Формула добутку косінусів різних кутів. Синус, косинус, тангенс: що таке? Як знайти синус, косинус та тангенс

Поняття синуса (), косинуса (), тангенса (), котангенса () нерозривно пов'язані з поняттям кута. Щоб добре розібратися в цих, на перший погляд, складних поняттях (які викликають у багатьох школярів стан жаху), і переконатися, що «не такий страшний чорт, як його малюють», почнемо від початку і розберемося в понятті кута.

Поняття кута: радіан, градус

Давай подивимося малюнку. Вектор "повернувся" щодо точки на певну величину. Так ось мірою цього повороту щодо початкового положення і виступатиме кут.

Що ще необхідно знати про поняття кута? Ну, звичайно ж, одиниці виміру кута!

Кут, як і геометрії, і у тригонометрії, може вимірюватися у градусах і радіанах.

Кутом (один градус) називають центральний кут в колі, що спирається на кругову дугу, рівну частині кола. Таким чином, все коло складається з «шматочків» кругових дуг, або кут, що описується колом, дорівнює.

Тобто малюнку вище зображений кут, рівний, тобто цей кут спирається на кругову дугу розміром довжини кола.

Кутом у радіан називають центральний кут в колі, що спирається на кругову дугу, довжина якої дорівнює радіусу кола. Ну що, розібрався? Якщо ні, то давай розумітися на малюнку.

Отже, малюнку зображений кут, рівний радіану, тобто цей кут спирається на кругову дугу, довжина якої дорівнює радіусу кола (довжина дорівнює довжині або радіус дорівнює довжині дуги). Таким чином, довжина дуги обчислюється за такою формулою:

Де – центральний кут у радіанах.

Ну що, можеш, знаючи це, відповісти, скільки радіан містить кут, який описує коло? Так, для цього треба згадати формулу довжини кола. Ось вона:

Ну ось, тепер співвіднесемо ці дві формули і отримаємо, що кут, що описується коло дорівнює. Тобто, співвіднісши величину у градусах та радіанах, отримуємо, що. Відповідно, . Як можна побачити, на відміну «градусів», слово «радіан» опускається, оскільки одиниця виміру зазвичай зрозуміла з контексту.

А скільки радіан складають? Все вірно!

Вловив? Тоді вперед закріплювати:

Виникли проблеми? Тоді дивись відповіді:

Прямокутний трикутник: синус, косинус, тангенс, котангенс кута

Отже, з поняттям кута розібралися. А що ж таке синус, косинус, тангенс, котангенс кута? Давай розбиратись. Для цього нам допоможе прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, що лежить навпроти прямого кута (у прикладі це сторона); катети - це дві сторони, що залишилися і (ті, що прилягають до прямому куту), причому, якщо розглядати катети щодо кута, то катет – це прилеглий катет, а катет – протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику.

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику.

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику.

Котангенс кута- це відношення прилеглого (близького) катета до протилежного (далекого).

У нашому трикутнику.

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута. За визначенням, з трикутника: , але ми можемо обчислити косинус кута і з трикутника: . Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника, зображеного нижче малюнку, знайдемо.

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута.

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з рівним радіусом. Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, дане коло побудовано в декартовій системікоординат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (у нашому прикладі, це радіус).

Кожній точці кола відповідають два числа: координата по осі та координата по осі. А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник. Він прямокутний, оскільки є перпендикуляром до осі.

Чому дорівнює трикутнику? Все вірно. Крім того, нам відомо, що - це радіус одиничного кола, а значить, . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

А чому дорівнює трикутнику? Ну звичайно, ! Підставимо значення радіуса в цю формулу та отримаємо:

Так, а можеш сказати, які координати має точка, що належить колу? Ну що, аж ніяк? А якщо збагнути, що й – це просто числа? Який координаті відповідає? Ну, звісно, ​​координати! А якій координаті відповідає? Все правильно, координаті! Таким чином, точка.

А чому тоді рівні? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що, а.

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося у цьому прикладі? Давай розбиратись. Для цього знову звернемося до прямокутному трикутнику. Розглянемо прямокутний трикутник: кут (як прилеглий до кута). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

Ну от, як бачиш, значення синуса кута так само відповідає координаті; значення косинуса кута – координаті; а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове становище радіус-вектора - вздовж позитивного спрямування осі. Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оберт радіус-вектора по колу становить або. А чи можна повернути радіус-вектор на чи на? Ну звісно, ​​можна! У першому випадку, таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні.

