Formula pentru produsul cosinusurilor diferitelor unghiuri. Sinus, cosinus, tangentă: ce este? Cum să găsiți sinus, cosinus și tangentă

Conceptele de sinus (), cosinus (), tangentă (), cotangentă () sunt indisolubil legate de conceptul de unghi. Pentru a înțelege bine aceste, la prima vedere, concepte complexe (care provoacă o stare de groază la mulți școlari), și să ne asigurăm că „diavolul nu este atât de înfricoșător precum este pictat”, să începem de la bun început și să înțelegem conceptul de unghi.

Conceptul de unghi: radian, grad

Să ne uităm la poză. Vectorul s-a „întors” față de punct cu o anumită cantitate. Deci măsura acestei rotații în raport cu poziția inițială va fi colţ.

Ce altceva trebuie să știți despre conceptul de unghi? Ei bine, unități de unghi, desigur!

Unghiul, atât în ​​geometrie, cât și în trigonometrie, poate fi măsurat în grade și radiani.

Unghiul de (un grad) este unghiul central al cercului, bazat pe un arc de cerc egal cu partea cercului. Astfel, întregul cerc este format din „bucăți” de arce circulare, sau unghiul descris de cerc este egal.

Adică, figura de mai sus arată un unghi care este egal, adică acest unghi se bazează pe un arc de cerc de dimensiunea circumferinței.

Un unghi în radiani se numește unghi central într-un cerc, pe baza unui arc de cerc, a cărui lungime este egală cu raza cercului. Ei bine, ai inteles? Dacă nu, atunci să ne uităm la imagine.

Deci, figura arată un unghi egal cu un radian, adică acest unghi se bazează pe un arc de cerc, a cărui lungime este egală cu raza cercului (lungimea este egală cu lungimea sau raza este egală cu lungimea arcului). Astfel, lungimea arcului se calculează cu formula:

Unde este unghiul central în radiani.

Ei bine, știind asta, poți să răspunzi câți radiani conține un unghi descris de un cerc? Da, pentru aceasta trebuie să vă amintiți formula pentru circumferința unui cerc. Acolo e:

Ei bine, acum să corelăm aceste două formule și să obținem că unghiul descris de cerc este egal. Adică, corelând valoarea în grade și radiani, obținem asta. Respectiv, . După cum puteți vedea, spre deosebire de „grade”, cuvântul „radian” este omis, deoarece unitatea de măsură este de obicei clară din context.

Câți radiani sunt? Asta e corect!

Am înţeles? Apoi fixați înainte:

Orice dificultăți? Atunci uite răspunsuri:

Triunghi dreptunghic: sinus, cosinus, tangenta, cotangenta unui unghi

Deci, cu conceptul de unghi deslușit. Dar care este sinusul, cosinusul, tangenta, cotangenta unui unghi? Să ne dăm seama. Pentru aceasta, un triunghi dreptunghic ne va ajuta.

Cum se numesc laturile unui triunghi dreptunghic? Așa este, ipotenuza și catetele: ipotenuza este latura care se află opus unghiului drept (în exemplul nostru, aceasta este latura); picioarele sunt cele două laturi rămase și (cele adiacente unghi drept), în plus, dacă luăm în considerare picioarele relativ la unghi, atunci piciorul este piciorul adiacent, iar piciorul este cel opus. Deci, acum să răspundem la întrebarea: care sunt sinusul, cosinusul, tangenta și cotangenta unui unghi?

Sinusul unui unghi este raportul dintre catetul opus (depărtat) și ipotenuză.

în triunghiul nostru.

Cosinusul unui unghi- acesta este raportul dintre catetul adiacent (aproape) și ipotenuză.

în triunghiul nostru.

Tangenta unghiului- acesta este raportul dintre piciorul opus (departe) și cel adiacent (închis).

în triunghiul nostru.

Cotangenta unui unghi- acesta este raportul dintre piciorul adiacent (aproape) și cel opus (departe).

în triunghiul nostru.

Aceste definiții sunt necesare tine minte! Pentru a vă ușura să vă amintiți ce picior să împărțiți la ce, trebuie să înțelegeți clar acest lucru tangentăși cotangentă doar picioarele stau, iar ipotenuza apare doar in sinusuluiși cosinus. Și apoi poți veni cu un lanț de asociații. De exemplu, acesta:

cosinus→ating→ating→adiacent;

Cotangent → atinge → atinge → adiacent.

În primul rând, este necesar să ne amintim că sinusul, cosinusul, tangenta și cotangenta ca rapoarte ale laturilor unui triunghi nu depind de lungimile acestor laturi (la un unghi). Sa nu ai incredere? Apoi asigurați-vă că vă uitați la imagine:

Luați în considerare, de exemplu, cosinusul unui unghi. Prin definiție, dintr-un triunghi: , dar putem calcula cosinusul unui unghi dintr-un triunghi: . Vedeți, lungimile laturilor sunt diferite, dar valoarea cosinusului unui unghi este aceeași. Astfel, valorile sinusului, cosinusului, tangentei și cotangentei depind numai de mărimea unghiului.

Dacă înțelegeți definițiile, atunci mergeți mai departe și remediați-le!

Pentru triunghiul prezentat în figura de mai jos, găsim.

