Площа криволінійної трапеції y x 2. Площа криволінійної трапеції чисельно дорівнює певному інтегралу. Додаток інтеграла до вирішення прикладних завдань

Додаток інтеграла до вирішення прикладних завдань

Обчислення площі

Певний інтеграл безперервної невід'ємної функції f(x) чисельно дорівнюєплощі криволінійної трапеції, обмеженої кривою y = f(x), віссю Ох і прямими х = а і х = b. Відповідно до цього формула площі записується так:

Розглянемо деякі приклади на обчислення площ плоских фігур.

Завдання № 1. Обчислити площу, обмежену лініями y = x 2 +1, y = 0, x = 0, x = 2.

Рішення.Побудуємо фігуру, площу якої ми маємо обчислити.

y = x 2 + 1 – це парабола гілки якої спрямовані вгору, і парабола зміщена щодо осі O y вгору одну одиницю (рисунок 1).

Малюнок 1. Графік функції y = x 2 + 1

Завдання № 2. Обчислити площу, обмежену лініями y = x 2 – 1, y = 0 у межах від 0 до 1.


Рішення.Графіком даної функції є парабола гілки, якої спрямовані вгору, і парабола зміщена щодо осі O y вниз одну одиницю (рисунок 2).

Малюнок 2. Графік функції y = x 2 – 1


Завдання № 3. Зробіть креслення та обчисліть площу фігури, обмеженою лініями

y = 8 + 2x - x 2 і y = 2x - 4.

Рішення.Перша з цих двох ліній – парабола, спрямована гілками вниз, оскільки коефіцієнт при x 2 негативний, а друга лінія – пряма, що перетинає обидві осі координат.

Для побудови параболи знайдемо координати її вершини: y=2 – 2x; 2 – 2x = 0, x = 1 – абсцис вершини; y(1) = 8 + 2∙1 – 1 2 = 9 – її ордината, N(1;9) – вершина.

Тепер знайдемо точки перетину параболи та прямий, розв'язавши систему рівнянь:

Прирівнюючи праві частини рівняння, ліві частини яких рівні.

Отримаємо 8 + 2x - x 2 = 2x - 4 або x 2 - 12 = 0, звідки .

Отже, точки – точки перетину параболи та прямий (рисунок 1).


Малюнок 3 Графіки функцій y = 8 + 2x – x 2 та y = 2x – 4

Побудуємо пряму y = 2x - 4. Вона проходить через точки (0; -4), (2; 0) на осях координат.

Для побудови параболи можна ще її точки перетину з віссю 0x, тобто коріння рівняння 8 + 2x – x 2 = 0 або x 2 – 2x – 8 = 0. За теоремою Вієта легко знайти його коріння: x 1 = 2, x 2 = 4.

На малюнку 3 зображено фігуру (параболічний сегмент M 1 N M 2), обмежений даними лініями.

Друга частина завдання полягає у знаходженні площі цієї фігури. Її площу можна знайти за допомогою певного інтегралу за формулою .

Стосовно цієї умови отримаємо інтеграл:

2 Обчислення об'єму тіла обертання

Обсяг тіла, отриманого від обертання кривої y = f(x) навколо осі Ох, обчислюється за формулою:

При обертанні навколо осі О y формула має вигляд:

Завдання №4. Визначити об'єм тіла, отриманого від обертання криволінійної трапеції, обмеженої прямими х = 0 х = 3 та кривою y = навколо осі О х.

Рішення.Побудуємо рисунок (рисунок 4).

Малюнок 4. Графік функції y =

Обсяг, що шукається, дорівнює


Завдання №5. Обчислити обсяг тіла, отриманого від обертання криволінійної трапеції, обмеженою кривою y = x 2 і прямими y = 0 і y = 4 навколо осі O y .

