Як робиться дискримінант. Квадратні рівняння. Вичерпний гід (2019)

Дискримінант – багатозначний термін. У цій статті мова піде про дискримінанта багаточлена, який дозволяє визначити, чи є в даного багаточлена дійсні рішення. Формула для квадратного багаточлена зустрічається у шкільному курсі алгебри та аналізу. Як знайти дискримінант? Що потрібне для вирішення рівняння?

Квадратним багаточленом або рівнянням другого ступеня називається i * w ^ 2 + j * w + k дорівнює 0, де "i" і "j" - перший і другий коефіцієнт відповідно, "k" - константа, яку іноді називають "вільним членом", а "w" - змінна. Його корінням виявляться всі значення змінної, у яких воно перетворюється на тотожність. Таку рівність допустимо переписати, як добуток i, (w - w1) і (w - w2) дорівнює 0. У цьому випадку очевидно, що якщо коефіцієнт "i" не звертається в нуль, то функція в лівій частині стане нульовою тільки у випадку, якщо x набуває значення w1 або w2. Ці значення є результатом прирівнювання багаточлену до нуля.

Для знаходження значення змінної, у якому квадратний многочлен перетворюється на нуль, використовується допоміжна конструкція, побудована з його коефіцієнтах і названа дискримінантом. Ця конструкція розраховується згідно з формулою D дорівнює j * j - 4 * i * k. Для чого вона використовується?

  1. Вона каже, чи є дійсні результати.
  2. Вона допомагає їх вирахувати.

Як це значення показує наявність речових коренів:

  • Якщо воно позитивне, то можна знайти два корені в ділянці дійсних чисел.
  • Якщо дискримінант дорівнює нулю, то обидва рішення збігаються. Можна сказати, що є лише одне рішення, і воно з області речових чисел.
  • Якщо дискримінант менше нуля, то багаточлен відсутній речові корені.

Варіанти розрахунків для закріплення матеріалу

Для суми (7 * w ^ 2; 3 * w; 1) дорівнює 0розраховуємо D за формулою 3 * 3 - 4 * 7 * 1 = 9 - 28 отримуємо -19. Значення дискримінанта нижче за нуль говорить про відсутність результатів на дійсній прямій.

Якщо розглянути 2 * w ^ 2 - 3 * w + 1 еквівалентний 0, то D розраховується як (-3) у квадраті за вирахуванням добутку чисел (4; 2; 1) і дорівнює 9 - 8, тобто 1. Позитивне значення говорить про два результати на речовій прямій.

Якщо взяти суму (w^2; 2*w; 1) і прирівняти до 0, D розрахується, як два в квадраті мінус добуток чисел (4; 1; 1). Цей вираз спроститься до 4-4 і звернеться в нуль. Виходить, що результати збігаються. Якщо уважно вдивитися у цю формулу, стане зрозуміло, що це « повний квадрат». Отже, рівність можна переписати у формі (w + 1) ^ 2 = 0. Стало очевидним, що результат у цьому завданні «-1». Якщо D дорівнює 0, ліву частину рівності завжди вдасться згорнути за формулою «квадрат суми».

Використання дискримінанта у обчисленні коренів

Ця допоміжна конструкція не лише показує кількість речових рішень, а й допомагає їх знаходити. Загальна формуларозрахунку рівняння другого ступеня така:

w = (-j + / - d) / (2 * i), де d - дискримінант у ступені 1/2.

Припустимо, дискримінант нижче нульової позначки, тоді d - уявно і результати уявні.

D нульовий, тоді d, рівний D ступеня 1/2, теж нульовий. Рішення: -j/(2*i). Знову розглядаємо 1*w^2+2*w+1=0, знаходимо результати еквівалентні -2/(2*1)=-1.

Припустимо, D > 0, отже, d - речове число, і відповідь тут розпадається на дві частини: w1 = (-j + d) / (2 * i) і w2 = (-j - d) / (2 * i) . Обидва результати виявляться дійсними. Погляньмо на 2 * w^2 - 3 * w + 1 = 0. Тут дискримінант і d - одиниці. Виходить, w1 дорівнює (3 + 1) ділити (2 * 2) або 1, а w2 дорівнює (3 - 1) ділити на 2 * 2 або 1/2.

Результат прирівнювання квадратного виразу до нуля обчислюється згідно з алгоритмом:

  1. Визначення кількості дійсних рішень.
  2. Обчислення d = D^(1/2).
  3. Знаходження результату відповідно до формули (-j+/-d)/(2*i).
  4. Підстановка отриманого результату вихідну рівність для перевірки.

Деякі окремі випадки

Залежно від коефіцієнтів рішення може спрощуватися. Очевидно, що якщо коефіцієнт перед змінною в другому ступені дорівнює нулю, то виходить лінійна рівність. Коли коефіцієнт перед змінною в першому ступені нульовий, то можливі два варіанти:

  1. многочлен розкладається у різницю квадратів при негативному вільному члені;
  2. за позитивної константи дійсних рішень знайти не можна.

Якщо вільний член нульовий, то коріння буде (0; -j)

Але є й інші окремі випадки, що спрощують знаходження рішення.

Наведене рівняння другого ступеня

Наведеним називаютьтакий квадратний тричлен, Де коефіцієнт перед старшим членом - одиниця. Для цієї ситуації застосовна теорема Вієта, яка свідчить, що сума коренів дорівнює коефіцієнту при змінній у першому ступені, помноженому на -1, а твір відповідає константі «k».

Отже, w1 + w2 дорівнює -j і w1 * w2 дорівнює k, якщо перший коефіцієнт - одиниця. Щоб переконатися в правильності такого уявлення, можна виразити з першої формули w2 = -j - w1 і підставити його на другу рівність w1 * (-j - w1) = k. У результаті виходить вихідна рівність w1 ^ 2 + j * w1 + k = 0.

Важливо відмітити, Що i * w ^ 2 + j * w + k = 0 вдасться привести шляхом розподілу на "i". Результат буде: w^2+j1*w+k1=0, де j1 дорівнює j/i та k1 дорівнює k/i.