У другому випадку, тобто радіус-вектор зробить три повні обороти і зупиниться в положенні або.

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на або (де - будь-яке ціле число), відповідають одному положенню радіус-вектора.

Нижче на малюнку зображено кут. Це зображення відповідає куту тощо. Цей список можна продовжити до безкінечності. Всі ці кути можна записати загальною формулою або (де – будь-яке ціле число)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку відповідає точка з координатами, отже:

Не існує;

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам відповідають точки з координатами, відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

Не існує

Не існує

Не існує

Не існує

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

А ось значення тригонометричних функцій кутів і, наведених нижче в таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута (), а також значення тангенсу кута. Знаючи ці значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілочок, тобто:

Знаючи це можна відновити значення. Чисельник « » буде відповідати, а знаменник « » відповідає. Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту?

Ну, звісно, ​​можна! Давай виведемо загальну формулудля знаходження координат точки.

Ось, наприклад, перед нами таке коло:

Нам дано, що точка – центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, одержаної поворотом точки на градусів.

Як очевидно з малюнка, координаті точки відповідає довжина відрізка. Довжина відрізка відповідає координаті центру кола, тобто дорівнює. Довжину відрізка можна виразити, використовуючи визначення косинуса:

Тоді маємо, що для точки координат.

За тією ж логікою знаходимо значення координати для точки. Таким чином,

Отже, у загальному виглядікоординати точок визначаються за формулами:

Координати центру кола,

Радіус кола,

Кут повороту вектор радіуса.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, так як координати центру дорівнюють нулю, а радіус дорівнює одиниці:

Ну що, спробуємо ці формули на смак, повправляючись у знаходженні крапок на колі?

1. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

2. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

3. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

4. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

5. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

Виникли проблеми у знаходженні координот точки на колі?

Розв'яжи ці п'ять прикладів (або добре розберись у рішенні) і ти навчишся їх знаходити!

1.

Можна зауважити, що. Адже ми знаємо, що відповідає повному обороту початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

2. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Ми знаємо, що відповідає двом повним оборотам початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

Синус та косинус – це табличні значення. Згадуємо їх значення та отримуємо:

Таким чином, потрібна точка має координати.

3. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Зобразимо приклад на малюнку:

Радіус утворює з віссю кути, рівні та. Знаючи, що табличні значення косинуса та синуса рівні, і визначивши, що косинус тут набуває негативного значення, а синус позитивне, маємо:

Докладніше такі приклади розбираються щодо формул приведення тригонометричних функцій у темі .

Таким чином, потрібна точка має координати.

4.

Кут повороту радіуса вектора (за умовою)

Для визначення відповідних знаків синуса та косинуса побудуємо одиничне коло та кут:

Як можна побачити, значення, тобто позитивно, а значення, тобто – негативно. Знаючи табличні значення відповідних тригонометричних функцій, отримуємо, що:

Підставимо отримані значення в нашу формулу і знайдемо координати:

Таким чином, потрібна точка має координати.

5. Для вирішення цього завдання скористаємося формулами у загальному вигляді, де

Координати центру кола (у нашому прикладі,

Радіус кола (за умовою,)

Кут повороту векторного радіуса (за умовою,).

Підставимо всі значення у формулу та отримаємо:

та - табличні значення. Згадуємо та підставляємо їх у формулу:

Таким чином, потрібна точка має координати.

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Синус кута - це відношення протилежного (далекого) катета до гіпотенузи.

Косинус кута - це ставлення прилеглого (близького) катета до гіпотенузи.

Тангенс кута - це відношення протилежного (далекого) катета до прилеглого (близького).

Котангенс кута - це відношення прилеглого (близького) катета до протилежного (далекого).


У цій статті ми всебічно розглянемо. Основні тригонометричні тотожностіявляють собою рівності, що встановлюють зв'язок між синусом, косинус, тангенсом і котангенсом одного кута, і дозволяють знаходити будь-яку з цих тригонометричних функцій через відому іншу.

Відразу перерахуємо основні тригонометричні тотожності, які розберемо у цій статті. Запишемо їх у таблицю, а нижче дамо висновок цих формул і наведемо необхідні пояснення.

Навігація на сторінці.

