctul de topire al substanței în cauză. În timpul cristalizării, se eliberează căldură egală cu (4).

Cantitatea de căldură (căldura de vaporizare) necesară pentru a transforma lichidul în vapori poate fi găsită ca:

unde r este căldura specifică de vaporizare. Când aburul se condensează, căldura este eliberată. Căldura de evaporare este egală cu căldura de condensare a unor mase egale de materie.

Unități pentru măsurarea cantității de căldură

Unitatea de bază pentru măsurarea cantității de căldură din sistemul SI este: [Q]=J

O unitate de căldură în afara sistemului, care se găsește adesea în calculele tehnice. [Q]=cal (calorii). 1 cal = 4,1868 J.

Exemple de rezolvare a problemelor

Exemplu

Exercițiu. Ce volume de apă trebuie amestecate pentru a obține 200 de litri de apă la o temperatură de t=40C, dacă temperatura unei mase de apă este t 1 =10C, a doua masă de apă este t 2 =60C?

Soluţie. Scriem ecuația bilanţului termic sub forma:

unde Q=cmt - cantitatea de căldură preparată după amestecarea apei; Q 1 \u003d cm 1 t 1 - cantitatea de căldură a unei părți de apă cu temperatura t 1 și masa m 1; Q 2 \u003d cm 2 t 2 - cantitatea de căldură a unei părți de apă cu temperatura t 2 și masa m 2.

Ecuația (1.1) implică:

Când combinăm părți de apă rece (V 1) și fierbinte (V 2) într-un singur volum (V), putem accepta că:

Deci, obținem un sistem de ecuații:

Rezolvând-o, obținem:

Obiectivul articolului nostru este cantitatea de căldură. Vom lua în considerare conceptul de energie internă, care se transformă atunci când această valoare se schimbă. Vom arăta și câteva exemple de aplicare a calculelor în activitatea umană.

Căldură

Cu orice cuvânt limbă maternă fiecare persoană are propriile asociații. Sunt definite experienta personalași sentimente iraționale. Ce este de obicei reprezentat de cuvântul „căldură”? O pătură moale, o baterie de încălzire centrală funcțională iarna, prima lumina soarelui primavara, pisica. Sau privirea unei mame, un cuvânt reconfortant de la un prieten, atenție oportună.

Fizicienii înțeleg prin aceasta un termen foarte specific. Și foarte important, mai ales în unele secțiuni ale acestei științe complexe, dar fascinante.

Termodinamica

Nu merită să luați în considerare cantitatea de căldură izolat de cele mai simple procese pe care se bazează legea conservării energiei - nimic nu va fi clar. Prin urmare, pentru început, le reamintim cititorilor noștri.

Termodinamica consideră orice lucru sau obiect ca o combinație a unui număr foarte mare de părți elementare - atomi, ioni, molecule. Ecuațiile sale descriu orice modificare a stării colective a sistemului ca întreg și ca parte a întregului atunci când se modifică parametrii macro. Acestea din urmă sunt înțelese ca temperatură (notată cu T), presiune (P), concentrație de componente (de obicei C).

Energie interna

Energia internă este un termen destul de complicat, al cărui sens ar trebui înțeles înainte de a vorbi despre cantitatea de căldură. Indică energia care se modifică odată cu creșterea sau scăderea valorii parametrilor macro ai obiectului și nu depinde de sistemul de referință. Face parte din energia totală. El coincide cu el în condițiile în care centrul de masă al obiectului studiat este în repaus (adică nu există nicio componentă cinetică).

Când o persoană simte că un obiect (de exemplu, o bicicletă) s-a încălzit sau s-a răcit, aceasta arată că toate moleculele și atomii care alcătuiesc acest sistem au experimentat o schimbare a energiei interne. Cu toate acestea, constanța temperaturii nu înseamnă păstrarea acestui indicator.

Munca si caldura

Energia internă a oricărui sistem termodinamic poate fi transformată în două moduri:

  • lucrând la el;
  • în timpul schimbului de căldură cu mediul.

Formula pentru acest proces arată astfel:

dU=Q-A, unde U este energia internă, Q este căldura, A este muncă.

Cititorul să nu se lase înșelat de simplitatea expresiei. Permutarea arată că Q=dU+A, dar introducerea entropiei (S) aduce formula la forma dQ=dSxT.

Deoarece în acest caz ecuația ia forma unei ecuații diferențiale, prima expresie necesită același lucru. În plus, în funcție de forțele care acționează în obiectul studiat și de parametrul care este calculat, se obține raportul necesar.

Să luăm o bilă de metal ca exemplu de sistem termodinamic. Dacă puneți presiune pe el, îl aruncați în sus, îl aruncați într-o fântână adâncă, atunci asta înseamnă să lucrați la el. În exterior, toate aceste acțiuni inofensive nu vor provoca niciun rău mingii, dar energia sa internă se va schimba, deși foarte ușor.

A doua modalitate este transferul de căldură. Acum ajungem la scopul principal din acest articol: o descriere a cantității de căldură. Aceasta este o astfel de schimbare a energiei interne a unui sistem termodinamic care are loc în timpul transferului de căldură (vezi formula de mai sus). Se măsoară în jouli sau calorii. Evident, dacă mingea este ținută peste o brichetă, la soare, sau pur și simplu într-o mână caldă, se va încălzi. Și apoi, prin schimbarea temperaturii, poți afla cantitatea de căldură care i-a fost comunicată în același timp.