Погляньмо на вже вирішене 2 * w^2 - 3 * w + 1 = 0 з результатами w1 = 1 і w2 = 1/2. Треба поділити його навпіл, в результаті w^2 - 3/2 * w + 1/2 = 0. Перевіримо, що для знайдених результатів справедливі умови теореми: 1 + 1/2 = 3/2 і 1*1/2 = 1 /2.

Парний другий множник

Якщо множник при змінній першому ступені (j) ділиться на 2, то вдасться спростити формулу та шукати рішення через чверть дискримінанта D/4 = (j/2) ^ 2 - i*k. виходить w = (-j +/- d/2) / i, де d/2 = D/4 ступенем 1/2.

Якщо i = 1, а коефіцієнт j - парний, то рішенням буде добуток -1 і половини коефіцієнта при змінній w, плюс/мінус корінь із квадрата цієї половини за вирахуванням константи «k». Формула: w = -j / 2 + / - (j ^ 2 / 4 - k) ^ 1/2.

Вищий порядок дискримінанта

Розглянутий вище дискримінант тричлену другого ступеня - це найчастіший випадок. У загальному випадку дискримінант багаточлена є перемножені квадрати різниць коріння цього багаточлена. Отже, дискримінант рівний нулюговорить про наявність як мінімум двох кратних рішень.

Розглянемо i*w^3+j*w^2+k*w+m=0.

D = j ^ 2 * k ^ 2 - 4 * i * k ^ 3 - 4 * i ^ 3 * k - 27 * i ^ 2 * m ^ 2 + 18 * i * j * k * m.

Припустимо, дискримінант перевершує нуль. Це означає, що є три корені в ділянці дійсних чисел. За нульового є кратні рішення. Якщо D< 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень — вещественный.

Відео

Наше відео докладно розповість про обчислення дискримінанта.

Чи не отримали відповідь на своє запитання? Запропонуйте авторам тему.

Попрацюємо з квадратними рівняннями. Це дуже популярні рівняння! В самому загальному виглядіквадратне рівняння виглядає так:

Наприклад:

Тут а =1; b = 3; c = -4

Тут а =2; b = -0,5; c = 2,2

Тут а =-3; b = 6; c = -18

Ну ви зрозуміли…

Як розв'язувати квадратні рівняння?Якщо перед вами квадратне рівняння саме у такому вигляді, далі все просто. Згадуємо чарівне слово дискримінант . Рідкісний старшокласник не чув цього слова! Фраза «вирішуємо через дискримінант» вселяє впевненість та обнадіює. Тому що чекати каверз від дискримінанта не доводиться! Він простий і безвідмовний у зверненні. Отже, формула для знаходження коріння квадратного рівняння виглядає так:

Вираз під знаком кореня – і є той самий дискримінант. Як бачимо, для знаходження ікса ми використовуємо тільки a, b і с. Тобто. коефіцієнти із квадратного рівняння. Просто акуратно підставляємо значення a, b і су це формулу і рахуємо. Підставляємо зі своїми знаками! Наприклад, для першого рівняння а =1; b = 3; c= -4. Ось і записуємо:

Приклад практично вирішено:

От і все.

Які випадки можливі під час використання цієї формули? Усього три випадки.

1. Дискримінант позитивний. Це означає, що з нього можна витягти корінь. Добре корінь витягується, або погано – питання інше. Важливо, що в принципі. Тоді у вашого квадратного рівняння – два корені. Два різні рішення.

2. Дискримінант дорівнює нулю. Тоді у вас є одне рішення. Строго кажучи, це не один корінь, а два однакові. Але це відіграє роль у нерівностях, там ми докладніше вивчимо питання.

3. Дискримінант негативний. З негативного числа квадратний корінь не витягується. Ну і добре. Це означає, що рішень немає.

Все дуже просто. І що, думаєте, помилитись не можна? Ну так, як же…
Найпоширеніші помилки – плутанина зі знаками значень a, b і с. Точніше, не з їхніми знаками (де там плутатися?), а з підстановкою негативних значень у формулу для обчислення коріння. Тут рятує докладний запис формули із конкретними числами. Якщо є проблеми з обчисленнями, так і робіть!



Припустимо, треба ось такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Допустимо, ви знаєте, що відповіді у вас рідко з першого разу виходять.

Ну і не лінуйтеся. Написати зайву строчку займе секунд 30. А кількість помилок різко скоротиться. Ось і пишемо докладно, з усіма дужками та знаками:

Це здається неймовірно важким, так старанно розписувати. Але це лише здається. Спробуйте. Ну, чи вибирайте. Що краще, швидко, чи правильно? Крім того, я вас порадую. Через деякий час зникне потреба так ретельно все розписувати. Саме правильно виходитиме. Особливо, якщо застосовуватимете практичні прийоми, що описані трохи нижче. Цей злий приклад з купою мінусів вирішиться просто і без помилок!

Отже, як розв'язувати квадратні рівняннячерез дискримінант ми згадали. Або навчилися, що теж непогано. Вмієте правильно визначати a, b і с. Вмієте уважнопідставляти їх у формулу коренів та уважнорахувати результат. Ви зрозуміли, що ключове словотут – уважно?

Однак часто квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

Це неповні квадратні рівняння . Їх також можна вирішувати через дискримінант. Треба тільки правильно збагнути, чого тут дорівнюють a, b і с.

Зрозуміли? У першому прикладі a = 1; b = -4;а c? Його взагалі нема! Так, правильно. У математиці це означає, що c = 0 ! От і все. Підставляємо у формулу нуль замість c,і все в нас вийде. Аналогічно і з другим прикладом. Тільки нуль у нас тут не з, а b !

Але неповні квадратні рівняння можна вирішувати набагато простіше. Без будь-якого дискримінанта. Розглянемо перше неповне рівняння. Що там можна зробити у лівій частині? Можна ікс винести за дужки! Давайте винесемо.

