Що таке е у функції. Графіки та основні властивості елементарних функцій. Переваги побудови графіків онлайн

Виберемо на площині прямокутну систему координат і відкладатимемо на осі абсцис значення аргументу х, але в осі ординат - значення функції у = f(х).

Графіком функції y = f(x)називається безліч всіх точок, у яких абсциси належать області визначення функції, а ординати дорівнюють відповідним значенням функції.

Іншими словами, графік функції y = f(х) - це безліч усіх точок площини, координати х, уяких задовольняють співвідношення y = f(x).



На рис. 45 та 46 наведено графіки функцій у = 2х + 1і у = х 2 - 2х.

Строго кажучи, слід розрізняти графік функції (точне математичне визначення якого було дано вище) і накреслену криву, яка завжди дає лише більш менш точний ескіз графіка (та й те, як правило, не всього графіка, а лише його частини, розташованого в кінцевій частини площини). Надалі, однак, ми зазвичай говоритимемо «графік», а не «ескіз графіка».

За допомогою графіка можна знаходити значення функції у точці. Саме, якщо точка х = аналежить області визначення функції y = f(x), то для знаходження числа f(а)(тобто значення функції у точці х = а) слід вчинити так. Потрібно через крапку з абсцисою х = апровести пряму, паралельну осі ординат; ця пряма перетне графік функції y = f(x)в одній точці; ордината цієї точки і буде, з визначення графіка, дорівнює f(а)(Рис. 47).



Наприклад, для функції f(х) = х 2 - 2xза допомогою графіка (рис. 46) знаходимо f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 і т.д.

Графік функції наочно ілюструє поведінку та властивості функції. Наприклад, із розгляду рис. 46 ясно, що функція у = х 2 - 2хнабуває позитивних значень при х< 0 і при х > 2, Негативні - при 0< x < 2; наименьшее значение функция у = х 2 - 2хприймає за х = 1.

Для побудови графіка функції f(x)потрібно знайти всі точки площини, координати х,уяких задовольняють рівняння y = f(x). Найчастіше це зробити неможливо, оскільки таких точок нескінченно багато. Тому графік функції зображують приблизно з більшою або меншою точністю. Найпростішим є метод побудови графіка за кількома точками. Він у тому, що аргументу хнадають кінцеве число значень - скажімо, х 1, х 2, x 3, ..., х k і становлять таблицю, до якої входять вибрані значення функції.

Таблиця виглядає так:



Склавши таку таблицю, ми можемо намітити кілька точок графіка функції y = f(x). Потім, з'єднуючи ці точки плавною лінією, ми отримуємо приблизний вид графіка функції y = f(x).

Слід зазначити, що метод побудови графіка за кількома точками дуже ненадійний. Насправді поведінка графіка між наміченими точками та поведінка його поза відрізком між крайніми зі взятих точок залишається невідомою.

Приклад 1. Для побудови графіка функції y = f(x)хтось склав таблицю значень аргументу та функції:




Відповідні п'ять точок показано на рис. 48.



На підставі розташування цих точок він зробив висновок, що графік функції є прямою (показану на рис. 48 пунктиром). Чи можна вважати цей висновок надійним? Якщо немає додаткових міркувань, які б підтверджували цей висновок, його навряд чи можна вважати надійним. надійним.

Для обґрунтування свого твердження розглянемо функцію

.

Обчислення показують, що значення цієї функції в точках -2, -1, 0, 1, 2 описуються наведеною вище таблицею. Однак графік цієї функції не є прямою лінією (він показаний на рис. 49). Іншим прикладом може бути функція y = x + l + sinπx;її значення теж описуються наведеною вище таблицею.

Ці приклади показують, що у «чистому» вигляді метод побудови графіка за кількома точками ненадійний. Тому для побудови графіка заданої функції, як правило, надходять у такий спосіб. Спочатку вивчають властивості цієї функції, з допомогою яких можна побудувати ескіз графіка. Потім, обчислюючи значення функції кількох точках (вибір яких залежить від встановлених властивостей функції), знаходять відповідні точки графіка. І, нарешті, через побудовані точки проводять криву, використовуючи властивості цієї функції.

Деякі (найпростіші і найчастіше використовувані) властивості функцій, застосовувані перебування ескізу графіка, ми розглянемо пізніше, тепер розберемо деякі часто застосовувані методи побудови графіків.


Графік функції у = | f (x) |.

Нерідко доводиться будувати графік функції y = | f (x)|, де f(х) -задана функція. Нагадаємо, як це робиться. За визначенням абсолютної величини числа можна написати

Це означає, що графік функції y = | f (x) |можна отримати з графіка, функції y = f(x)наступним чином: всі точки графіка функції у = f(х), у яких ординати невід'ємні, слід залишити без зміни; далі, замість точок графіка функції y = f(x), що мають негативні координати, слід побудувати відповідні точки графіка функції у = -f(x)(тобто частина графіка функції
y = f(x), що лежить нижче осі х,слід симетрично відобразити щодо осі х).