De ce gazul este cel mai bun exemplu de schimbare a energiei interne și de ce studenților nu le place fizica din cauza asta

Mai sus, am descris modificările parametrilor termodinamici ai unei mingi metalice. Nu sunt foarte vizibile fără dispozitive speciale, iar cititorul este lăsat să spună un cuvânt despre procesele care au loc cu obiectul. Un alt lucru este dacă sistemul este pe gaz. Apăsați pe el - va fi vizibil, încălziți-l - presiunea va crește, va coborî sub pământ - și acest lucru poate fi ușor de reparat. Prin urmare, în manuale, gazul este cel mai adesea luat ca un sistem termodinamic vizual.

Dar, vai, în învăţământul modern nu se acordă prea multă atenție experimentelor reale. om de știință care scrie Trusa de instrumente El înțelege perfect ce este în joc. Lui i se pare că, folosind exemplul moleculelor de gaz, toți parametrii termodinamici vor fi demonstrați în mod adecvat. Dar pentru un student care tocmai descoperă această lume, este plictisitor să audă despre un balon ideal cu un piston teoretic. Dacă școala ar avea adevărate laboratoare de cercetare și ore dedicate lucrului în ele, totul ar fi diferit. Până acum, din păcate, experimentele sunt doar pe hârtie. Și, cel mai probabil, tocmai asta îi determină pe oameni să considere această ramură a fizicii ca pe ceva pur teoretic, departe de viață și inutil.

Prin urmare, am decis să dăm ca exemplu bicicleta deja menționată mai sus. O persoană apasă pe pedale - lucrează la ele. Pe lângă comunicarea cuplului întregului mecanism (datorită căruia bicicleta se mișcă în spațiu), se modifică energia internă a materialelor din care sunt realizate pârghiile. Ciclistul împinge mânerele pentru a se întoarce și din nou face treaba.

Energia internă a învelișului exterior (plastic sau metal) este crescută. O persoană merge într-o poiană sub soarele strălucitor - bicicleta se încălzește, cantitatea de căldură se schimbă. Se oprește pentru a se odihni la umbra unui stejar bătrân și sistemul se răcește, irosind calorii sau jouli. Crește viteza - crește schimbul de energie. Cu toate acestea, calculul cantității de căldură în toate aceste cazuri va arăta o valoare foarte mică, imperceptibilă. Prin urmare, se pare că manifestările fizicii termodinamice în viata reala Nu.

Aplicarea calculelor pentru modificările cantității de căldură

Probabil, cititorul va spune că toate acestea sunt foarte informative, dar de ce suntem așa chinuiți la școală cu aceste formule. Și acum vom da exemple în ce domenii ale activității umane sunt direct necesare și cum acest lucru se aplică oricui în viața de zi cu zi.

Pentru început, uită-te în jurul tău și numără: câte obiecte metalice te înconjoară? Probabil mai mult de zece. Dar, înainte de a deveni o agrafă, vagon, inel sau unitate flash, orice metal este topit. Fiecare fabrică care prelucrează, să zicem, minereu de fier trebuie să înțeleagă cât de mult combustibil este necesar pentru a optimiza costurile. Și atunci când se calculează acest lucru, este necesar să se cunoască capacitatea termică a materiilor prime care conțin metal și cantitatea de căldură care trebuie să i se transmită pentru ca toate procesele tehnologice să aibă loc. Deoarece energia eliberată de o unitate de combustibil este calculată în jouli sau calorii, formulele sunt necesare direct.

Sau un alt exemplu: majoritatea supermarketurilor au un departament cu produse congelate - peste, carne, fructe. În cazul în care materiile prime din carne de animale sau fructe de mare sunt transformate într-un semifabricat, aceștia trebuie să știe câtă energie electrică vor folosi unitățile de refrigerare și congelare pe tonă sau unitate de produs finit. Pentru a face acest lucru, ar trebui să calculați câtă căldură pierde un kilogram de căpșuni sau calmari atunci când este răcit cu un grad Celsius. Și în cele din urmă, aceasta va arăta câtă energie electrică va cheltui un congelator de o anumită capacitate.

Avioane, nave, trenuri

Mai sus, am arătat exemple de obiecte relativ imobile, statice, care sunt informate sau, dimpotrivă, le este luată o anumită cantitate de căldură. Pentru obiectele care se deplasează în procesul de funcționare în condiții de schimbare constantă a temperaturii, calculele cantității de căldură sunt importante dintr-un alt motiv.

Există așa ceva ca „oboseala metalică”. Include, de asemenea, sarcinile maxime admise la o anumită rată de schimbare a temperaturii. Imaginați-vă un avion care decolează din tropicele umede în atmosfera superioară înghețată. Inginerii trebuie să muncească din greu pentru ca acesta să nu se destrame din cauza fisurilor din metal care apar la schimbarea temperaturii. Ei caută o compoziție de aliaj care să reziste la sarcini reale și să aibă o marjă mare de siguranță. Și pentru a nu căuta orbește, în speranța de a da din greșeală compoziția dorită, trebuie să faci o mulțime de calcule, inclusiv cele care includ modificări ale cantității de căldură.