І що з цього? А те, що твір дорівнює нулю тоді, і тільки тоді, коли якийсь із множників дорівнює нулю! Не вірите? Добре, придумайте тоді два ненульові числа, які при перемноженні нуль дадуть!
Не виходить? Отож…
Отже, можна впевнено записати: х = 0, або х = 4

Всі. Це і буде коріння нашого рівняння. Обидва підходять. При підстановці кожного з них у вихідне рівняння, ми отримаємо правильну тотожність 0 = 0. Як бачите, рішення набагато простіше, ніж через дискримінант.

Друге рівняння також можна вирішити просто. Переносимо 9 у праву частину. Отримаємо:

Залишається корінь витягти з 9, і все. Вийде:

Теж два корені . х = +3 та х = -3.

Так вирішуються усі неповні квадратні рівняння. Або з допомогою винесення икса за дужки, чи простим перенесенням числа вправо з наступним вилученням кореня.
Зплутати ці прийоми дуже складно. Просто тому, що в першому випадку вам доведеться корінь із іксу витягувати, що якось незрозуміло, а в другому випадку виносити за дужки нічого.

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок. Тих самих, що через неуважність. За які потім буває боляче і прикро.

Прийом перший. Не лінуйтеся перед вирішенням квадратного рівняння привести його до стандартного вигляду. Що це означає?
Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

І знову не кидайтесь! Мінус перед іксом у квадраті може дуже вас засмутити. Забути його легко… Позбавтеся мінуса. Як? Та як навчали у попередній темі! Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад. Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий.Перевіряйте коріння! За теоремою Вієта. Не лякайтеся, я все поясню! Перевіряємо останнєрівняння. Тобто. те, яким ми записували формулу коренів. Якщо (як у цьому прикладі) коефіцієнт а = 1, перевірити коріння легко. Достатньо їх перемножити. Має вийти вільний член, тобто. у разі -2. Зверніть увагу не 2, а -2! Вільний член зі своїм знаком . Якщо не вийшло – значить уже десь накосячили. Шукайте помилку. Якщо вийшло – треба скласти коріння. Остання та остаточна перевірка. Повинен вийти коефіцієнт bз протилежним знаком. У разі -1+2 = +1. А коефіцієнт b, що перед іксом, дорівнює -1. Значить, все правильно!
Жаль, що це так просто тільки для прикладів, де ікс у квадраті чистий, з коефіцієнтом а = 1.Але хоч у таких рівняннях перевіряйте! Дедалі менше помилок буде.

Прийом третій. Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Помножте рівняння на загальний знаменник, як описано у попередньому розділі. При роботі з дробами помилки чомусь так і лізуть.

До речі, я обіцяв злий приклад із купою мінусів спростити. Будь ласка! Ось він.

Щоб не плутатися в мінусах, примножуємо рівняння на -1. Отримуємо:

От і все! Вирішувати – одне задоволення!

Отже, підсумуємо тему.

Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього рівняння на -1.

3. Якщо коефіцієнти дробові – ліквідуємо дроби множенням всього рівняння на відповідний множник.

4. Якщо ікс у квадраті – чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити за теоремою Вієта. Робіть це!

Дробові рівняння. ОДЗ.

Продовжуємо освоювати рівняння. Ми вже в курсі, як працювати з лінійними рівняннями та квадратними. Залишився останній вигляд - дробові рівняння. Або їх ще називають набагато солідніше - дробові раціональні рівняння. Це одне і теж.

Дробові рівняння.

Як зрозуміло з назви, у цих рівняннях обов'язково присутні дроби. Але не просто дроби, а дроби, які мають невідоме у знаменнику. Хоч би в одному. Наприклад:

Нагадаю, якщо у знаменниках лише числа, це лінійні рівняння

Як вирішувати дробові рівняння? Насамперед – позбутися дробів! Після цього рівняння, найчастіше, перетворюється на лінійне чи квадратне. А далі ми знаємо, що робити… У деяких випадках воно може перетворитися на тотожність типу 5=5 або невірний вираз типу 7=2. Але це рідко трапляється. Нижче я про це згадаю.

Але як позбутися дробів! Дуже просто. Застосовуючи ті самі тотожні перетворення.

Нам треба помножити все рівняння на те саме вираз. Так, щоб усі знаменники скорочувалися! Все одразу стане простіше. Пояснюю на прикладі. Нехай нам потрібно вирішити рівняння:

Як навчали у молодших класах? Переносимо все в один бік, ведемо до спільного знаменника і т.д. Забудьте як страшний сон! Так потрібно робити, коли ви складаєте або віднімаєте дробові вирази. Або працюєте з нерівностями. А в рівняннях ми відразу множимо обидві частини на вираз, який дасть нам змогу скоротити всі знаменники (тобто, по суті, на спільний знаменник). І який же це вираз?

У лівій частині для скорочення знаменника потрібно множення на х+2. А у правій потрібно множення на 2. Значить, рівняння треба множити на 2(х+2). Примножуємо:

Це звичайне множення дробів, але докладно розпишу:

Зверніть увагу, я поки що не розкриваю дужку (х + 2)! Так, цілком, її й пишу:

У лівій частині скорочується повністю (х+2), А в правій 2. Що і потрібно! Після скорочення отримуємо лінійнерівняння:

А це рівняння вже вирішить кожен! х = 2.

Вирішимо ще один приклад, трохи складніше:

Якщо згадати, що 3 = 3/1, а 2х = 2х/ 1, можна записати:

І знову позбавляємося того, що нам не дуже подобається – дробів.

Бачимо, що для скорочення знаменника з іксом, треба помножити дріб на (х – 2). А одиниці нам не завада. Ну і множимо. Всюліву частину та всюправу частину:

Знову дужки (х – 2)я не розкриваю. Працюю зі дужкою в цілому, наче це одне число! Так треба робити завжди, бо інакше нічого не скоротиться.

З почуттям глибокого задоволення скорочуємо (х – 2)і отримуємо рівняння без будь-яких дробів, в лінійку!

