Calcul de logaritmi, exemple, soluții. Proprietățile logaritmilor și exemple de soluții ale acestora. Ghid cuprinzător (2020) Adăugarea și scăderea logaritmilor

    Sa incepem cu proprietățile logaritmului unității. Formularea sa este următoarea: logaritmul unității este egal cu zero, adică log a 1=0 pentru orice a>0, a≠1. Demonstrarea este simplă: deoarece a 0 =1 pentru orice a care îndeplinește condițiile de mai sus a>0 și a≠1 , atunci egalitatea dovedită log a 1=0 urmează imediat din definiția logaritmului.

    Să dăm exemple de aplicare a proprietății considerate: log 3 1=0 , lg1=0 și .

    Să trecem la următoarea proprietate: logaritmul unui număr egal cu baza este egal cu unu, acesta este, log a a=1 pentru a>0, a≠1. Într-adevăr, deoarece a 1 =a pentru orice a , atunci prin definiția logaritmului log a a=1 .

    Exemple de utilizare a acestei proprietăți a logaritmilor sunt log 5 5=1 , log 5.6 5.6 și lne=1 .

    De exemplu, log 2 2 7 =7 , log10 -4 =-4 și .

    Logaritmul produsului a două numere pozitive x și y este egal cu produsul logaritmii acestor numere: log a (x y)=log a x+log a y, a>0, a≠1. Să demonstrăm proprietatea logaritmului produsului. Datorită proprietăților gradului a log a x+log a y =a log a x a log a y, și deoarece prin identitatea logaritmică principală un log a x =x și un log a y =y , atunci un log a x a log a y =x y . Astfel, un log a x+log a y =x y , de unde egalitatea cerută urmează prin definiția logaritmului.

    Să arătăm exemple de utilizare a proprietății logaritmului produsului: log 5 (2 3)=log 5 2+log 5 3 și .

    Proprietatea logaritmului produsului poate fi generalizată la produsul unui număr finit n de numere pozitive x 1 , x 2 , …, x n ca log a (x 1 x 2 ... x n)= log a x 1 + log a x 2 +…+ log a x n . Această egalitate este ușor de demonstrat.

    De exemplu, logaritmul natural al unui produs poate fi înlocuit cu suma a trei logaritmi naturali ai numerelor 4 , e , și .

    Logaritmul câtului a două numere pozitive x și y este egal cu diferența dintre logaritmii acestor numere. Proprietatea logaritmului coeficientului corespunde unei formule de forma , unde a>0 , a≠1 , x și y sunt niște numere pozitive. Valabilitatea acestei formule este dovedită ca formula pentru logaritmul produsului: din moment ce , apoi prin definiția logaritmului .

    Iată un exemplu de utilizare a acestei proprietăți a logaritmului: .

    Să trecem la proprietatea logaritmului gradului. Logaritmul unui grad este egal cu produsul exponentului și logaritmul modulului bazei acestui grad. Scriem această proprietate a logaritmului gradului sub forma unei formule: log a b p =p log a |b|, unde a>0 , a≠1 , b și p sunt numere astfel încât gradul lui b p are sens și b p >0 .

    Mai întâi demonstrăm această proprietate pentru pozitiv b . Identitatea logaritmică de bază ne permite să reprezentăm numărul b ca un log a b , apoi b p =(a log a b) p , iar expresia rezultată, datorită proprietății puterii, este egală cu a p log a b . Ajungem deci la egalitatea b p =a p log a b , din care, prin definiția logaritmului, concluzionăm că log a b p =p log a b .

    Rămâne de demonstrat această proprietate pentru negativul b . Aici observăm că expresia log a b p pentru negativ b are sens numai pentru exponenții pari p (deoarece valoarea gradului b p trebuie să fie mai mare decât zero, altfel logaritmul nu va avea sens), iar în acest caz b p =|b| p . Apoi b p =|b| p =(a log a |b|) p =a p log a |b|, de unde log a b p =p log a |b| .

    De exemplu, și ln(-3) 4 =4 ln|-3|=4 ln3 .

    Rezultă din proprietatea anterioară proprietatea logaritmului de la rădăcină: logaritmul rădăcinii de gradul al n-lea este egal cu produsul fracției 1/n și logaritmul expresiei rădăcinii, adică , unde a>0 , a≠1 , n – numar natural, mai mare de unu, b>0 .