приклад 2.Побудувати графік функції у = | х |.

Беремо графік функції у = х(рис. 50, а) та частина цього графіка при х< 0 (що лежить під віссю х) симетрично відбиваємо щодо осі х. В результаті ми отримуємо графік функції у = | х |(Рис. 50, б).

Приклад 3. Побудувати графік функції y = | x 2 - 2x |.


Спочатку збудуємо графік функції y = x 2 – 2x.Графік цієї функції - парабола, гілки якої спрямовані вгору, вершина параболи має координати (1; -1), її графік перетинає вісь абсцис у точках 0 і 2. На проміжку (0; 2) фукція набуває негативних значень, тому саме цю частину графіка симетрично відобразимо щодо осі абсцис. На малюнку 51 побудовано графік функції у = | х 2 -2х |виходячи з графіка функції у = х 2 - 2x

Графік функції y = f(x) + g(x)

Розглянемо задачу побудови графіка функції y = f(x) + g(x).якщо задані графіки функцій y = f(x)і y = g(x).

Зауважимо, що область визначення функції y = |f(x) + g(х)| є безліч всіх тих значень х, для яких визначені обидві функції y = f(x) і у = g(х), тобто ця область визначення є перетином областей визначення, функцій f(x) і g(x).

Нехай крапки (х 0 , y 1) та (х 0, у 2) відповідно належать графікам функцій y = f(x)і y = g(х), Т. е. y 1 = f(x0), y2=g(х0).Тоді точка (x0;. y1 + y2) належить графіку функції у = f(х) + g(х)(бо f(х 0) + g(x 0) = y 1+y2),. причому будь-яка точка графіка функції y = f(x) + g(x)може бути отримана в такий спосіб. Отже, графік функції у = f(x) + g(x)можна отримати з графіків функцій y = f(x). і y = g(х)заміною кожної точки ( х n , у 1) графік функції y = f(x)точкою (х n, y 1 + y 2),де у 2 = g(x n), тобто зсувом кожної точки ( х n , у 1) графіка функції y = f(x)вздовж осі уна величину y 1 = g(х n). При цьому розглядаються лише такі точки х n для яких визначено обидві функції y = f(x)і y = g(x).

Такий метод побудови графіка функції y = f(x) + g(х) називається додаванням графіків функцій y = f(x)і y = g(x)

Приклад 4. На малюнку методом складання графіків побудовано графік функції
y = x + sinx.

При побудові графіка функції y = x + sinxми вважали, що f(x) = x,а g(x) = sinx.Для побудови графіка функції виберемо крапки з aбцисами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значення f(x) = x, g(x) = sinx, y = x + sinxобчислимо у вибраних точках і результати помістимо у таблиці.


1. Дробно-лінійна функція та її графік

Функція виду y = P(x) / Q(x), де P(x) та Q(x) – багаточлени, називається дробово-раціональною функцією.

З поняттям раціональних чисел ви вже, напевно, знайомі. Аналогічно раціональні функції– це функції, які можна як приватне двох многочленов.

Якщо дробно-раціональна функція є приватне двох лінійних функцій – многочленів першого ступеня, тобто. функцію виду

y = (ax + b) / (cx + d), то її називають дробово-лінійною.

Зауважимо, що функції y = (ax + b) / (cx + d), c ≠ 0 (інакше функція стає лінійною y = ax/d + b/d) і що a/c ≠ b/d (інакше функція константа ). Дробно-лінійна функція визначена за всіх дійсних числах, крім x = -d/c. Графіки дробово-лінійних функцій формою не відрізняються від відомого вам графіка y = 1/x. Крива, що є графіком функції y = 1/x, називається гіперболою. При необмеженому збільшенні x за абсолютною величиною функція y = 1/x необмежено зменшується за абсолютною величиною і обидві гілки графіка наближаються до осі абсцис: права наближається зверху, а ліва – знизу. Прямі, до яких наближаються гілки гіперболи, називають її асимптотами.

приклад 1.

y = (2x + 1) / (x - 3).

Рішення.

Виділимо цілу частину: (2x + 1) / (x - 3) = 2 + 7 / (x - 3).

Тепер легко бачити, що графік цієї функції виходить з графіка функції y = 1/x наступними перетвореннями: зсувом на 3 одиничні відрізки вправо, розтягуванням вздовж осі Oy в 7 разів і зсувом на 2 одиничних відрізки вгору.

Будь-який дріб y = (ax + b) / (cx + d) можна записати аналогічним чином, виділивши цілу частину. Отже, графіки всіх дробово-лінійних функцій є гіперболи, по-різному зсунуті вздовж координатних осей і розтягнуті по осі Oy.

Для побудови графіка будь-якої довільної дробово-лінійної функції не обов'язково дріб, що задає цю функцію, перетворювати. Оскільки знаємо, що графік є гіпербола, досить знайти прямі, яких наближаються її гілки – асимптоти гіперболи x = -d/c і y = a/c.