Рішення.Маємо:

Запитання для повторення

Розглянемо криволінійну трапецію, обмежену віссю Ох, кривою y=f(x) та двома прямими: х=а та х=Ь (рис. 85). Візьмемо довільне значення х (тільки не а і не Ь). Дамо йому приріст h = dx і розглянемо смужку, обмежену прямими АВ і CD, віссю Ох і дугою BD, що належить кривою, що розглядається. Цю смужку називатимемо елементарною смужкою. Площа елементарної смужки відрізняється від площі прямокутника ACQB на криволінійний трикутник BQD, а площа останнього менша за площу прямокутника BQDM зі сторонами BQ = =h=dx) QD=Ay і площею, що дорівнює hAy = Ay dx. Зі зменшенням сторони h сторона Ду також зменшується і одночасно з h прагне нуля. Тому площа BQDM є нескінченно малою другого порядку. Площа елементарної смужки є збільшення площі, а площа прямокутника ACQB, рівна АВ-АС==((х) dx> є диференціал площі. Отже, саму площу знайдемо, інтегруючи її диференціал. У межах аналізованої фігури незалежне змінне л: змінюється від а до b, тому шукана площа 5 дорівнюватиме 5= \f(x) dx. (I) Приклад 1. Обчислимо площу, обмежену параболою у - 1 -х *, прямими X = - Fj-, х = 1 і віссю О * (рис. 86). у Мал. 87. Мал. 86. 1 Тут f(x)= 1 - л?, межі інтегрування а = - і £=1, тому J [*-т]\- -fl -- Г -1-±Л_ 3) |_ 2 3V 2 / J 3 24 24* Приклад 2. Обчислимо площу, обмежену синусоїдою y = sinXy віссю Ох і прямою (рис. 87). Застосовуючи формулу (I), отримуємо Л 2 S= J sinxdx = [-cos x] Q =0 -(-1) = lf Приклад 3. Обчислимо площу, обмежену дугою синусоїди ^у = sin jc, укладеної між двома сусідніми точками перетину з віссю Ох (наприклад, між початком координат і крапкою з абсцисою я). Зауважимо, що з геометричних міркувань ясно, що ця площа буде вдвічі більшою за площу попереднього прикладу. Однак зробимо обчислення: я 5 = | s\nxdx= [ - cosх)* - - cos я-(-cos 0)= 1 + 1 = 2. о Дійсно, наше припущення виявилося справедливим. Приклад 4. Обчислити площу, обмежену синусоїдою і віссю Ох на одному періоді (рис. 88). Попередні розрис судження дозволяють припустити, що площа вийде в чотири рази більше, ніж у пр. 2. Однак, зробивши обчислення, отримаємо «я Г, * я S - \ sin х dx = [ - cos х] 0 = = - cos 2л -(-cos 0) = - 1 + 1 = 0. Цей результат потребує роз'яснень. Для з'ясування суті справи обчислюємо ще площу, обмежену тією самою синусоїдою у = sin л: і віссю Ох не більше від л до 2я. Застосовуючи формулу (I), отримуємо 2л $2л sin хdx=[ - cosх]л =-cos 2я~)-с05я=- 1-1 =-2. Таким чином, бачимо, що ця площа вийшла негативною. Порівнюючи її з площею, обчисленою в пр. 3, отримуємо, що їх абсолютні величини однакові, а різні знаки. Якщо застосувати властивість V (див. гл. XI, § 4), то отримаємо 2л я 2л J sin xdx = J sin * dx [ sin x dx = 2 + (- 2) = 0 Те, що вийшло в цьому прикладі, не є випадковістю. Завжди площа, розташована нижче осі Ох, за умови, що незалежне змінне змінюється ліворуч, виходить при обчисленні за допомогою інтегралів негативною. У цьому курсі ми завжди розглядатимемо площі без знаків. Тому відповідь у щойно розібраному прикладі буде такою: площа, що шукається, дорівнює 2 + |-2| = 4. Приклад 5. Обчислимо площу ОАВ, вказану на рис. 89. Ця площа обмежена віссю Ох параболою у = - хг і прямий у - =-х + \. Площа криволінійної трапеції Шукана площа ОАВ складається з двох частин: ОАМ та МАВ. Так як точка А є точкою перетину параболи та прямою, то її координати знайдемо, розв'язуючи систему рівнянь 3 2 У = тх. (Нам потрібно знайти тільки абсцис точки А). Вирішуючи систему, знаходимо л; = ~. Тому площу доводиться обчислювати частинами, спочатку пл. ОАМ, та був пл. МАВ: .... Г 3 2 , 3 Г хП 3 1/2 У 2 . QAM-^х = [Заміна:

] =

Отже, невласний інтеграл сходиться та його значення одно .