    Dovada se bazează pe egalitatea (vezi ), care este valabilă pentru orice b pozitiv și pe proprietatea logaritmului gradului: .

    Iată un exemplu de utilizare a acestei proprietăți: .

    Acum să demonstrăm formula de conversie la noua bază a logaritmului drăguț . Pentru a face acest lucru, este suficient să demonstrăm validitatea egalității log c b=log a b log c a . Identitatea logaritmică de bază ne permite să reprezentăm numărul b ca log a b , apoi log c b=log c a log a b . Rămâne să folosim proprietatea logaritmului gradului: log c a log a b = log a b log c a. Astfel, se dovedește egalitatea log c b=log a b log c a, ceea ce înseamnă că se dovedește și formula pentru trecerea la o nouă bază a logaritmului.

    Să arătăm câteva exemple de aplicare a acestei proprietăți a logaritmilor: și .

    Formula pentru trecerea la o nouă bază vă permite să treceți la lucrul cu logaritmi care au o bază „convenabilă”. De exemplu, poate fi folosit pentru a merge la logaritmi naturali sau zecimali, astfel încât să puteți calcula valoarea logaritmului din tabelul de logaritmi. Formula pentru trecerea la o nouă bază a logaritmului permite, în unele cazuri, să se găsească valoarea unui logaritm dat, atunci când se cunosc valorile unor logaritmi cu alte baze.

    Deseori folosit este un caz special al formulei pentru trecerea la o nouă bază a logaritmului pentru c=b de forma . Aceasta arată că log a b și log b a – . De exemplu, .

    De asemenea, este des folosită formula , care este util pentru găsirea valorilor logaritmice. Pentru a ne confirma cuvintele, vom arăta cum se calculează valoarea logaritmului formei folosindu-l. Avem . Pentru a demonstra formula este suficient să folosiți formula de tranziție la noua bază a logaritmului a: .

    Rămâne de demonstrat proprietățile de comparație ale logaritmilor.

    Să demonstrăm că pentru orice numere pozitive b 1 și b 2 , b 1 log a b 2 , iar pentru a>1, inegalitatea log a b 1

    În cele din urmă, rămâne de demonstrat ultima dintre proprietățile enumerate ale logaritmilor. Ne limităm la demonstrarea primei sale părți, adică demonstrăm că dacă a 1 >1 , a 2 >1 și a 1 1 este adevărat log a 1 b>log a 2 b . Enunțurile rămase ale acestei proprietăți a logaritmilor sunt dovedite printr-un principiu similar.

    Să folosim metoda opusă. Să presupunem că pentru a 1 >1 , a 2 >1 și a 1 1 log a 1 b≤log a 2 b este adevărat. Prin proprietățile logaritmilor, aceste inegalități pot fi rescrise ca și respectiv, iar din ele rezultă că log b a 1 ≤log b a 2 și, respectiv, log b a 1 ≥log b a 2. Atunci, prin proprietățile puterilor cu aceleași baze, trebuie îndeplinite egalitățile b log b a 1 ≥b log b a 2 și b log b a 1 ≥b log b a 2, adică a 1 ≥a 2 . Astfel, am ajuns la o contradicție cu condiția a 1

Bibliografie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi alţii.Algebra şi începuturile analizei: un manual pentru clasele 10-11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru solicitanții la școlile tehnice).

proprietăți de bază.

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

aceleași temeiuri

log6 4 + log6 9.

Acum să complicăm puțin sarcina.

Exemple de rezolvare a logaritmilor

Ce se întâmplă dacă există un grad în baza sau argumentul logaritmului? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: a > 0, a ≠ 1, x >

O sarcină. Aflați valoarea expresiei:

Trecerea la o nouă fundație

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

O sarcină. Aflați valoarea expresiei:

Vezi si:


Proprietățile de bază ale logaritmului

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este 2,7 și de două ori anul nașterii lui Lev Tolstoi.

Proprietățile de bază ale logaritmilor

Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.

Exemple de logaritmi

Luați logaritmul expresiilor

Exemplul 1
A). x=10ac^2 (a>0, c>0).

După proprietățile 3,5 calculăm

2.

3.