А ось тепер уже розкриваємо дужки:

Наводимо подібні, переносимо все в ліву частину та отримуємо:

Класичне квадратне рівняння. Але мінус попереду – поганий. Його можна завжди позбутися, множенням або розподілом на -1. Але якщо придивитися до прикладу, можна помітити, що найкраще це рівняння поділити на -2! Одним махом і мінус зникне, і коефіцієнти симпатичніші стануть! Ділимо на -2. У лівій частині - почленно, а в правій - просто нуль ділимо на -2, нуль і отримаємо:

Вирішуємо через дискримінант та перевіряємо за теоремою Вієта. Отримуємо х = 1 та х = 3. Два корені.

Як бачимо, у першому випадку рівняння після перетворення стало лінійним, а тут – квадратним. Буває так, що після позбавлення від дробів всі ікси скорочуються. Залишається щось, типу 5=5. Це означає, що ікс може бути будь-яким. Яким би він не був, все одно скоротиться. І вийде чиста щоправда, 5=5. Але, після позбавлення від дробів, може вийти зовсім неправда, типу 2=7. А це означає, що рішень немає! За будь-якого ікса виходить неправда.

Усвідомили головний спосібрішення дробових рівнянь? Він простий та логічний. Ми змінюємо вихідний вираз так, щоб зникло все те, що нам не подобається. Або заважає. У разі це – дроби. Так само ми будемо чинити і з кожними складними прикладамиз логарифмами, синусами та іншими жахами. Ми завждибудемо всього цього позбуватися.

Однак міняти вихідний вираз у потрібний нам бік треба за правилами, так ... Освоєння яких і є підготовка до ЄДІ з математики. От і освоюємо.

Зараз ми з вами навчимося обходити одну з головних засідок на ЄДІ! Але для початку подивимося, чи потрапляєте ви в неї, чи ні?

Розберемо простий приклад:

Справа вже знайома, множимо обидві частини на (х – 2), отримуємо:

Нагадую, із дужками (х – 2)працюємо як з одним, цілісним виразом!

Тут я вже не писав одиначку в знаменниках, несолидно ... І дужки в знаменниках малювати не став, там крім х – 2нічого немає, можна й малювати. Скорочуємо:

Розкриваємо дужки, переносимо все вліво, наводимо такі:

Вирішуємо, перевіряємо, отримуємо два корені. х = 2і х = 3. Чудово.

Припустимо в завданні сказано записати корінь, або їх суму, якщо коріння більше одного. Що будемо писати?

Якщо вирішите, що відповідь 5 – ви потрапили в засідку. І завдання вам не зарахують. Даремно працювали… Правильна відповідь 3.

В чому справа?! А ви спробуйте перевірку зробити. Підставити значення невідомого в початковийприклад. І якщо при х = 3у нас все чудово зросте, отримаємо 9 = 9, то при х = 2вийде поділ на нуль! Що робити не можна категорично. Значить х = 2рішенням не є, і у відповіді не враховується. Це так званий сторонній чи зайвий корінь. Ми його просто відкидаємо. Остаточний корінь один. х = 3.

Як так?! – чую обурені вигуки. Нас вчили, що рівняння можна множити вираз! Це тотожне перетворення!

Так, тотожний. За маленької умови – вираз, на який множимо (ділимо) – відмінно від нуля. А х – 2при х = 2одно нулю! Отже, все чесно.

І що тепер робити?! Чи не множити на вираз? Щоразу перевірку робити? Знову незрозуміло!

Спокійно! Без паніки!

У цій тяжкій ситуації нас врятують три магічні літери. Я знаю, що ви подумали. Правильно! Це ОДЗ . Область допустимих значень.

Важливо! У корінні парної кратності функція знак не змінює.

Зверніть увагу! Будь-яку нелінійну нерівність шкільного курсу алгебри слід вирішувати за допомогою методу інтервалів.

Пропоную вам докладний алгоритм розв'язання нерівностей методом інтервалів, дотримуючись якого ви зможете уникнути помилок при розв'язанні нелінійних нерівностей.

Рішення квадратних рівняньз негативними дискримінантами

Як ми знаємо,

i 2 = - 1.

Разом з тим

(- i ) 2 = (- 1 i ) 2 = (- 1) 2 i 2 = -1.

Таким чином, існують принаймні два значення кореня квадратного з - 1, а саме i і - i . Але, можливо, є ще якісь комплексні числа, квадрати яких рівні - 1?

Щоб з'ясувати це питання, припустимо, що квадрат комплексного числа а + bi дорівнює - 1. Тоді

(а + bi ) 2 = - 1,

а 2 + 2абі - b 2 = - 1

Два комплексні числа рівні тоді й тільки тоді, коли рівні їх дійсні частини та коефіцієнти при уявних частинах. Тому

{ а 2 - b 2 = - 1 ab = 0 (1)

Згідно з другим рівнянням системи (1) хоча б одне з чисел а і b має дорівнювати нулю. Якщо b = 0, то з першого рівняння виходить а 2 = - 1. Число а дійсне, і тому а 2 > 0. Невід'ємне число а 2 не може дорівнювати негативному числу- 1. Тому рівність b = 0 у разі неможливо. Залишається визнати, що а = 0, але тоді з першого рівняння системи одержуємо: - b 2 = - 1, b = ±1.

Отже, комплексними числами, квадрати яких дорівнюють -1, є лише числа i і - i , умовно це записується у вигляді:

√-1 = ± i .

Аналогічними міркуваннями учні можуть переконатися у тому, що є рівно два числа, квадрати яких рівні негативному числу - а . Такими числами є √ ai і -√ ai . Умовно це записується так:

- а = ± √ ai .