Зв'язок між синусом і косинусом одного кута

Іноді говорять не про основні тригонометричні тотожності, перераховані в таблиці вище, а про одне єдине основному тригонометричному тотожностівиду . Пояснення цьому факту досить просте: рівності виходять з основної тригонометричної тотожності після поділу обох його частин на і відповідно, а рівності і випливають з визначень синуса, косинуса, тангенсу та котангенсу. Докладніше про це поговоримо у наступних пунктах.

Тобто особливий інтерес представляє саме рівність , якій і дали назву основної тригонометричної тотожності.

Перш ніж довести основне тригонометричне тотожність, дамо його формулювання: сума квадратів синуса і косинуса одного кута тотожно дорівнює одиниці. Тепер доведемо його.

Основне тригонометричне тотожність дуже часто використовується при перетворенні тригонометричних виразів . Воно дозволяє суму квадратів синуса та косинуса одного кута замінювати одиницею. Не менш часто основне тригонометричне тотожність використовується і у зворотному порядку: одиниця замінюється сумою квадратів синуса та косинуса будь-якого кута.

Тангенс та котангенс через синус та косинус

Тотожності, що зв'язують тангенс і котангенс з синусом і косінусом одного кута виду і відразу випливають з визначень синуса, косинуса, тангенсу та котангенсу. Справді, за визначенням синус є ордината y, косинус є абсциса x, тангенс є відношення ординати до абсциси, тобто, , а котангенс є ставлення абсциси до ординати, тобто, .

Завдяки такій очевидності тотожностей і часто визначення тангенсу та котангенсу дають не через відношення абсциси та ординати, а через відношення синуса та косинуса. Так тангенсом кута називають ставлення синуса до косинус цього кута, а котангенсом - відношення косинуса до синуса.

На закінчення цього пункту слід зазначити, що тотожність і мають місце всім таких кутів , у яких входять до них тригонометричні функції мають сенс. Так формула справедлива для будь-яких, відмінних від (інакше в знаменнику буде нуль, а розподіл на нуль ми не визначали), а формула - для всіх, відмінних від, де z-будь-яке.

Зв'язок між тангенсом та котангенсом

Ще більш очевидною тригонометричною тотожністю, ніж два попередні, є тотожність, що зв'язує тангенс і котангенс одного кута виду . Зрозуміло, що воно має місце для будь-яких кутів , відмінних від , інакше або тангенс, або котангенс не визначено.

Доказ формули дуже просто. За визначенням та , звідки . Можна було доказ провести і трохи інакше. Так як і , то .

Отже, тангенс та котангенс одного кута, при якому вони мають сенс, є .

Одним із розділів математики, з якими школярі справляються з найбільшими труднощами, є тригонометрія. Не дивно: щоб вільно оволодіти цією областю знань, потрібна наявність просторового мислення, вміння знаходити синуси, косинуси, тангенси, котангенси за формулами, спрощувати висловлювання, вміти застосовувати у обчисленнях число пі. Крім цього, потрібно вміти застосовувати тригонометрію за доказом теорем, а це вимагає або розвиненої математичної пам'яті, або вміння виводити непрості логічні ланцюжки.

Витоки тригонометрії

Знайомство з цією наукою слід розпочати з визначення синуса, косинуса і тангенса кута, проте спочатку необхідно розібратися, чим займається тригонометрія.

Історично основним об'єктом дослідження цього розділу математичної науки були прямокутні трикутники. Наявність кута в 90 градусів дає можливість здійснювати різні операції, що дозволяють по двох сторонах і одному куті або по двох кутах і одній стороні визначати значення всіх параметрів фігури, що розглядається. У минулому люди помітили цю закономірність і стали активно нею користуватися при будівництві будівель, навігації, астрономії і навіть у мистецтві.

Початковий етап

Спочатку люди міркували про взаємини кутів і сторін винятково з прикладу прямокутних трикутників. Потім було відкрито спеціальні формули, дозволили розширити межі вживання у повсякденні даного розділу математики.

Вивчення тригонометрії у школі сьогодні починається з прямокутних трикутників, після чого отримані знання використовуються учнями у фізиці та вирішенні абстрактних тригонометричних рівнянь, робота з якими починається у старших класах.

Сферична тригонометрія

Пізніше, коли наука вийшла на наступний рівень розвитку, формули із синусом, косінусом, тангенсом, котангенсом стали використовуватися у сферичній геометрії, де діють інші правила, а сума кутів у трикутнику завжди більша за 180 градусів. Цей розділ не вивчається у школі, проте знати про його існування необхідно як мінімум тому, що земна поверхня, Та й поверхня будь-якої іншої планети, є опуклою, а значить, будь-яка розмітка поверхні буде в тривимірному просторі «дугоподібною».