Exemplul 2 Găsiți x dacă


Exemplul 3. Să fie dată valoarea logaritmilor

Calculați log(x) dacă




Proprietățile de bază ale logaritmilor

Logaritmii, ca orice număr, pot fi adunați, scăzuți și convertiți în toate modurile posibile. Dar, deoarece logaritmii nu sunt numere obișnuite, aici există reguli care sunt numite proprietăți de bază.

Aceste reguli trebuie cunoscute - nicio problemă logaritmică serioasă nu poate fi rezolvată fără ele. În plus, sunt foarte puține dintre ele - totul poate fi învățat într-o singură zi. Deci sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceeași bază: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este - aceleași temeiuri. Dacă bazele sunt diferite, aceste reguli nu funcționează!

Aceste formule vor ajuta la calcularea expresiei logaritmice chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Deoarece bazele logaritmilor sunt aceleași, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

O sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

O sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou, bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt considerați separat. Dar după transformări apar numere destul de normale. Multe teste se bazează pe acest fapt. Da, control - expresii similare cu toată seriozitatea (uneori - practic fără modificări) sunt oferite la examen.

Eliminarea exponentului din logaritm

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers, adică. puteți introduce numerele dinaintea semnului logaritmului în logaritmul însuși. Acesta este ceea ce se cere cel mai adesea.

O sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument conform primei formule:
log7 496 = 6 log7 49 = 6 2 = 12

O sarcină. Aflați valoarea expresiei:

Rețineți că numitorul este un logaritm a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu trebuie clarificat. Unde s-au dus logaritmii? Până în ultimul moment, lucrăm doar cu numitorul.

Formule de logaritmi. Logaritmii sunt exemple de soluții.

Au prezentat baza și argumentul logaritmului care stă acolo sub formă de grade și au scos indicatorii - au obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul au același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor de aritmetică, cele patru pot fi transferate la numărător, ceea ce a fost făcut. Rezultatul este răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă bazele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă bază vin în ajutor. Le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă punem c = x, obținem:

Din a doua formulă rezultă că este posibil să se schimbe baza și argumentul logaritmului, dar în acest caz întreaga expresie este „întoarsă”, i.e. logaritmul este la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există sarcini care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să luăm în considerare câteva dintre acestea:

O sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi sunt exponenți exacti. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să inversăm al doilea logaritm:

Deoarece produsul nu se schimbă din permutarea factorilor, am înmulțit cu calm patru și doi, apoi am dat seama de logaritmi.

O sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să-l notăm și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, formulele ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, pentru că este doar valoarea logaritmului.

A doua formulă este de fapt o definiție parafrazată. Se numeste asa:

Într-adevăr, ce se va întâmpla dacă numărul b este ridicat în așa măsură încât numărul b în acest grad să dea numărul a? Așa este: acesta este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni „atârnă” de el.

La fel ca noile formule de conversie de bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

O sarcină. Aflați valoarea expresiei:

Rețineți că log25 64 = log5 8 - tocmai a scos pătratul de la bază și argumentul logaritmului. Având în vedere regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală din cadrul examenului unificat de stat 🙂

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care sunt greu de numit proprietăți - mai degrabă, acestea sunt consecințe din definiția logaritmului. Se găsesc constant în probleme și, în mod surprinzător, creează probleme chiar și elevilor „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a din acea bază în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul este unul, logaritmul este zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați cheat sheet la începutul lecției, imprimați-o și rezolvați problemele.

Vezi si:

Logaritmul numărului b la baza a denotă expresia. A calcula logaritmul înseamnă a găsi o astfel de putere x () la care egalitatea este adevărată

Proprietățile de bază ale logaritmului

Proprietățile de mai sus trebuie cunoscute, deoarece, pe baza lor, aproape toate problemele și exemplele sunt rezolvate pe baza logaritmilor. Proprietățile exotice rămase pot fi derivate prin manipulări matematice cu aceste formule

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

La calcularea formulelor pentru suma și diferența logaritmilor (3.4) sunt întâlnite destul de des. Restul sunt oarecum complexe, dar într-o serie de sarcini sunt indispensabile pentru simplificarea expresiilor complexe și calcularea valorilor acestora.

Cazuri comune de logaritmi

Unii dintre logaritmii obișnuiți sunt cei în care baza este chiar zece, exponențială sau două.
Logaritmul de bază zece este de obicei numit logaritm de bază zece și se notează simplu lg(x).