Під √ a тут мається на увазі арифметичний, тобто позитивний корінь. Наприклад, √4 = 2, √9 =.3; тому

√-4 = + 2i , √-9 = ± 3 i

Якщо раніше при розгляді квадратних рівнянь із негативними дискримінантами ми говорили, що такі рівняння не мають коріння, то тепер так уже не можна говорити. Квадратні рівняння з негативними дискримінантами мають комплексне коріння. Це коріння виходить за відомими нам формулами. Нехай, наприклад, дано рівняння x 2 + 2х + 5 = 0; тоді

х 1,2 = - 1 ± √1 -5 = - 1 ± √-4 = - 1 ± 2 i .

Отже, дане рівняння має два корені: х 1 = - 1 +2i , х 2 = - 1 - 2i . Це коріння є взаємно сполученим. Цікаво відзначити, що їх сума дорівнює - 2, а твір 5, отже виконується теорема Виета.

Поняття комплексного числа

Комплексним числом називається вираз виду a + ib , де a і b – будь-які дійсні числа, i – спеціальне число, яке називається уявною одиницею. Для таких виразів поняття рівності та операції додавання та множення вводяться таким чином:

  1. Два комплексні числа a + ib і c + id називаються рівними тоді і лише тоді, коли
    a = b і c = d.
  2. Сумою двох комплексних чисел a + ib та c + id називається комплексне число
    a + c + i (b + d).
  3. Добутком двох комплексних чисел a + ib і c + id називається комплексне число
    ac - bd + i (ad + bc).

Комплексні числа часто позначають однією літерою, наприклад z = a + ib . Справжнє число a називається дійсною частиною комплексного числа z, дійсна частина позначається a = Re z. Дійсно число b називається уявною частиною комплексного числа z, уявна частина позначається b = Im z. Такі назви обрані у зв'язку з особливими властивостями комплексних чисел.

Зауважимо, що арифметичні операції над комплексними числами виду z = a + i · 0 здійснюються так само, як і над дійсними числами. Справді,

Отже, комплексні числа виду a + i · 0 природно ототожнюються із дійсними числами. Через це комплексні числа такого виду називають просто дійсними. Отже, безліч дійсних чисел міститься у багатьох комплексних чисел. Безліч комплексних чисел позначається. Ми встановили, що , а саме

На відміну від дійсних чисел числа виду 0 + ib називаються чисто уявними. Часто просто пишуть bi, наприклад, 0 + i 3 = 3 i. Чисто уявне число i1 = 1 i = i має дивовижну властивість:
Таким чином,

№ 4 .1. У математиці числова функція - це функція, області визначення та значень якої є підмножинами числових множин - як правило, множиниречових чисел або множини комплексних чисел .

Графік функції

Фрагмент графіка функції

Способи завдання функції

[ред.] Аналітичний спосіб

Зазвичай функція задається за допомогою формули, до якої входять змінні, операції та елементарні функції. Можливо, шматкове завдання, тобто різне для різних значень аргументу.

[ред.] Табличний спосіб

Функцію можна задати, перерахувавши всі її можливі аргументи та значення для них. Після цього, якщо це необхідно, функцію можна визначити для аргументів, яких немає в таблиці, шляхом інтерполяції або екстраполяції. Прикладами можуть бути програма передач, розклад поїздів або таблиця значень булевої функції:

[ред.] Графічний спосіб

Осцилограма задає значення деякої функції графічно.

Функцію можна встановити графічно, відобразивши безліч точок її графіка на площині. Це може бути приблизний малюнок, як має виглядати функція, або показання, зняті з приладу, наприклад осцилографа. Цей спосіб завдання може страждати від нестачі точності, проте в деяких випадках інші способи завдання взагалі не можуть бути використані. Крім того, такий спосіб завдання один із найбільш презентативних, зручних для сприйняття та якісного евристичного аналізу функції.

[ред.] Рекурсивний спосіб

Функція може бути задана рекурсивно, тобто через себе. І тут одні значення функції визначаються через інші значення.

  • факторіал;
  • числа Фібоначчі;
  • функція Акермана.

[ред.] Словесний спосіб

Функцію можна описати словами природною мовою будь-яким однозначним способом, наприклад, описавши її вхідні та вихідні значення, або алгоритм, за допомогою якого функція задає відповідності між цими значеннями. Поряд з графічним способомІноді це єдиний спосіб описати функцію, хоча природні мови і не настільки детерміновані, як формальні.

  • функція, що повертає цифру у записі числа пи за її номером;
  • функція, що повертає число атомів у всесвіті у певний момент часу;
  • функція, що приймає як аргумент людини, і повертає число людей, яке народиться на світ після її народження

У сучасному суспільствівміння робити дії з рівняннями, що містять змінну, зведену в квадрат, може стати в нагоді в багатьох сферах діяльності і широко застосовується на практиці в наукових та технічних розробках. Свідченням цього може бути конструювання морських і річкових суден, літаків і ракет. За допомогою подібних розрахунків визначають траєкторії переміщення різних тіл, у тому числі і космічних об'єктів. Приклади з вирішенням квадратних рівнянь знаходять застосування не тільки в економічному прогнозуванні, при проектуванні та будівництві будівель, а й у звичайних життєвих обставинах. Вони можуть знадобитися в туристичних походах, на спортивних змаганнях, в магазинах при здійсненні покупок та інших досить поширених ситуаціях.

Розіб'ємо вираз на складові множники

Ступінь рівняння визначається максимальним значенням ступеня у змінної, яку містить цей вираз. Якщо вона дорівнює 2, то подібне рівняння якраз і називається квадратним.

Якщо говорити мовою формул, то зазначені вирази, хоч би як вони виглядали, завжди можна привести до вигляду, коли ліва частина виразу складається з трьох доданків. Серед них: ax 2 (тобто змінна, зведена квадрат зі своїм коефіцієнтом), bx (невідоме без квадрата зі своїм коефіцієнтом) і c (вільна складова, тобто звичайне число). Все це в правій частині дорівнює 0. У випадку, коли у такого багаточлена відсутня одна з його складових доданків, за винятком ax 2 воно називається неповним квадратним рівнянням. Приклади з вирішенням таких завдань, значення змінних у яких знайти нескладно, слід розглянути насамперед.