Візьміть глобус та нитку. Прикладіть нитку до двох будь-яких точок на глобусі, щоб вона виявилася натягнутою. Зверніть увагу - вона набула форми дуги. З такими формами і має справу сферична геометрія, що застосовується в геодезії, астрономії та інших теоретичних та прикладних сферах.

Прямокутний трикутник

Дещо дізнавшись про способи застосування тригонометрії, повернемося до базової тригонометрії, щоб надалі розібратися, що таке синус, косинус, тангенс, які розрахунки можна з їх допомогою виконувати і які формули при цьому використовувати.

Насамперед необхідно усвідомити поняття, які стосуються прямокутного трикутника. По-перше, гіпотенуза - це сторона, що лежить навпроти кута 90 градусів. Вона є найдовшою. Ми пам'ятаємо, що за теоремою Піфагора її чисельне значення дорівнює кореню із суми квадратів двох інших сторін.

Наприклад, якщо дві сторони дорівнюють 3 і 4 сантиметрам відповідно, довжина гіпотенузи становитиме 5 сантиметрів. До речі, про це знали ще давні єгиптяни близько чотирьох із половиною тисяч років тому.

Дві сторони, що залишилися, які утворюють прямий кут, звуться катетами. Крім того, треба пам'ятати, що сума кутів у трикутнику у прямокутній системі координат дорівнює 180 градусів.

Визначення

Нарешті, твердо розуміючи геометричну основу, можна звернутися до визначення синуса, косинуса та тангенсу кута.

Синусом кута називається відношення протилежного катета (тобто сторони, що знаходиться навпроти потрібного кута) до гіпотенузи. Косинусом кута називається відношення прилеглого катета до гіпотенузи.

Запам'ятайте, що ні синус, ні косинус не може бути більше одиниці! Чому? Тому що гіпотенуза - це за умовчанням найдовша Яким би довгим не був катет, він буде коротшим за гіпотенузу, а значить, їх відношення завжди буде менше одиниці. Таким чином, якщо у вас у відповіді до завдання вийшов синус або косинус зі значенням більшим, ніж 1, шукайте помилку в розрахунках або міркуваннях. Ця відповідь однозначно невірна.

Нарешті, тангенсом кута називається відношення протилежної сторони до прилеглої. Той самий результат дасть поділ синуса на косинус. Подивіться: відповідно до формули ми ділимо довжину сторони на гіпотенузу, після чого ділимо на довжину другої сторони та множимо на гіпотенузу. Таким чином, ми отримуємо те саме співвідношення, що і у визначенні тангенса.

Котангенс, відповідно, є відношенням прилеглої до кута сторони до протилежної. Той самий результат ми отримаємо, розділивши одиницю на тангенс.

Отже, ми розглянули визначення, що таке синус, косинус, тангенс та котангенс, і можемо зайнятися формулами.

Найпростіші формули

У тригонометрії не обійтися без формул – як знайти синус, косинус, тангенс, котангенс без них? Адже саме це потрібно при вирішенні завдань.

Перша формула, яку необхідно знати, починаючи вивчати тригонометрію, свідчить, що сума квадратів синуса і косинуса кута дорівнює одиниці. Ця формула є прямим наслідком теореми Піфагора, проте дозволяє заощадити час, якщо потрібно дізнатися про величину кута, а не сторони.

Багато учнів що неспроможні запам'ятати другу формулу, також дуже популярну під час вирішення шкільних завдань: сума одиниці та квадрата тангенсу кута дорівнює одиниці, поділеній на квадрат косинуса кута. Придивіться: адже це те саме твердження, що й у першій формулі, тільки обидві сторони тотожності були поділені на квадрат косинуса. Виходить, проста математична операція робить тригонометричну формулу абсолютно невпізнанною. Пам'ятайте: знаючи, що таке синус, косинус, тангенс і котангенс, правила перетворення та кілька базових формул ви в будь-який момент зможете самі вивести потрібні більше складні формулина папері.

Формули подвійного кута та складання аргументів

Ще дві формули, які потрібно вивчити, пов'язані зі значеннями синуса та косинуса при сумі та різниці кутів. Вони представлені нижче. Зверніть увагу, що в першому випадку обидва рази перемножується синус та косинус, а в другому складається попарний добуток синуса та косинуса.