Din înregistrare se poate observa că elementele de bază nu sunt scrise în înregistrare. De exemplu

Logaritmul natural este logaritmul a cărui bază este exponentul (notat ln(x)).

Exponentul este 2,718281828... Pentru a vă aminti exponentul, puteți studia regula: exponentul este 2,7 și de două ori anul nașterii lui Lev Tolstoi. Cunoscând această regulă, veți ști atât valoarea exactă a exponentului, cât și data nașterii lui Lev Tolstoi.

Și un alt logaritm important de bază doi este

Derivata logaritmului funcției este egală cu una împărțită la variabilă

Logaritmul integral sau antiderivat este determinat de dependență

Materialul de mai sus este suficient pentru a rezolva o clasă largă de probleme legate de logaritmi și logaritmi. Pentru a asimila materialul, voi da doar câteva exemple comune din programa școlară și universități.

Exemple de logaritmi

Luați logaritmul expresiilor

Exemplul 1
A). x=10ac^2 (a>0, c>0).

După proprietățile 3,5 calculăm

2.
Prin proprietatea de diferență a logaritmilor, avem

3.
Folosind proprietățile 3.5 găsim

O expresie aparent complexă folosind o serie de reguli este simplificată la forma

Găsirea valorilor logaritmului

Exemplul 2 Găsiți x dacă

Soluţie. Pentru calcul, aplicăm proprietățile 5 și 13 până la ultimul termen

Înlocuiește în evidență și plânge

Deoarece bazele sunt egale, echivalăm expresiile

Logaritmi. Primul nivel.

Să fie dată valoarea logaritmilor

Calculați log(x) dacă

Soluție: Luați logaritmul variabilei pentru a scrie logaritmul prin suma termenilor


Acesta este doar începutul cunoașterii logaritmilor și proprietăților lor. Exersați calculele, îmbogățiți-vă abilitățile practice - veți avea nevoie în curând de cunoștințele dobândite pentru a rezolva ecuații logaritmice. După ce am studiat metodele de bază pentru rezolvarea unor astfel de ecuații, vă vom extinde cunoștințele pentru un alt subiect la fel de important - inegalitățile logaritmice ...

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice număr, pot fi adunați, scăzuți și convertiți în toate modurile posibile. Dar, deoarece logaritmii nu sunt numere obișnuite, aici există reguli care sunt numite proprietăți de bază.

Aceste reguli trebuie cunoscute - nicio problemă logaritmică serioasă nu poate fi rezolvată fără ele. În plus, sunt foarte puține dintre ele - totul poate fi învățat într-o singură zi. Deci sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceeași bază: logax și logay. Apoi pot fi adăugate și scăzute și:

  1. logax + logay = log(x y);
  2. logax − logay = log(x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este - aceleași temeiuri. Dacă bazele sunt diferite, aceste reguli nu funcționează!

Aceste formule vor ajuta la calcularea expresiei logaritmice chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

O sarcină. Aflați valoarea expresiei: log6 4 + log6 9.

Deoarece bazele logaritmilor sunt aceleași, folosim formula sumei:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

O sarcină. Aflați valoarea expresiei: log2 48 − log2 3.

Bazele sunt aceleași, folosim formula diferenței:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

O sarcină. Aflați valoarea expresiei: log3 135 − log3 5.

Din nou, bazele sunt aceleași, deci avem:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt considerați separat. Dar după transformări apar numere destul de normale. Multe teste se bazează pe acest fapt. Da, control - expresii similare cu toată seriozitatea (uneori - practic fără modificări) sunt oferite la examen.

Eliminarea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă există un grad în baza sau argumentul logaritmului? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă logaritmul ODZ: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers, adică. puteți introduce numerele dinaintea semnului logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

O sarcină. Aflați valoarea expresiei: log7 496.