Якщо вираз на вигляд виглядає таким чином, що доданків у виразу в правій частині два, точніше ax 2 і bx, найлегше відшукати їх винесенням змінної за дужки. Тепер наше рівняння виглядатиме так: x(ax+b). Далі стає очевидним, що або х=0, або завдання зводиться до знаходження змінної з наступного виразу: ax+b=0. Зазначене продиктовано однією з властивостей множення. Правило говорить, що добуток двох множників дає в результаті 0 тільки якщо один з них дорівнює нулю.

приклад

x = 0 або 8х - 3 = 0

В результаті одержуємо два корені рівняння: 0 та 0,375.

Рівняння такого роду можуть описувати переміщення тіл під дією сили тяжкості, які почали рух з певної точки, прийнятої початку координат. Тут математичний запис набуває такої форми: y = v 0 t + gt 2 /2. Підставивши необхідні значення, прирівнявши праву частину 0 і знайшовши можливі невідомі, можна дізнатися про час, що проходить з моменту підйому тіла до моменту його падіння, а також багато інших величин. Але про це ми поговоримо пізніше.

Розкладання виразу на множники

Описане вище правило дає можливість вирішувати зазначені завдання й у складніших випадках. Розглянемо приклади із розв'язанням квадратних рівнянь такого типу.

X 2 - 33x + 200 = 0

Цей квадратний тричлен є повним. Спочатку перетворимо вираз і розкладемо його на множники. Їх виходить два: (x-8) і (x-25) = 0. У результаті маємо два корені 8 та 25.

Приклади з розв'язанням квадратних рівнянь у 9 класі дозволяють даним методом знаходити змінну у виразах не тільки другого, а й третього та четвертого порядків.

Наприклад: 2x 3 + 2x 2 - 18x - 18 = 0. При розкладанні правої частини на множники зі змінною їх виходить три, тобто (x+1),(x-3) і (x+3).

В результаті стає очевидним, що дане рівняння має три корені: -3; -1; 3.

Вилучення квадратного кореня

Іншим випадком неповного рівняннядругого порядку є вираз, на мові букв представлений таким чином, що права частинабудується зі складових ax 2 та c. Тут для отримання значення змінної вільний член переноситься у праву сторону, а потім з обох частин рівності витягується квадратний корінь. Слід звернути увагу, що й у разі коренів рівняння зазвичай буває два. Винятком можуть бути лише рівності, взагалі які містять доданок з, де змінна дорівнює нулю, і навіть варіанти висловів, коли права частина виявляється негативною. У разі рішень взагалі немає, оскільки зазначені вище дії неможливо проводити з корінням. Приклади розв'язків квадратних рівнянь такого типу слід розглянути.

У разі корінням рівняння виявляться числа -4 і 4.

Обчислення пощади земельної ділянки

Потреба в подібних обчисленнях з'явилася в давнину, адже розвиток математики багато в чому в ті далекі часи було обумовлено необхідністю визначати з найбільшою точністю площі і периметри земельних ділянок.

Приклади з розв'язанням квадратних рівнянь, складених на основі таких завдань, слід розглянути і нам.

Отже, допустимо є прямокутна ділянка землі, довжина якої на 16 метрів більша, ніж ширина. Слід знайти довжину, ширину та периметр ділянки, якщо відомо, що його площа дорівнює 612 м 2 .

Приступаючи до справи, спершу складемо необхідне рівняння. Позначимо за x ширину ділянки, тоді його довжина виявиться (х +16). З написаного випливає, що площа визначається виразом х(х+16), що згідно з умовою нашого завдання становить 612. Це означає, що х(х+16) = 612.

Вирішення повних квадратних рівнянь, а даний вираз є саме таким, не може виконуватися колишнім способом. Чому? Хоча ліва частина його, як і раніше, містить два множники, добуток їх зовсім не дорівнює 0, тому тут застосовуються інші методи.

Дискримінант

Насамперед зробимо необхідні перетворення, тоді зовнішній вигляд даного виразу виглядатиме таким чином: x 2 + 16x - 612 = 0. Це означає, що ми отримали вираз у формі, що відповідає зазначеному раніше стандарту, де a=1, b=16, c= -612.

Це може стати прикладом розв'язання квадратних рівнянь через дискримінант. Тут необхідні розрахункивиробляються за схемою: D = b 2 – 4ac. Ця допоміжна величина не просто дає можливість знайти шукані величини в рівнянні другого порядку, вона визначає кількість можливих варіантів. Якщо D>0, їх два; при D = 0 існує один корінь. У випадку, якщо D<0, никаких шансов для решения у уравнения вообще не имеется.

Про коріння та його формулу

У разі дискримінант дорівнює: 256 - 4(-612) = 2704. Це свідчить, що у нашого завдання існує. Якщо знати, до , Розв'язання квадратних рівнянь потрібно продовжувати із застосуванням нижче наведеної формули. Вона дозволяє обчислити коріння.

Це означає, що у цьому випадку: x 1 =18, x 2 =-34. Другий варіант у цій дилемі не може бути рішенням, тому що розміри земельної ділянки не можуть вимірюватися в негативних величинах, отже х (тобто ширина ділянки) дорівнює 18 м. Звідси обчислюємо довжину: 18+16=34 і периметр 2(34+ 18) = 104 (м 2).

Приклади та завдання

Продовжуємо вивчення квадратних рівнянь. Приклади та детальне рішення кількох з них будуть наведені далі.

1) 15x2+20x+5=12x2+27x+1

Перенесемо все в ліву частину рівності, зробимо перетворення, тобто отримаємо вид рівняння, який прийнято називати стандартним, і прирівняємо його нулю.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Склавши подібні, визначимо дискримінант: D = 49 - 48 = 1. Значить у нашого рівняння буде два корені. Обчислимо їх згідно з наведеною вище формулою, а це означає, що перший з них дорівнюватиме 4/3, а другий 1.

2) Тепер розкриємо загадки іншого.