Ei bine, ai primit-o? Atunci încearcă și tu: calculează același lucru pentru colț.

Cerc unitar (trigonometric).

Înțelegând conceptele de grade și radiani, am considerat un cerc cu o rază egală cu. Un astfel de cerc se numește singur. Este foarte util în studiul trigonometriei. Prin urmare, ne oprim asupra ei mai detaliat.

După cum puteți vedea, acest cerc este încorporat Sistemul cartezian coordonatele. Raza cercului este egală cu unu, în timp ce centrul cercului se află la origine, poziția inițială a vectorului rază este fixată de-a lungul direcției pozitive a axei (în exemplul nostru, aceasta este raza).

Fiecare punct al cercului corespunde a două numere: coordonatele de-a lungul axei și coordonatele de-a lungul axei. Care sunt aceste numere de coordonate? Și, în general, ce legătură au ei cu subiectul la îndemână? Pentru a face acest lucru, amintiți-vă despre triunghiul dreptunghic considerat. În figura de mai sus, puteți vedea două triunghiuri dreptunghiulare întregi. Luați în considerare un triunghi. Este dreptunghiular deoarece este perpendicular pe axa.

Ce este egal cu dintr-un triunghi? Asta e corect. În plus, știm că este raza cercului unitar și, prin urmare, . Înlocuiți această valoare în formula cosinusului. Iată ce se întâmplă:

Și ce este egal cu dintr-un triunghi? Ei bine, desigur,! Înlocuiți valoarea razei în această formulă și obțineți:

Deci, poți să-mi spui care sunt coordonatele unui punct care aparține cercului? Ei bine, în niciun caz? Și dacă realizezi asta și sunt doar numere? Cu ce ​​coordonata corespunde? Ei bine, desigur, coordonatele! Cu ce ​​coordonata corespunde? Așa e, coordonează! Astfel, punctul.

Și atunci ce sunt egale și? Așa este, să folosim definițiile adecvate ale tangentei și cotangentei și să obținem asta, a.

Ce se întâmplă dacă unghiul este mai mare? Iată, de exemplu, ca în această imagine:

Ce s-a schimbat în acest exemplu? Să ne dăm seama. Pentru aceasta, apelăm din nou la triunghi dreptunghic. Luați în considerare un triunghi dreptunghic: un unghi (ca adiacent unui unghi). Care este valoarea sinusului, cosinusului, tangentei și cotangentei unui unghi? Așa este, aderăm la definițiile relevante funcții trigonometrice:

Ei bine, după cum puteți vedea, valoarea sinusului unghiului corespunde în continuare coordonatei; valoarea cosinusului unghiului - coordonata; și valorile tangentei și cotangentei la rapoartele corespunzătoare. Astfel, aceste relații sunt aplicabile oricăror rotații ale vectorului rază.

S-a menționat deja că poziția inițială a vectorului rază este de-a lungul direcției pozitive a axei. Până acum am rotit acest vector în sens invers acelor de ceasornic, dar ce se întâmplă dacă îl rotim în sensul acelor de ceasornic? Nimic extraordinar, vei obține și un unghi de o anumită dimensiune, dar numai că va fi negativ. Astfel, la rotirea vectorului rază în sens invers acelor de ceasornic, obținem unghiuri pozitive, iar când se rotește în sensul acelor de ceasornic - negativ.

Deci, știm că o întreagă revoluție a vectorului rază în jurul cercului este sau. Este posibil să rotiți vectorul rază cu sau cu? Ei bine, bineînțeles că poți! Prin urmare, în primul caz, vectorul rază va face o revoluție completă și se va opri în poziția sau.

În al doilea caz, adică vectorul rază va face trei rotații complete și se va opri în poziția sau.

Astfel, din exemplele de mai sus, putem concluziona că unghiurile care diferă prin sau (unde este orice număr întreg) corespund aceleiași poziții a vectorului rază.

Figura de mai jos arată un unghi. Aceeași imagine corespunde colțului și așa mai departe. Această listă poate fi continuată pe termen nelimitat. Toate aceste unghiuri pot fi scrise cu formula generală sau (unde este orice număr întreg)

Acum, cunoscând definițiile funcțiilor trigonometrice de bază și folosind cercul unitar, încercați să răspundeți cu ce sunt egale valorile:

Iată un cerc de unitate care vă va ajuta:

Orice dificultăți? Atunci hai să ne dăm seama. Deci știm că:

De aici, determinăm coordonatele punctelor corespunzătoare anumitor măsuri ale unghiului. Ei bine, să începem în ordine: colțul la corespunde unui punct cu coordonate, prin urmare:

Nu exista;

Mai departe, aderând la aceeași logică, aflăm că colțurile din corespund punctelor cu coordonate, respectiv. Știind acest lucru, este ușor să determinați valorile funcțiilor trigonometrice în punctele corespunzătoare. Încercați mai întâi singur, apoi verificați răspunsurile.