Să scăpăm de gradul din argument conform primei formule:
log7 496 = 6 log7 49 = 6 2 = 12

O sarcină. Aflați valoarea expresiei:

Rețineți că numitorul este un logaritm a cărui bază și argument sunt puteri exacte: 16 = 24; 49 = 72. Avem:

Cred că ultimul exemplu trebuie clarificat. Unde s-au dus logaritmii? Până în ultimul moment, lucrăm doar cu numitorul. Ei au prezentat baza și argumentul logaritmului aflat acolo sub formă de grade și au scos indicatorii - au obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul au același număr: log2 7. Deoarece log2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne în numitor. Conform regulilor de aritmetică, cele patru pot fi transferate la numărător, ceea ce a fost făcut. Rezultatul este răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă bazele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă bază vin în ajutor. Le formulăm sub forma unei teoreme:

Să fie dat logaritmul logax. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă punem c = x, obținem:

Din a doua formulă rezultă că este posibil să se schimbe baza și argumentul logaritmului, dar în acest caz întreaga expresie este „întoarsă”, i.e. logaritmul este la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există sarcini care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să luăm în considerare câteva dintre acestea:

O sarcină. Aflați valoarea expresiei: log5 16 log2 25.

Rețineți că argumentele ambilor logaritmi sunt exponenți exacti. Să scoatem indicatorii: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Acum să inversăm al doilea logaritm:

Deoarece produsul nu se schimbă din permutarea factorilor, am înmulțit cu calm patru și doi, apoi am dat seama de logaritmi.

O sarcină. Aflați valoarea expresiei: log9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să-l notăm și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată. În acest caz, formulele ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, pentru că este doar valoarea logaritmului.

A doua formulă este de fapt o definiție parafrazată. Se numeste asa:

Într-adevăr, ce se va întâmpla dacă numărul b este ridicat în așa măsură încât numărul b în acest grad să dea numărul a? Așa este: acesta este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni „atârnă” de el.

La fel ca noile formule de conversie de bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

O sarcină. Aflați valoarea expresiei:

Rețineți că log25 64 = log5 8 - tocmai a scos pătratul de la bază și argumentul logaritmului. Având în vedere regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală din cadrul examenului unificat de stat 🙂

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care sunt greu de numit proprietăți - mai degrabă, acestea sunt consecințe din definiția logaritmului. Se găsesc constant în probleme și, în mod surprinzător, creează probleme chiar și elevilor „avansați”.

  1. logaa = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a din acea bază în sine este egal cu unu.
  2. loga 1 = 0 este. Baza a poate fi orice, dar dacă argumentul este unul, logaritmul este zero! Deoarece a0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați cheat sheet la începutul lecției, imprimați-o și rezolvați problemele.

derivată din definiția sa. Și astfel logaritmul numărului b prin rațiune A definit ca exponentul la care trebuie ridicat un număr A pentru a obține numărul b(logaritmul există doar pentru numere pozitive).

Din această formulare rezultă că calculul x=log a b, este echivalent cu rezolvarea ecuației ax=b. De exemplu, log 2 8 = 3 deoarece 8 = 2 3 . Formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b prin rațiune A egală Cu. De asemenea, este clar că subiectul logaritmului este strâns legat de subiectul puterii unui număr.

Cu logaritmi, ca și în cazul oricăror numere, puteți performa operații de adunare, scădereși se transformă în toate modurile posibile. Dar având în vedere faptul că logaritmii nu sunt numere obișnuite, aici se aplică propriile reguli speciale, care sunt numite proprietăți de bază.

Adunarea și scăderea logaritmilor.

Luați doi logaritmi cu aceeași bază: log xși log a y. Apoi eliminați este posibil să efectuați operații de adunare și scădere:

log a x+ log a y= log a (x y);

log a x - log a y = log a (x:y).

log a(X 1 . X 2 . X 3 ... x k) = log x 1 + log x 2 + log x 3 + ... + log a x k.

Din teoreme ale logaritmului coeficientului mai poate fi obținută o proprietate a logaritmului. Este bine cunoscut acel jurnal A 1= 0, prin urmare,

Buturuga A 1 /b= jurnal A 1 - jurnal a b= -log a b.

Deci există o egalitate:

log a 1 / b = - log a b.

Logaritmi a două numere reciproc reciproce pe aceeași bază vor diferi unele de altele doar prin semn. Asa de:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

Interval acceptabil (ODZ) al logaritmului

Acum să vorbim despre restricții (ODZ - zona valorilor admisibile ale variabilelor).

Ne amintim că, de exemplu, rădăcina pătrată nu poate fi luată din numere negative; sau dacă avem o fracție, atunci numitorul nu poate fi egal cu zero. Există restricții similare pentru logaritmi:

Adică, atât argumentul, cât și baza trebuie să fie mai mari decât zero, iar baza nu poate fi egală.