З'ясуємо, чи взагалі є тут коріння x 2 - 4x + 5 = 1? Для отримання вичерпної відповіді наведемо багаточлен до відповідного звичного вигляду та обчислимо дискримінант. У вказаному прикладі рішення квадратного рівняння виконувати не обов'язково, адже суть завдання полягає зовсім не в цьому. У разі D = 16 - 20 = -4, отже, коріння дійсно немає.

Теорема Вієта

Квадратні рівняння зручно вирішувати через зазначені вище формули і дискримінант, коли значення останнього витягується квадратний корінь. Але це не завжди. Проте способів отримання значень змінних у разі існує безліч. Приклад: розв'язання квадратних рівнянь з теореми Вієта. Вона названа на честь який жив у XVI столітті у Франції та зробив блискучу кар'єру завдяки своєму математичному таланту та зв'язкам при дворі. Портрет його можна побачити у статті.

Закономірність, яку помітив уславлений француз, полягала в наступному. Він довів, що коріння рівняння у сумі чисельно дорівнює -p=b/a, які твір відповідає q=c/a.

Тепер розглянемо конкретні завдання.

3x 2 + 21x - 54 = 0

Для простоти перетворюємо вираз:

x 2 + 7x - 18 = 0

Скористаємося теоремою Вієта, це дасть нам таке: сума коренів дорівнює -7, а їх твір -18. Звідси отримаємо, що корінням рівняння є числа -9 і 2. Зробивши перевірку, переконаємося, що ці значення змінних справді підходять у вираз.

Графік та рівняння параболи

Поняття квадратичні функції і квадратні рівняння тісно пов'язані. Приклади подібного вже наведено раніше. Тепер розглянемо деякі математичні загадки трохи докладніше. Будь-яке рівняння описуваного типу можна наочно. Така залежність, намальована як графіка, називається параболою. Різні її види представлені малюнку нижче.

Будь-яка парабола має вершину, тобто точку, з якої виходять її гілки. Якщо a>0, вони йдуть високо в нескінченність, а коли a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Наочні зображення функцій допомагають вирішувати будь-які рівняння, зокрема квадратні. Цей метод називається графічним. А значенням змінної х є координата абсцис у точках, де відбувається перетин лінії графіка з 0x. Координати вершини можна дізнатися за щойно наведеною формулою x 0 = -b/2a. І, підставивши отримане значення початкове рівняння функції, можна дізнатися y 0 , тобто другу координату вершини параболи, що належить осі ординат.

Перетин гілок параболи з віссю абсцис

Прикладів із розв'язанням квадратних рівнянь дуже багато, але існують і загальні закономірності. Розглянемо їх. Зрозуміло, що перетин графіка з віссю 0x при a>0 можливе тільки якщо у 0 приймає негативні значення. А для a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Інакше D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

За графіком параболи можна визначити коріння. Правильне також протилежне. Тобто, якщо отримати наочне зображення квадратичної функції нелегко, можна прирівняти праву частину виразу до 0 і вирішити отримане рівняння. А знаючи точки перетину із віссю 0x, легше побудувати графік.

З історії

За допомогою рівнянь, що містять змінну, зведену в квадрат, за старих часів не тільки робили математичні розрахунки і визначали площі геометричних фігур. Подібні обчислення давнім були необхідні для грандіозних відкриттів у галузі фізики та астрономії, а також для складання астрологічних прогнозів.

Як припускають сучасні діячі науки, одними з перших розв'язання квадратних рівнянь зайнялися жителі Вавилону. Сталося це за чотири сторіччя до настання нашої ери. Зрозуміло, їх обчислення докорінно відрізнялися від нині прийнятих і виявлялися набагато примітивнішими. Наприклад, месопотамские математики гадки не мали про існування негативних чисел. Незнайомі їм були інші тонкощі з тих, які знає будь-який школяр сучасності.

Можливо, ще раніше вчених Вавилона розв'язанням квадратних рівнянь зайнявся мудрець із Індії Баудхаяма. Сталося це приблизно за вісім століть до настання ери Христа. Щоправда, рівняння другого порядку, способи вирішення яких він навів, були найпростішими. Крім нього, подібними питаннями цікавилися за старих часів і китайські математики. У Європі квадратні рівняння почали вирішувати лише на початку XIII століття, проте пізніше їх використовували у своїх роботах такі великі вчені, як Ньютон, Декарт і багато інших.

Завдання на квадратне рівняння вивчаються і у шкільній програмі, і у ВНЗ. Під ними розуміють рівняння виду a * x ^ 2 + b * x + c = 0 де x -змінна, a, b, c – константи; a<>0 . Завдання полягає у відшуканні коренів рівняння.

Геометричний зміст квадратного рівняння

Графіком функції, представленої квадратним рівнянням є парабола. Рішення (коріння) квадратного рівняння - це точки перетину параболи з віссю абсцис (х). З цього випливає, що є три можливі випадки:
1) парабола не має точок перетину з віссю абсцис. Це означає, що вона знаходиться у верхній площині з гілками вгору або нижній з гілками вниз. У таких випадках квадратне рівняння не має дійсних коренів (має два комплексні корені).

2) парабола має одну точку перетину з віссю Ох. Таку точку називають вершиною параболи, а квадратне рівняння в ній набуває свого мінімального або максимального значення. У цьому випадку квадратне рівняння має один дійсний корінь (або два однакові корені).

3) Останній випадок практично цікавий більше - існує дві точки перетину параболи з віссю абсцис. Це означає, що існує два дійсних кореня рівняння.

На основі аналізу коефіцієнтів при ступенях змінних можна зробити цікаві висновки щодо розміщення параболи.

1) Якщо коефіцієнт а більший за нуль то парабола спрямована гілками вгору, якщо негативний - гілки параболи спрямовані вниз.

2) Якщо коефіцієнт b більший за нуль то вершина параболи лежить у лівій напівплощині, якщо набуває негативного значення - то у правій.