Raspunsuri:

Nu exista

Nu exista

Nu exista

Nu exista

Astfel, putem realiza următorul tabel:

Nu este nevoie să ne amintim toate aceste valori. Este suficient să ne amintim corespondența dintre coordonatele punctelor de pe cercul unității și valorile funcțiilor trigonometrice:

Dar valorile funcțiilor trigonometrice ale unghiurilor din și, prezentate în tabelul de mai jos, trebuie amintit:

Nu vă fie teamă, acum vă vom arăta unul dintre exemple memorarea destul de simplă a valorilor corespunzătoare:

Pentru a utiliza această metodă, este vital să vă amintiți valorile sinusului pentru toate cele trei măsuri ale unghiului (), precum și valoarea tangentei unghiului în. Cunoscând aceste valori, este destul de ușor să restabiliți întregul tabel - valorile cosinusului sunt transferate în conformitate cu săgețile, adică:

Știind acest lucru, puteți restabili valorile pentru. Numătorul „ ” se va potrivi și numitorul „ ” se va potrivi. Valorile cotangentelor sunt transferate în conformitate cu săgețile prezentate în figură. Dacă înțelegeți acest lucru și vă amintiți diagrama cu săgeți, atunci va fi suficient să vă amintiți întreaga valoare din tabel.

Coordonatele unui punct pe un cerc

Este posibil să găsiți un punct (coordonatele sale) pe un cerc, cunoscând coordonatele centrului cercului, raza acestuia și unghiul de rotație?

Ei bine, bineînțeles că poți! Să scoatem formula generala pentru a afla coordonatele unui punct.

Aici, de exemplu, avem un astfel de cerc:

Ni se spune că punctul este centrul cercului. Raza cercului este egală. Este necesar să găsiți coordonatele punctului obținute prin rotirea punctului cu grade.

După cum se poate observa din figură, coordonatele punctului corespund lungimii segmentului. Lungimea segmentului corespunde coordonatei centrului cercului, adică este egală cu. Lungimea unui segment poate fi exprimată folosind definiția cosinusului:

Apoi avem asta pentru punctul coordonata.

După aceeași logică, găsim valoarea coordonatei y pentru punct. În acest fel,

Deci in vedere generala coordonatele punctului sunt determinate de formulele:

Coordonatele centrului cercului,

raza cercului,

Unghiul de rotație al vectorului rază.

După cum puteți vedea, pentru cercul unitar pe care îl luăm în considerare, aceste formule sunt reduse semnificativ, deoarece coordonatele centrului sunt zero, iar raza este egală cu unu:

Ei bine, hai să încercăm aceste formule pentru un gust, exersând găsirea punctelor pe un cerc?

1. Găsiți coordonatele unui punct pe un cerc unitar obținute prin pornirea unui punct.

2. Aflați coordonatele unui punct pe un cerc unitar obținute prin rotirea unui punct pe.

3. Găsiți coordonatele unui punct pe un cerc unitar obținute prin pornirea unui punct.

4. Punct - centrul cercului. Raza cercului este egală. Este necesar să se găsească coordonatele punctului obținute prin rotirea vectorului rază inițială cu.

5. Punct - centrul cercului. Raza cercului este egală. Este necesar să se găsească coordonatele punctului obținute prin rotirea vectorului rază inițială cu.

Întâmpinați probleme în a găsi coordonatele unui punct dintr-un cerc?

Rezolvați aceste cinci exemple (sau înțelegeți bine soluția) și veți învăța cum să le găsiți!

1.

Se vede că. Și știm ce corespunde cu o întoarcere completă a punctului de plecare. Astfel, punctul dorit va fi în aceeași poziție ca atunci când se întoarce spre. Știind acest lucru, găsim coordonatele dorite ale punctului:

2. Cercul este o unitate cu un centru într-un punct, ceea ce înseamnă că putem folosi formule simplificate:

Se vede că. Știm ce corespunde la două rotații complete ale punctului de plecare. Astfel, punctul dorit va fi în aceeași poziție ca atunci când se întoarce spre. Știind acest lucru, găsim coordonatele dorite ale punctului:

Sinusul și cosinusul sunt valori tabelare. Ne amintim valorile lor și obținem:

Astfel, punctul dorit are coordonate.

3. Cercul este o unitate cu un centru într-un punct, ceea ce înseamnă că putem folosi formule simplificate:

Se vede că. Să descriem exemplul considerat în figură:

Raza formează unghiuri cu axa egale cu și. Știind că valorile tabelare ale cosinusului și sinusului sunt egale și după ce am stabilit că cosinusul aici ia o valoare negativă, iar sinusul este pozitiv, avem:

Exemple similare sunt analizate mai detaliat atunci când se studiază formulele de reducere a funcțiilor trigonometrice din subiect.

Astfel, punctul dorit are coordonate.

4.

Unghiul de rotație al vectorului rază (în funcție de condiție)

Pentru a determina semnele corespunzătoare de sinus și cosinus, construim un cerc unitar și un unghi:

După cum puteți vedea, valoarea, adică este pozitivă, iar valoarea, adică este negativă. Cunoscând valorile tabulare ale funcțiilor trigonometrice corespunzătoare, obținem că:

Să substituim valorile obținute în formula noastră și să găsim coordonatele:

Astfel, punctul dorit are coordonate.

5. Pentru a rezolva această problemă, folosim formule în formă generală, unde

Coordonatele centrului cercului (în exemplul nostru,

Raza cercului (după condiție)

Unghiul de rotație al vectorului rază (după condiție).