De ce este asta?

Să începem simplu: să spunem asta. Atunci, de exemplu, numărul nu există, deoarece indiferent de gradul pe care îl ridicăm, se dovedește întotdeauna. Mai mult, nu există pentru niciuna. Dar, în același timp, poate fi egal cu orice (din același motiv - este egal cu orice grad). Prin urmare, obiectul nu prezintă interes și a fost pur și simplu aruncat din matematică.

Avem o problemă similară în cazul: în orice grad pozitiv - aceasta, dar nu poate fi ridicată deloc la o putere negativă, deoarece va rezulta împărțirea la zero (vă reamintesc că).

Când ne confruntăm cu problema ridicării înăuntru grad fracționar(care este reprezentată ca rădăcină: . De exemplu, (adică), dar nu există.

Prin urmare, motivele negative sunt mai ușor de aruncat decât de a le pune în joc.

Ei bine, deoarece baza a este doar pozitivă pentru noi, atunci indiferent de gradul în care o ridicăm, vom obține întotdeauna un număr strict pozitiv. Deci argumentul trebuie să fie pozitiv. De exemplu, nu există, deoarece în niciun caz nu va exista număr negativ(si chiar zero, deci nici nu exista).

În problemele cu logaritmii, primul pas este să scrieți ODZ. Voi da un exemplu:

Să rezolvăm ecuația.

Reamintim definiția: logaritmul este puterea la care trebuie ridicată baza pentru a obține un argument. Și după condiție, acest grad este egal cu: .

Primim cele obișnuite ecuație pătratică: . O rezolvăm folosind teorema Vieta: suma rădăcinilor este egală, iar produsul. Ușor de ridicat, acestea sunt numere și.

Dar dacă iei și notezi imediat ambele numere în răspuns, poți obține 0 puncte pentru sarcină. De ce? Să ne gândim ce se întâmplă dacă înlocuim aceste rădăcini în ecuația inițială?

Acest lucru este în mod clar fals, deoarece baza nu poate fi negativă, adică rădăcina este „terț”.

Pentru a evita astfel de trucuri neplăcute, trebuie să notați ODZ chiar înainte de a începe să rezolvați ecuația:

Apoi, după ce am primit rădăcinile și, aruncăm imediat rădăcina și scriem răspunsul corect.

Exemplul 1(incearca sa rezolvi singur) :

Găsiți rădăcina ecuației. Dacă există mai multe rădăcini, indicați-o pe cea mai mică în răspuns.

Soluţie:

Mai întâi de toate, să scriem ODZ:

Acum ne amintim ce este un logaritm: la ce putere trebuie să ridici baza pentru a obține un argument? In secunda. Acesta este:

S-ar părea că rădăcina mai mică este egală. Dar nu este așa: conform ODZ, rădăcina este terță parte, adică nu este deloc rădăcina acestei ecuații. Astfel, ecuația are o singură rădăcină: .

Răspuns: .

Identitatea logaritmică de bază

Amintiți-vă definiția unui logaritm în termeni generali:

Înlocuiți în a doua egalitate în loc de logaritm:

Această egalitate se numește identitate logaritmică de bază. Deși, în esență, această egalitate este doar scrisă diferit definirea logaritmului:

Aceasta este puterea la care trebuie să o ridici pentru a ajunge.

De exemplu:

Rezolvați următoarele exemple:

Exemplul 2

Găsiți valoarea expresiei.

Soluţie:

Amintiți-vă regula din secțiune:, adică atunci când creșteți un grad la o putere, indicatorii sunt înmulțiți. Să-l aplicăm:

Exemplul 3

Demonstrează asta.

Soluţie:

Proprietățile logaritmilor

Din păcate, sarcinile nu sunt întotdeauna atât de simple - adesea trebuie mai întâi să simplificați expresia, să o aduceți la forma obișnuită și numai atunci va fi posibil să calculați valoarea. Cel mai ușor este să faci asta știind proprietățile logaritmilor. Deci, să învățăm proprietățile de bază ale logaritmilor. Voi dovedi fiecare dintre ele, pentru că orice regulă este mai ușor de reținut dacă știi de unde vine.