Також є формули, пов'язані з аргументами у вигляді подвійного кута. Вони повністю виводяться з попередніх - як тренування спробуйте отримати їх самостійно, прийнявши кут альфа рівним кутубета.

Нарешті, зверніть увагу, що формули подвійного кута можна перетворити так, щоб знизити рівень синуса, косинуса, тангенса альфа.

Теореми

Двома основними теоремами в базовій тригонометрії є теорема синусів та теорема косінусів. За допомогою цих теорем ви легко зможете зрозуміти, як знайти синус, косинус і тангенс, а отже, і площу фігури, і величину кожної сторони тощо.

Теорема синусів стверджує, що в результаті розподілу довжини кожної зі сторін трикутника на величину протилежного кута ми отримаємо однакове число. Більше того, це число дорівнюватиме двом радіусам описаного кола, тобто кола, що містить всі точки даного трикутника.

Теорема косінусів узагальнює теорему Піфагора, проеціруя її будь-які трикутники. Виявляється, із суми квадратів двох сторін відняти їх добуток, помножений на подвійний косинус суміжного їм кута - отримане значення виявиться рівним квадрату третьої сторони. Таким чином, теорема Піфагора виявляється окремим випадком теореми косінусів.

Помилки з неуважності

Навіть знаючи, що таке синус, косинус і тангенс, легко зробити помилку через неуважність або помилки в найпростіших розрахунках. Щоб уникнути таких помилок, ознайомимося з найпопулярнішими з них.

По-перше, не слід перетворювати звичайні дроби на десяткові до отримання остаточного результату - можна й відповідь залишити у вигляді звичайного дробу, якщо умові не обумовлено зворотне. Таке перетворення не можна назвати помилкою, проте слід пам'ятати, що на кожному етапі завдання можуть з'явитися нові корені, які за задумом автора повинні скоротитися. У цьому випадку ви дарма згаєте час на зайві математичні операції. Особливо це актуально для таких значень, як корінь із трьох або з двох, адже вони зустрічаються в завданнях на кожному кроці. Те саме стосується заокруглень «некрасивих» чисел.

Далі, зверніть увагу, що до будь-якого трикутника застосовна теорема косінусів, але не теорема Піфагора! Якщо ви помилково забудете відняти подвійний твір сторін, помножений на косинус кута між ними, ви не тільки отримаєте абсолютно невірний результат, але й продемонструєте повне нерозуміння предмета. Це гірше, ніж помилка через неуважність.

По-третє, не плутайте значення для кутів 30 і 60 градусів для синусів, косінусів, тангенсів, котангенсів. Запам'ятайте ці значення, адже синус 30 градусів дорівнює косінусу 60, і навпаки. Їх легко переплутати, внаслідок чого ви неминуче отримаєте хибний результат.

Застосування

Багато учнів не поспішають приступати до вивчення тригонометрії, оскільки не розуміють її прикладного сенсу. Що таке синус, косинус, тангенс для інженера чи астронома? Це поняття, завдяки яким можна вирахувати відстань до далеких зірок, передбачити падіння метеорита, відправити дослідницький зонд на іншу планету. Без них не можна збудувати будинок, спроектувати автомобіль, розрахувати навантаження на поверхню або траєкторію руху предмета. І це лише очевидні приклади! Адже тригонометрія у тому чи іншому вигляді використовується всюди, починаючи від музики та закінчуючи медициною.

На закінчення

Отже, ви синус, косинус, тангенс. Ви можете використовувати їх у розрахунках та успішно вирішувати шкільні завдання.

Вся суть тригонометрії зводиться до того, що за відомими параметрами трикутника потрібно вирахувати невідомі. Усього цих параметрів шість: довжини трьох сторін та величини трьох кутів. Вся різниця в завданнях полягає в тому, що даються різні вхідні дані.

Як знайти синус, косинус, тангенс, виходячи з відомих довжин катетів або гіпотенузи, ви тепер знаєте. Оскільки ці терміни позначають не що інше, як відношення, а відношення - це дріб, головною метоюТригонометричної задачі стає знаходження коренів нормального рівняння або ж системи рівнянь. І тут вам допоможе звична шкільна математика.