Înlocuiți toate valorile în formulă și obțineți:

și - valorile tabelului. Le amintim și le înlocuim în formula:

Astfel, punctul dorit are coordonate.

REZUMAT ȘI FORMULA DE BAZĂ

Sinusul unui unghi este raportul dintre catetul opus (depărtat) și ipotenuză.

Cosinusul unui unghi este raportul dintre catetul adiacent (aproape) și ipotenuză.

Tangenta unui unghi este raportul dintre catelul opus (departe) și cel adiacent (închis).

Cotangenta unui unghi este raportul dintre piciorul adiacent (aproape) și cel opus (departe).


În acest articol, vom arunca o privire cuprinzătoare asupra . Principal identități trigonometrice sunt egalități care stabilesc o relație între sinusul, cosinusul, tangenta și cotangenta unui unghi și vă permit să găsiți oricare dintre aceste funcții trigonometrice printr-un altul cunoscut.

Enumerăm imediat principalele identități trigonometrice, pe care le vom analiza în acest articol. Le notăm într-un tabel, iar mai jos dăm derivarea acestor formule și dăm explicațiile necesare.

Navigare în pagină.

Relația dintre sinus și cosinus unui unghi

Uneori vorbesc nu despre principalele identități trigonometrice enumerate în tabelul de mai sus, ci despre una singură identitate trigonometrică de bază drăguț . Explicația pentru acest fapt este destul de simplă: egalitățile sunt obținute din identitatea trigonometrică de bază după împărțirea ambelor părți la și, respectiv, și egalitățile și rezultă din definițiile sinusului, cosinusului, tangentei și cotangentei. Vom discuta acest lucru mai detaliat în paragrafele următoare.

Adică, egalitatea prezintă un interes deosebit, căreia i s-a dat numele identității trigonometrice principale.

Înainte de a demonstra identitatea trigonometrică de bază, dăm formularea acesteia: suma pătratelor sinusului și cosinusului unui unghi este identic egală cu unu. Acum să demonstrăm.

Identitatea trigonometrică de bază este foarte des folosită în transformare expresii trigonometrice . Acesta permite ca suma pătratelor sinusului și cosinusului unui unghi să fie înlocuită cu unul. Nu mai rar, identitatea trigonometrică de bază este utilizată în ordine inversă: unitatea este înlocuită cu suma pătratelor sinusului și cosinusului oricărui unghi.

Tangenta si cotangenta prin sinus si cosinus

Identități care leagă tangenta și cotangenta cu sinusul și cosinusul unui unghi al formei și urmează imediat din definițiile sinusului, cosinusului, tangentei și cotangentei. Într-adevăr, prin definiție, sinusul este ordonata lui y, cosinusul este abscisa lui x, tangenta este raportul dintre ordonata și abscisa, adică , iar cotangenta este raportul dintre abscisă și ordonată, adică .

Datorită acestei evidenţe a identităţilor şi adesea definițiile tangentei și cotangentei sunt date nu prin raportul dintre abscisă și ordonată, ci prin raportul dintre sinus și cosinus. Deci tangenta unui unghi este raportul dintre sinus și cosinusul acestui unghi, iar cotangenta este raportul dintre cosinus și sinus.

Pentru a încheia această secțiune, trebuie remarcat faptul că identitățile și Ține loc pentru toate astfel de unghiuri pentru care funcțiile trigonometrice din ele au sens. Deci formula este valabilă pentru orice altceva decât (în caz contrar, numitorul va fi zero și nu am definit împărțirea cu zero), iar formula - for all , diferit de , unde z este oricare .

Relația dintre tangentă și cotangentă

O identitate trigonometrică și mai evidentă decât cele două anterioare este identitatea care leagă tangentei și cotangentei unui unghi al formei . Este clar că are loc pentru orice alt unghi decât , altfel nici tangenta, fie cotangenta nu sunt definite.

Dovada formulei foarte simplu. Prin definiție și de unde . Dovada ar fi putut fi realizată într-un mod ușor diferit. Din moment ce și , apoi .

Deci, tangenta și cotangenta unui unghi, la care au sens, este.

Una dintre ramurile matematicii cu care școlarii fac față celor mai mari dificultăți este trigonometria. Nu e de mirare: pentru a stăpâni liber această zonă de cunoaștere, aveți nevoie de gândire spațială, abilitatea de a găsi sinusuri, cosinus, tangente, cotangente folosind formule, simplifica expresii și puteți utiliza numărul pi în calcule. În plus, trebuie să fiți capabil să aplicați trigonometria atunci când demonstrați teoreme, iar acest lucru necesită fie o memorie matematică dezvoltată, fie capacitatea de a deduce lanțuri logice complexe.

Originile trigonometriei

Cunoașterea acestei științe ar trebui să înceapă cu definirea sinusului, cosinusului și tangentei unghiului, dar mai întâi trebuie să vă dați seama ce face trigonometria în general.

Din punct de vedere istoric, triunghiurile dreptunghiulare au fost principalul obiect de studiu în această secțiune a științei matematice. Prezența unui unghi de 90 de grade face posibilă efectuarea diferitelor operații care permit determinarea valorilor tuturor parametrilor figurii luate în considerare folosind două laturi și un unghi sau două unghiuri și o latură. În trecut, oamenii au observat acest model și au început să-l folosească în mod activ în construcția de clădiri, navigație, astronomie și chiar artă.