Toate aceste proprietăți trebuie reținute; fără ele, majoritatea problemelor cu logaritmii nu pot fi rezolvate.

Și acum despre toate proprietățile logaritmilor în detaliu.

Proprietatea 1:

Dovada:

Lasă, atunci.

Avem: , h.t.d.

Proprietatea 2: Suma logaritmilor

Suma logaritmilor cu aceeași bază este egală cu logaritmul produsului: .

Dovada:

Lasă, atunci. Lasă, atunci.

Exemplu: Aflați valoarea expresiei: .

Soluție: .

Formula pe care tocmai ai învățat-o ajută la simplificarea sumei logaritmilor, nu a diferenței, astfel încât acești logaritmi nu pot fi combinați imediat. Dar puteți face opusul - „spărgeți” primul logaritm în două: Și iată simplificarea promisă:
.
De ce este nevoie de asta? Ei bine, de exemplu: ce contează?

Acum este evident că.

Acum ușurează-ți:

Sarcini:

Raspunsuri:

Proprietatea 3: Diferența de logaritmi:

Dovada:

Totul este exact la fel ca în paragraful 2:

Lasă, atunci.

Lasă, atunci. Avem:

Exemplul din ultimul punct este acum și mai simplu:

Exemplu mai complicat: . Ghiciți cum să decideți?

Aici trebuie remarcat faptul că nu avem o singură formulă despre logaritmi la pătrat. Aceasta este ceva asemănător cu o expresie - aceasta nu poate fi simplificată imediat.

Prin urmare, să ne îndepărtam de formulele despre logaritmi și să ne gândim la ce formule folosim cel mai des în matematică? Încă din clasa a VII-a!

Aceasta - . Trebuie să te obișnuiești cu faptul că sunt peste tot! Și în probleme exponențiale, și în trigonometrice și în probleme iraționale, se găsesc. Prin urmare, ele trebuie amintite.

Dacă te uiți cu atenție la primii doi termeni, devine clar că asta este diferența de pătrate:

Răspuns pentru a verifica:

Simplificați-vă.

Exemple

Răspunsuri.

Proprietatea 4: Derivarea exponentului din argumentul logaritmului:

Dovada:Și aici folosim și definiția logaritmului: let, then. Avem: , h.t.d.

Puteți înțelege această regulă astfel:

Adică, gradul argumentului este luat înainte de logaritm, ca coeficient.

Exemplu: Găsiți valoarea expresiei.

Soluţie: .

Decide pentru tine:

Exemple:

Raspunsuri:

Proprietatea 5: Derivarea exponentului de la baza logaritmului:

Dovada: Lasă, atunci.

Avem: , h.t.d.
Amintiți-vă: de la temeiuri gradul este redat ca verso număr, spre deosebire de cazul precedent!

Proprietatea 6: Derivarea exponentului de la bază și argumentul logaritmului:

Sau dacă gradele sunt aceleași: .

Proprietatea 7: Tranziția la noua bază:

Dovada: Lasă, atunci.

Avem: , h.t.d.

Proprietatea 8: Schimbarea bazei și a argumentului logaritmului:

Dovada: Acesta este un caz special al formulei 7: dacă înlocuim, obținem: , p.t.d.

Să ne uităm la câteva exemple suplimentare.

Exemplul 4

Găsiți valoarea expresiei.

Folosim proprietatea logaritmilor nr. 2 - suma logaritmilor cu aceeași bază este egală cu logaritmul produsului:

Exemplul 5

Găsiți valoarea expresiei.

Soluţie:

Folosim proprietatea logaritmilor nr. 3 și nr. 4:

Exemplul 6

Găsiți valoarea expresiei.

Soluţie:

Folosind proprietatea numărul 7 - mergeți la baza 2:

Exemplul 7

Găsiți valoarea expresiei.

Soluţie:

Cum îți place articolul?

Dacă citiți aceste rânduri, atunci ați citit întreg articolul.

Și e tare!

Acum spune-ne cum ți se pare articolul?

Ai învățat să rezolvi logaritmi? Dacă nu, care este problema?

Scrie-ne în comentariile de mai jos.

Și da, mult succes la examene.

La Unified State Exam și OGE și în general în viață

© 2022. srcaltufevo.ru. Dezvoltare de sine. Sănătate. Povesti de succes. Relaţii. Copiii nostri.