Висновок формули для розв'язання квадратного рівняння

Перенесемо константу із квадратного рівняння

за знак рівності, отримаємо вираз

Помножимо обидві частини на 4а

Щоб отримати ліворуч повний квадрат додамо в обох частинах b^2 і здійснимо перетворення

Звідси знаходимо

Формула дискримінанта та коріння квадратного рівняння

Дискримінантом називають значення підкореного виразуЯкщо він позитивний то рівняння має два дійсні корені, що обчислюються за формулою При нульовому дискримінанті квадратне рівняння має одне рішення (два збігаються корені), які легко отримати з наведеної вище формули при D=0 При негативному дискримінанті рівняння дійсних коренів немає. Проте ісують розв'язки квадратного рівняння в комплексній площині, та їх значення обчислюють за формулою

Теорема Вієта

Розглянемо два корені квадратного рівняння і побудуємо на їх основі квадратне рівняння. З запису легко слідує сама теорема Вієта: якщо маємо квадратне рівняння виду то сума його коренів дорівнює коефіцієнту p, взятому з протилежним знаком, а добуток коренів рівняння дорівнює вільному доданку q. Формульний запис вищесказаного буде мати вигляд Якщо в класичному рівнянні константа а відмінна від нуля, то потрібно розділити на неї все рівняння, а потім застосовувати теорему Вієта.

Розклад квадратного рівняння на множники

Нехай поставлене завдання: розкласти квадратне рівняння на множники. Для його виконання спочатку розв'язуємо рівняння (знаходимо коріння). Далі, знайдене коріння підставляємо у формулу розкладання квадратного рівняння. На цьому завдання буде вирішено.

Завдання на квадратне рівняння

Завдання 1. Знайти коріння квадратного рівняння

x^2-26x+120=0.

Рішення: Запишемо коефіцієнти та підставимо у формулу дискримінанта

Корінь з цього значення дорівнює 14 , його легко знайти з калькулятором, або запам'ятати при частому використанні, проте для зручності, наприкінці статті я дам Вам список квадратів чисел, які часто можуть зустрічатися при подібних завданнях.
Знайдене значення підставляємо у формулу коріння

і отримуємо

Завдання 2. Вирішити рівняння

2x2+x-3=0.

Рішення: Маємо повне квадратне рівняння, виписуємо коефіцієнти та знаходимо дискримінант


За відомими формулами знаходимо коріння квадратного рівняння

Завдання 3. Вирішити рівняння

9x2-12x+4=0.

Рішення: Маємо повне квадратне рівняння. Визначаємо дискримінант

Отримали випадок коли коріння збігається. Знаходимо значення коренів за формулою

Завдання 4. Вирішити рівняння

x^2+x-6=0.

Рішення: У випадках коли є малі коефіцієнти при їх доцільно застосовувати теорему Вієта. За її умовою одержуємо два рівняння

З другої умови отримуємо, що твір має дорівнювати -6 . Це означає, що один з коренів негативний. Маємо наступну можливу пару рішень (-3; 2), (3; -2). З урахуванням першої умови другу пару рішень відкидаємо.
Коріння рівняння дорівнює

Завдання 5. Знайти довжини сторін прямокутника, якщо його периметр 18 см, а площа 77 см 2 .

Рішення: Половина периметра прямокутника дорівнює сумі сусідніх сторін. Позначимо х – більшу сторону, тоді 18-x менша його сторона. Площа прямокутника дорівнює добутку цих довжин:
х (18-х) = 77;
або
х 2 -18х +77 = 0.
Знайдемо дискримінант рівняння

Обчислюємо коріння рівняння

Якщо х = 11,то 18-х = 7,навпаки теж справедливо (якщо х=7, то 21-х=9).

Завдання 6. Розкласти квадратне 10x2-11x+3=0 рівняння на множники.

Рішення: Обчислимо коріння рівняння, для цього знаходимо дискримінант

Підставляємо знайдене значення у формулу коренів та обчислюємо

Застосовуємо формулу розкладання квадратного рівняння за корінням

Розкривши дужки отримаємо тотожність.

Квадратне рівняння з параметром

Приклад 1. При яких значеннях параметра а ,рівняння (а-3) х 2 + (3-а) х-1/4 = 0 має один корінь?

Рішення: Прямою підстановкою значення а=3 бачимо, що вона не має рішення. Далі скористаємося тим, що з нульовому дискримінанті рівняння має один корінь кратності 2 . Випишемо дискримінант

спростимо його і прирівняємо до нуля

Отримали квадратне рівняння щодо параметра а рішення якого легко отримати за теоремою Вієта. Сума коренів дорівнює 7 , а їх добуток 12 . Простим перебором встановлюємо, що числа 3,4 будуть корінням рівняння. Оскільки рішення а=3 ми вже відкинули на початку обчислень, єдиним правильним буде - а=4.Таким чином, при а=4 рівняння має один корінь.

Приклад 2. При яких значеннях параметра а ,рівняння а(а+3)х^2+(2а+6)х-3а-9=0має більше одного кореня?

Рішення: Розглянемо спочатку спеціальні точки, ними будуть значення а = 0 і а = -3 . При а = 0 рівняння спроститься до виду 6х-9 = 0; х = 3/2 і буде один корінь. При а=-3 отримаємо тотожність 0=0.
Обчислимо дискримінант

і знайдемо значення а при якому воно позитивне

З першої умови отримаємо а>3. Для другого знаходимо дискримінант та коріння рівняння


Визначимо проміжки де функція набуває позитивних значень. Підстановкою точки а = 0 отримаємо 3>0 . Отже, поза проміжку (-3;1/3) функція негативна. Не варто забувати про точку а = 0,яку слід виключити, оскільки в ній вихідне рівняння має один корінь.
В результаті отримаємо два інтервали, які задовольняють умову задачі

Подібних завдань на практиці буде багато, постарайтеся розібратися із завданнями самостійно та не забувайте враховувати умови, які взаємовиключають один одного. Добре вивчіть формули для вирішення квадратних рівнянь, вони досить часто потрібні при обчисленнях в різних завданнях і науках.