Primul stagiu

Inițial, oamenii au vorbit despre relația dintre unghiuri și laturi exclusiv pe exemplul triunghiurilor dreptunghiulare. Apoi au fost descoperite formule speciale care au făcut posibilă extinderea limitelor de utilizare în viața de zi cu zi a acestei secțiuni de matematică.

Studiul trigonometriei la școală începe astăzi cu triunghiuri dreptunghiulare, după care cunoștințele dobândite sunt folosite de elevii la fizică și rezolvarea de ecuații trigonometrice abstracte, lucru cu care începe în liceu.

Trigonometrie sferică

Mai târziu, când știința a ajuns la următorul nivel de dezvoltare, formulele cu sinus, cosinus, tangentă, cotangentă au început să fie folosite în geometria sferică, unde se aplică alte reguli, iar suma unghiurilor dintr-un triunghi este întotdeauna mai mare de 180 de grade. Această secțiune nu este studiată la școală, dar este necesar să știm despre existența ei, cel puțin pentru că suprafața pământului, iar suprafața oricărei alte planete este convexă, ceea ce înseamnă că orice marcaj al suprafeței va fi „în formă de arc” în spațiul tridimensional.

Luați globul și ata. Atașați firul la oricare două puncte de pe glob, astfel încât să fie întins. Atenție - a căpătat forma unui arc. Cu astfel de forme se ocupă geometria sferică, care este folosită în geodezie, astronomie și alte domenii teoretice și aplicate.

Triunghi dreptunghic

După ce am învățat puțin despre modalitățile de utilizare a trigonometriei, să revenim la trigonometria de bază pentru a înțelege mai bine ce sunt sinus, cosinus, tangentă, ce calcule pot fi efectuate cu ajutorul lor și ce formule să folosiți.

Primul pas este să înțelegem conceptele legate de un triunghi dreptunghic. În primul rând, ipotenuza este latura opusă unghiului de 90 de grade. Ea este cea mai lungă. Ne amintim că, conform teoremei lui Pitagora, valoarea sa numerică este egală cu rădăcina sumei pătratelor celorlalte două laturi.

De exemplu, dacă două laturi au 3 și respectiv 4 centimetri, lungimea ipotenuzei va fi de 5 centimetri. Apropo, egiptenii antici știau despre asta acum aproximativ patru mii și jumătate de ani.

Cele două laturi rămase care formează un unghi drept se numesc picioare. În plus, trebuie să ne amintim că suma unghiurilor dintr-un triunghi dintr-un sistem de coordonate dreptunghiular este de 180 de grade.

Definiție

În cele din urmă, cu o înțelegere solidă a bazei geometrice, ne putem întoarce la definiția sinusului, cosinusului și tangentei unui unghi.

Sinusul unui unghi este raportul dintre catetul opus (adică, latura opusă unghiului dorit) și ipotenuză. Cosinusul unui unghi este raportul dintre catetul adiacent și ipotenuză.

Amintiți-vă că nici sinus, nici cosinus nu pot fi mai mari decât unu! De ce? Deoarece ipotenuza este implicit cea mai lungă. Indiferent cât de lung este catetul, acesta va fi mai scurt decât ipotenuza, ceea ce înseamnă că raportul lor va fi întotdeauna mai mic de unu. Astfel, dacă obțineți un sinus sau cosinus cu o valoare mai mare decât 1 în răspunsul la problemă, căutați o eroare în calcule sau raționament. Acest răspuns este clar greșit.

În cele din urmă, tangenta unui unghi este raportul dintre latura opusă și latura adiacentă. Același rezultat va da împărțirea sinusului la cosinus. Uite: conform formulei, împărțim lungimea laturii la ipotenuză, după care împărțim cu lungimea celei de-a doua laturi și înmulțim cu ipotenuză. Astfel, obținem același raport ca în definiția tangentei.

Cotangenta, respectiv, este raportul dintre latura adiacentă colțului și latura opusă. Același rezultat îl obținem împărțind unitatea la tangentă.

Deci, am luat în considerare definițiile a ceea ce sunt sinus, cosinus, tangentă și cotangentă și ne putem ocupa de formule.

Cele mai simple formule

În trigonometrie, nu se poate face fără formule - cum să găsești sinus, cosinus, tangentă, cotangentă fără ele? Și exact acest lucru este necesar atunci când rezolvați probleme.

Prima formulă pe care trebuie să o știți când începeți să studiați trigonometria spune că suma pătratelor sinusului și cosinusului unui unghi este egală cu unu. Această formulă este o consecință directă a teoremei lui Pitagora, dar economisește timp dacă vrei să cunoști valoarea unghiului, nu a laturii.

Mulți studenți nu-și pot aminti a doua formulă, care este, de asemenea, foarte populară în rezolvare sarcinile școlare: suma lui unu și pătratul tangentei unui unghi este egală cu unu împărțit la pătratul cosinusului unghiului. Aruncă o privire mai atentă: la urma urmei, aceasta este aceeași afirmație ca în prima formulă, doar ambele părți ale identității au fost împărțite la pătratul cosinusului. Se dovedește că o simplă operație matematică face formula trigonometrică complet de nerecunoscut. Amintiți-vă: știind ce este un sinus, cosinus, tangentă și cotangentă, regulile de conversie și câteva formule de bază, puteți oricând să obțineți mai mult necesar. formule complexe pe o bucată de hârtie.