Формули суми та різниці синусів і косінусів для двох кутів α і β дозволяють перейти від суми зазначених кутів до твору кутів α + β 2 і α - β 2 . Відразу зазначимо, що не варто плутати формули суми та різниці синусів та косінусів з формулами синусів та косинусів суми та різниці. Нижче ми перерахуємо ці формули, наведемо їх висновок та покажемо приклади застосування для конкретних завдань.

Yandex.RTB R-A-339285-1

Формули суми та різниці синусів та косинусів

Запишемо, як виглядають формули суми та різниці для синусів та для косинусів

Формули суми та різниці для синусів

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2

Формули суми та різниці для косінусів

cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 cos α - β 2 , cos α - cos β = 2 sin α + β 2 · β - α 2

Дані формули справедливі для будь-яких кутів α та β. Кути α + β 2 і α - β 2 називаються відповідно напівсумою та напіврізністю кутів альфа та бета. Дамо формулювання для кожної формули.

Визначення формул сум і різниці синусів та косинусів

Сума синусів двох кутівдорівнює подвоєному добутку синуса напівсуми цих кутів на косинус напіврізниці.

Різниця синусів двох кутівдорівнює подвоєному добутку синуса напіврізниці цих кутів на косинус напівсуми.

Сума косінусів двох кутівдорівнює подвоєному добутку косинуса напівсуми та косинуса напіврізниці цих кутів.

Різниця косінусів двох кутівдорівнює подвоєному добутку синуса напівсуми на косинус напіврізниці цих кутів, взятому з негативним знаком.

Висновок формул суми та різниці синусів та косинусів

Для виведення формул суми та різниці синуса та косинуса двох кутів використовуються формули складання. Наведемо їх нижче

sin (α + β) = sin α · cos β + cos α · sin β sin (α - β) = sin α · cos β - cos α · sin β cos (α + β) = cos α · cos β - sin α · sin β cos (α - β) = cos α · cos β + sin α · sin β

Також представимо самі кути у вигляді суми напівсум та напіврізниць.

α = α + β 2 + α - β 2 = α 2 + β 2 + α 2 - β 2 β = α + β 2 - α - β 2 = α 2 + β 2 - α 2 + β 2

Переходимо безпосередньо до висновку формул суми та різниці для sin та cos.

Висновок формули суми синусів

У сумі sin α + sin β замінимо α та β на вирази для цих кутів, наведені вище. Отримаємо

sin α + sin β = sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2

Тепер до першого виразу застосовуємо формулу додавання, а до другого - формулу синуса різниць кутів (див. формули вище)

sin α + β 2 + α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 sin α + β 2 + α - β 2 + sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 Розкриємо дужки, наведемо подібні доданки і отримаємо шукану формулу

sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 + sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α + β 2 cos α - β 2

Дії щодо висновку інших формул аналогічні.

Висновок формули різниці синусів

sin α - sin β = sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 sin α + β 2 + α - β 2 - sin α + β 2 - α - β 2 = sin α + β 2 cos α - β 2 + cos α + β 2 sin α - β 2 - sin α + β 2 cos α - β 2 - cos α + β 2 sin α - β 2 = = 2 sin α - β 2 cos α + β 2

Висновок формули суми косинусів

cos α + cos β = cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 + cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 + cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = 2 cos α + β 2 cos α - β 2

Висновок формули різниці косінусів

cos α - cos β = cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 cos α + β 2 + α - β 2 - cos α + β 2 - α - β 2 = cos α + β 2 cos α - β 2 - sin α + β 2 sin α - β 2 - cos α + β 2 cos α - β 2 + sin α + β 2 sin α - β 2 = = - 2 sin α + β 2 sin α - β 2

Приклади вирішення практичних завдань

Для початку зробимо перевірку однієї з формул, підставивши в неї конкретні значення кутів. Нехай α = π 2 , β = π 6 . Обчислимо значення суми синусів цих кутів. Спочатку скористаємось таблицею основних значень тригонометричних функцій, а потім застосуємо формулу для суми синусів.

Приклад 1. Перевірка формули суми синусів двох кутів

α = π 2 , β = π 6 sin π 2 + sin π 6 = 1 + 1 2 = 3 2 sin π 2 + sin π 6 = 2 sin π 2 + π 6 2 cos π 2 - π 6 2 = 2 sin π 3 cos π 6 = 2 · 3 2 · 3 2 = 3 2

Розглянемо тепер випадок, коли значення кутів від основних значень, представлених у таблиці. Нехай ? = 165 °, ? = 75 °. Обчислимо значення різниці синусів цих кутів.