Formule cu unghi dublu și adăugare de argumente

Încă două formule pe care trebuie să le învățați sunt legate de valorile sinusului și cosinusului pentru suma și diferența unghiurilor. Ele sunt prezentate în figura de mai jos. Vă rugăm să rețineți că în primul caz, sinusul și cosinusul sunt înmulțite de ambele ori, iar în al doilea, produsul pe perechi dintre sinus și cosinus se adaugă.

Există și formule asociate cu argumente în formă unghi dublu. Sunt complet derivate din cele anterioare - ca practică, încercați să le obțineți singur luând unghiul alfa egal cu unghiul beta.

În cele din urmă, rețineți că formulele cu unghi dublu pot fi convertite pentru a scădea gradul de sinus, cosinus, tangentă alfa.

Teoreme

Cele două teoreme principale în trigonometrie de bază sunt teorema sinusului și teorema cosinusului. Cu ajutorul acestor teoreme, puteți înțelege cu ușurință cum să găsiți sinusul, cosinusul și tangenta și, prin urmare, aria figurii și dimensiunea fiecărei laturi etc.

Teorema sinusului afirmă că, în urma împărțirii lungimii fiecăreia dintre laturile triunghiului la valoarea unghiului opus, obținem același număr. Mai mult, acest număr va fi egal cu două raze ale cercului circumscris, adică cercul care conține toate punctele triunghiului dat.

Teorema cosinusului generalizează teorema lui Pitagora, proiectând-o pe orice triunghi. Se pare că din suma pătratelor celor două laturi, scădeți produsul lor, înmulțit cu cosinusul dublu al unghiului adiacent acestora - valoarea rezultată va fi egală cu pătratul celei de-a treia laturi. Astfel, teorema lui Pitagora se dovedește a fi un caz special al teoremei cosinusului.

Greșeli din cauza neatenției

Chiar și știind ce sunt sinus, cosinus și tangentă, este ușor să faci o greșeală din cauza distragerii sau a unei erori în cele mai simple calcule. Pentru a evita astfel de greșeli, să facem cunoștință cu cele mai populare dintre ele.

În primul rând, nu ar trebui să convertiți fracțiile obișnuite în zecimale până când nu se obține rezultatul final - puteți lăsa răspunsul sub forma fracție comună cu excepția cazului în care condiția prevede altfel. O astfel de transformare nu poate fi numită greșeală, dar trebuie amintit că în fiecare etapă a sarcinii pot apărea noi rădăcini, care, după ideea autorului, ar trebui reduse. În acest caz, veți pierde timpul cu operații matematice inutile. Acest lucru este valabil mai ales pentru valori precum rădăcina lui trei sau doi, deoarece acestea apar în sarcini la fiecare pas. Același lucru este valabil și pentru rotunjirea numerelor „urâte”.

Mai mult, rețineți că teorema cosinusului se aplică oricărui triunghi, dar nu teorema lui Pitagora! Dacă uitați din greșeală să scădeți de două ori produsul laturilor înmulțit cu cosinusul unghiului dintre ele, nu numai că veți obține un rezultat complet greșit, dar veți demonstra și o neînțelegere completă a subiectului. Acest lucru este mai rău decât o greșeală neglijentă.

În al treilea rând, nu confundați valorile pentru unghiuri de 30 și 60 de grade pentru sinusuri, cosinus, tangente, cotangente. Amintiți-vă aceste valori, deoarece sinusul de 30 de grade este egal cu cosinusul lui 60 și invers. Este ușor să le amesteci, în urma căruia vei obține inevitabil un rezultat eronat.

Aplicație

Mulți studenți nu se grăbesc să înceapă să studieze trigonometria, pentru că nu o înțeleg sens aplicat. Ce este sinusul, cosinusul, tangenta pentru un inginer sau astronom? Acestea sunt concepte datorită cărora puteți calcula distanța până la stelele îndepărtate, puteți prezice căderea unui meteorit, puteți trimite o sondă de cercetare pe o altă planetă. Fără ele, este imposibil să construiești o clădire, să proiectezi o mașină, să calculezi sarcina pe suprafață sau traiectoria unui obiect. Și acestea sunt doar exemplele cele mai evidente! La urma urmei, trigonometria într-o formă sau alta este folosită peste tot, de la muzică la medicină.

In cele din urma

Deci ești sinus, cosinus, tangentă. Le puteți folosi în calcule și rezolva cu succes problemele școlare.

Întreaga esență a trigonometriei se rezumă la faptul că parametrii necunoscuți trebuie să fie calculați din parametrii cunoscuți ai triunghiului. Există șase parametri în total: lungimile a trei laturi și mărimile a trei unghiuri. Întreaga diferență a sarcinilor constă în faptul că sunt date diferite date de intrare.

Cum să găsiți sinusul, cosinusul, tangenta pe baza lungimii cunoscute ale catetelor sau ipotenuzei, acum știți. Deoarece acești termeni nu înseamnă nimic mai mult decât raport, iar raportul este o fracție, scopul principal găsirea rădăcinilor unei ecuații obișnuite sau a unui sistem de ecuații devine o problemă trigonometrică. Și aici vei fi ajutat de matematica școlară obișnuită.

Formulele pentru suma și diferența sinusurilor și cosinusurilor pentru două unghiuri α și β vă permit să treceți de la suma unghiurilor indicate la produsul unghiurilor α + β 2 și α - β 2 . Remarcăm imediat că nu trebuie să confundați formulele pentru suma și diferența sinusurilor și cosinusurilor cu formulele pentru sinusuri și cosinusuri ale sumei și diferenței. Mai jos listăm aceste formule, dăm derivarea lor și arătăm exemple de aplicare pentru probleme specifice.

Yandex.RTB R-A-339285-1

Formule pentru suma și diferența de sinusuri și cosinusuri

Să scriem cum arată formulele de sumă și diferență pentru sinusuri și cosinusuri

Formule de sumă și diferență pentru sinusuri

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Formule de sumă și diferență pentru cosinus

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2, cos α - cos β = 2 sin α + β 2 β - α 2

Aceste formule sunt valabile pentru orice unghiuri α și β. Unghiurile α + β 2 și α - β 2 se numesc, respectiv, semisuma și jumătate diferența unghiurilor alfa și beta. Oferim o formulare pentru fiecare formulă.

Definițiile formulelor de sumă și diferență pentru sinusuri și cosinusuri

Suma sinusurilor a două unghiuri este egal cu dublul produsului dintre sinusul semisumei acestor unghiuri și cosinusul semidiferenței.

Diferența sinusurilor a două unghiuri este egal cu dublul produsului dintre sinusul semidiferenței acestor unghiuri și cosinusul semisumei.

Suma cosinusurilor a două unghiuri este egal cu dublul produsului dintre cosinusul semisumei și cosinusul semidiferenței acestor unghiuri.

Diferența cosinusurilor a două unghiuri este egal cu dublul produsului dintre sinusul semisumei și cosinusul semidiferenței acestor unghiuri, luate cu semn negativ.

Derivarea formulelor pentru suma și diferența sinusurilor și cosinusurilor

Pentru a obține formule pentru suma și diferența sinusului și cosinusului a două unghiuri, se folosesc formule de adunare. Le prezentăm mai jos

sin (α + β) = sin α cos β + cos α sin β sin (α - β) = sin α cos β - cos α sin β cos (α + β) = cos α cos β - sin α sin β cos ( α - β) = cos α cos β + sin α sin β

De asemenea, reprezentăm unghiurile în sine ca sumă a semisumelor și a semidiferențelor.

α \u003d α + β 2 + α - β 2 \u003d α 2 + β 2 + α 2 - β 2 β \u003d α + β 2 - α - β 2 \u003d α 2 + β 2 - α 2 + β 2

Se trece direct la derivarea formulelor de sumă și diferență pentru sin și cos.

Derivarea formulei pentru suma sinusurilor

În suma sin α + sin β, înlocuim α și β cu expresiile pentru aceste unghiuri date mai sus. obține

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Acum aplicăm formula de adunare la prima expresie și formula sinusului diferențelor de unghi la a doua (vezi formulele de mai sus)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Să deschidem parantezele, să adăugăm termeni similari și să obținem formula dorită

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Pașii pentru derivarea restului formulelor sunt similare.

Derivarea formulei pentru diferența de sinuri

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Derivarea formulei pentru suma cosinusurilor

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Derivarea formulei diferenței cosinus

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Exemple de rezolvare a problemelor practice

Pentru început, vom verifica una dintre formule prin înlocuirea unor valori specifice unghiurilor în ea. Fie α = π 2 , β = π 6 . Să calculăm valoarea sumei sinusurilor acestor unghiuri. În primul rând, folosim tabelul valorilor de bază ale funcțiilor trigonometrice, apoi aplicăm formula pentru suma sinusurilor.

Exemplul 1. Verificarea formulei pentru suma sinusurilor a două unghiuri

α \u003d π 2, β \u003d π 6 sin π 2 + sin π 6 \u003d 1 + 1 2 \u003d 3 2 sin π 2 + sin π 6 \u003d 2 sin π 2 + π 6 2 cos π 2 - π 6 2 \u003d 2 sin π 3 cos π 6 \u003d 2 3 2 3 2 \u003d 3 2

Să luăm acum în considerare cazul în care valorile unghiurilor diferă de valorile de bază prezentate în tabel. Fie α = 165°, β = 75°. Să calculăm valoarea diferenței dintre sinusurile acestor unghiuri.

Exemplul 2. Aplicarea formulei diferenței sinusurilor

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 sin 45 ° cos 120 ° = 2 2 2 - 1 2 = 2 2

Folosind formulele pentru suma și diferența sinusurilor și cosinusurilor, puteți trece de la suma sau diferența la produsul funcțiilor trigonometrice. Adesea aceste formule sunt numite formule pentru trecerea de la sumă la produs. Formulele pentru suma și diferența sinusurilor și cosinusurilor sunt utilizate pe scară largă în rezolvarea ecuațiilor trigonometrice și în transformarea expresiilor trigonometrice.