Приклад 2. Застосування формули різниці синусів

α = 165 ° , β = 75 ° sin α - sin β = sin 165 ° - sin 75 ° sin 165 - sin 75 = 2 · sin 165 ° - sin 75 ° 2 cos 165 ° + sin 75 ° 2 = = 2 · sin 45 ° · cos 120 ° = 2 · 2 2 · - 1 2 = 2 2

За допомогою формул суми та різниці синусів і косінусів можна перейти від суми або різниці до твору тригонометричних функцій. Часто ці формули називають формулами переходу від суми до твору. Формули суми та різниці синусів і косінусів широко використовуються при вирішенні тригонометричних рівнянь і при перетворенні тригонометричних виразів.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter


Співвідношення між основними тригонометричними функціями – синусом, косінусом, тангенсом та котангенсом – задаються тригонометричними формулами. Оскільки зв'язків між тригонометричними функціями досить багато, цим пояснюється і розмаїття тригонометричних формул. Одні формули пов'язують тригонометричні функції однакового кута, інші функції кратного кута, треті дозволяють знизити ступінь, четверті виразити всі функції через тангенс половинного кута, і т.д.

У цій статті ми по порядку перерахуємо всі основні тригонометричні формули, Яких достатньо для вирішення переважної більшості задач тригонометрії. Для зручності запам'ятовування та використання групуватимемо їх за призначенням і заноситимемо в таблиці.

Навігація на сторінці.

Основні тригонометричні тотожності

Основні тригонометричні тотожностізадають зв'язок між синусом, косинусом, тангенсом та котангенсом одного кута. Вони випливають із визначення синуса, косинуса, тангенсу та котангенсу, а також поняття одиничного кола. Вони дозволяють виразити одну тригонометричну функцію через будь-яку іншу.

Детальний опис цих формул тригонометрії, їх висновок та приклади застосування дивіться у статті .

Формули наведення




Формули наведеннявипливають із властивостей синуса, косинуса, тангенсу і котангенсу, тобто, вони відображають властивість періодичності тригонометричних функцій, властивість симетричності, а також властивість зсуву на даний кут. Ці тригонометричні формули дозволяють від роботи з довільними кутами переходити до роботи з кутами в межах від нуля до 90 градусів.

Обгрунтування цих формул, мнемонічне правило їх запам'ятовування і приклади їх застосування можна вивчити у статті .

Формули додавання

Тригонометричні формули складанняпоказують, як тригонометричні функції суми чи різниці двох кутів виражаються через тригонометричні функції цих кутів. Ці формули є базою для виведення наступних нижче тригонометричних формул.

Формули подвійного, потрійного тощо. кута



Формули подвійного, потрійного тощо. кута (їх ще називають формулами кратного кута) показують, як тригонометричні функції подвійних, потрійних і т.д. кутів () виражаються через тригонометричні функції одинарного кута. Їх висновок виходить з формулах складання.

Більш детальна інформація зібрана у статті формули подвійного, потрійного тощо. кута.

Формули половинного кута

Формули половинного кутапоказують, як тригонометричні функції половинного кута виражаються через косинус цілого кута. Ці тригонометричні формули випливають із формул подвійного кута.

Їх висновок та приклади застосування можна переглянути у статті.

Формули зниження ступеня


Тригонометричні формули зниження ступеняпокликані сприяти переходу від натуральних ступенів тригонометричних функцій до синусів і косинусів у першому ступені, але кратних кутів. Іншими словами, вони дозволяють знижувати ступеня тригонометричних функцій до першої.

Формули суми та різниці тригонометричних функцій


Основне призначення формул суми та різниці тригонометричних функційполягає у переході до твору функцій, що дуже корисно при спрощенні тригонометричних виразів. Зазначені формули також широко використовуються при вирішенні тригонометричних рівнянь, оскільки дозволяють розкладати на множники суму та різницю синусів і косінусів.

Формули твору синусів, косінусів та синуса на косинус


Перехід від твору тригонометричних функцій до суми чи різниці здійснюється за допомогою формул твору синусів, косінусів та синусу на косинус.

  • Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  • Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  • Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників до технікумів): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.
  • Copyright by cleverstudents

    Всі права захищені.
    Охороняється законом про авторське право. Жодну частину сайту, включаючи внутрішні матеріали та зовнішнє оформлення, не можна відтворювати в будь-якій формі або використовувати без попереднього письмового дозволу правовласника.