Dacă observați o greșeală în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter


Sunt date rapoartele dintre principalele funcții trigonometrice - sinus, cosinus, tangentă și cotangentă formule trigonometrice. Și din moment ce există destul de multe conexiuni între funcțiile trigonometrice, acest lucru explică și abundența formulelor trigonometrice. Unele formule conectează funcțiile trigonometrice ale aceluiași unghi, altele - funcțiile unui unghi multiplu, altele - vă permit să scădeți gradul, al patrulea - să exprimați toate funcțiile prin tangenta unui jumătate de unghi etc.

În acest articol, vom enumera în ordine toate principalele formule trigonometrice, care sunt suficiente pentru a rezolva marea majoritate a problemelor de trigonometrie. Pentru ușurință de memorare și utilizare, le vom grupa în funcție de scopul lor și le vom introduce în tabele.

Navigare în pagină.

Identități trigonometrice de bază

Identități trigonometrice de bază stabiliți relația dintre sinusul, cosinusul, tangenta și cotangenta unui unghi. Ele decurg din definiția sinusului, cosinusului, tangentei și cotangentei, precum și a conceptului de cerc unitar. Vă permit să exprimați o funcție trigonometrică prin oricare alta.

Pentru o descriere detaliată a acestor formule de trigonometrie, derivarea lor și exemple de aplicare, consultați articolul.

Formule turnate




Formule turnate rezultă din proprietățile sinusului, cosinusului, tangentei și cotangentei, adică reflectă proprietatea de periodicitate a funcțiilor trigonometrice, proprietatea simetriei și, de asemenea, proprietatea deplasării cu un unghi dat. Aceste formule trigonometrice vă permit să treceți de la lucrul cu unghiuri arbitrare la lucrul cu unghiuri cuprinse între zero și 90 de grade.

Rațiunea acestor formule, o regulă mnemonică pentru memorarea lor și exemple de aplicare a lor pot fi studiate în articol.

Formule de adunare

Formule trigonometrice de adunare arată cum funcțiile trigonometrice ale sumei sau diferenței a două unghiuri sunt exprimate în termenii funcțiilor trigonometrice ale acestor unghiuri. Aceste formule servesc drept bază pentru derivarea următoarelor formule trigonometrice.

Formule pentru dublu, triplu etc. unghi



Formule pentru dublu, triplu etc. unghiul (se mai numesc și formule cu unghiuri multiple) arată cum funcțiile trigonometrice dublu, triplu etc. unghiurile () sunt exprimate în termeni de funcții trigonometrice ale unui singur unghi. Derivarea lor se bazează pe formule de adunare.

Informații mai detaliate sunt colectate în formulele articolului pentru dublu, triplu etc. unghi .

Formule cu jumătate de unghi

Formule cu jumătate de unghi arătați cum funcțiile trigonometrice ale unui semiunghi sunt exprimate în termeni de cosinus al unui unghi întreg. Aceste formule trigonometrice decurg din formulele cu unghi dublu.

Concluzia lor și exemple de aplicare pot fi găsite în articol.

Formule de reducere


Formule trigonometrice pentru grade descrescătoare sunt concepute pentru a facilita trecerea de la puterile naturale ale funcțiilor trigonometrice la sinusuri și cosinusuri de gradul întâi, dar unghiuri multiple. Cu alte cuvinte, ele permit reducerea puterilor funcțiilor trigonometrice la prima.

Formule pentru suma și diferența funcțiilor trigonometrice


destinatia principala formule de sumă și diferență pentru funcțiile trigonometrice constă în trecerea la produsul funcțiilor, ceea ce este foarte util la simplificarea expresiilor trigonometrice. Aceste formule sunt, de asemenea, utilizate pe scară largă în rezolvarea ecuațiilor trigonometrice, deoarece permit factorizarea sumei și diferențelor sinusurilor și cosinusurilor.

Formule pentru produsul dintre sinusuri, cosinus și sinus cu cosinus


Trecerea de la produsul funcțiilor trigonometrice la sumă sau diferență se realizează prin formulele pentru produsul dintre sinusuri, cosinus și sinus cu cosinus.

  • Bashmakov M.I. Algebra și începutul analizei: Proc. pentru 10-11 celule. medie şcoală - Ed. a 3-a. - M.: Iluminismul, 1993. - 351 p.: ill. - ISBN 5-09-004617-4.
  • Algebră iar începutul analizei: Proc. pentru 10-11 celule. educatie generala instituții / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn și alții; Ed. A. N. Kolmogorova.- ed. a XIV-a- M.: Iluminismul, 2004.- 384 p.: ill.- ISBN 5-09-013651-3.
  • Gusev V. A., Mordkovich A. G. Matematică (un manual pentru solicitanții la școlile tehnice): Proc. indemnizatie.- M.; Superior scoala, 1984.-351 p., ill.
  • Drepturi de autor de către studenți inteligenți

    Toate drepturile rezervate.
    Protejat de legea dreptului de autor. Nicio parte a site-ului www.site, inclusiv materialele interne și designul extern, nu poate fi reprodusă sub nicio formă sau utilizată fără permisiunea prealabilă scrisă a deținătorului drepturilor de autor.