приклад 2.

Знайти асимптоти графіка функції y = (3x + 5) / (2x + 2).

Рішення.

Функція не визначена при x = -1. Значить, пряма x = -1 є вертикальною асимптотою. Для знаходження горизонтальної асимптоти, з'ясуємо, чого наближаються значення функції y(x), коли аргумент x зростає по абсолютній величині.

Для цього розділимо чисельник та знаменник дробу на x:

y = (3+5/x)/(2+2/x).

При x → ∞ дріб прагнутиме 3/2. Значить, горизонтальна асимптота – пряма y = 3/2.

приклад 3.

Побудувати графік функції y = (2x + 1) / (x + 1).

Рішення.

Виділимо у дробу «цілу частину»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 - 1/(x + 1).

Тепер легко бачити, що графік цієї функції виходить з графіка функції y = 1/x наступними перетвореннями: зсувом на 1 одиницю вліво, симетричним відображенням щодо Ox і зрушенням на 2 одиничних відрізки вгору осі Oy.

Область визначення D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значень E(y) = (-∞; 2) ᴗ(2; +∞).

Точки перетину з осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функція зростає кожному з проміжків області визначення.

Відповідь: рисунок 1.

2. Дробно-раціональна функція

Розглянемо дробово-раціональну функцію виду y = P(x) / Q(x), де P(x) і Q(x) – багаточлени, ступеня вище за першу.

Приклади таких раціональних функцій:

y = (x 3 - 5x + 6) / (x 7 - 6) або y = (x - 2) 2 (x + 1) / (x 2 + 3).

Якщо функція y = P(x) / Q(x) являє собою приватне двох багаточленів ступеня вище за першу, то її графік буде, як правило, складніше, і побудувати його точно, з усіма деталями буває іноді важко. Однак, часто достатньо застосувати прийоми, аналогічні тим, з якими ми вже ознайомилися вище.

Нехай дріб – правильний (n< m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 + p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 + p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 + p t x + q t).

Очевидно, що графік дробово-раціональної функції можна одержати як суму графіків елементарних дробів.

Побудова графіків дробово-раціональних функцій

Розглянемо кілька способів побудови графіків дрібно-раціональної функції.

приклад 4.

Побудувати графік функції y = 1/x2.

Рішення.

Використовуємо графік функції y = x 2 для побудови графіка y = 1/x 2 та скористаємося прийомом «поділу» графіків.

Область визначення D(y) = (-∞; 0)ᴗ(0; +∞).

Область значень E(y) = (0; +∞).

Точок перетину з осями немає. Функція парна. Зростає при всіх з інтервалу (-∞; 0), зменшується при x від 0 до +∞.

Відповідь: рисунок 2.

Приклад 5.

Побудувати графік функції y = (x 2 - 4x + 3) / (9 - 3x).

Рішення.

Область визначення D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/ 3+1/3.

Тут ми використовували прийом розкладання на множники, скорочення та приведення до лінійної функції.

Відповідь: рисунок 3.

Приклад 6.

Побудувати графік функції y = (x 2 - 1) / (x 2 + 1).

Рішення.

Область визначення D(y) = R. Оскільки функція парна, то графік симетричний щодо осі ординат. Перш ніж будувати графік, знову перетворимо вираз, виділивши цілу частину:

y = (x 2 - 1) / (x 2 + 1) = 1 - 2 / (x 2 + 1).

Зауважимо, що виділення цілої частини у формулі дробово-раціональної функції є одним із основних при побудові графіків.

Якщо x → ±∞ то y → 1, тобто. Пряма y = 1 є горизонтальною асимптотою.

Відповідь: рисунок 4.

Приклад 7.

Розглянемо функцію y = x/(x 2 + 1) і спробуємо точно визначити максимальне її значення, тобто. найвищу точку правої половини графіка. Щоб точно збудувати цей графік, сьогоднішніх знань недостатньо. Вочевидь, що крива неспроможна «піднятися» дуже високо, т.к. знаменник досить швидко починає «обганяти» чисельник. Подивимося, чи може значення функції дорівнювати 1. Для цього потрібно вирішити рівняння x 2 + 1 = x, x 2 – x + 1 = 0. Це рівняння не має дійсних коренів. Отже, наше припущення не є вірним. Щоб знайти найбільше значення функції, треба дізнатися, при якому найбільшому рівнянні А = x/(x 2 + 1) буде мати рішення. Замінимо вихідне рівняння квадратним: Аx 2 – x + А = 0. Це рівняння має рішення, коли 1 – 4А 2 ≥ 0. Звідси знаходимо найбільше значення А = 1/2.

Відповідь: рисунок 5, max y(x) = ½.

Залишились питання? Чи не знаєте, як будувати графіки функцій?
Щоб отримати допомогу репетитора – зареєструйтесь.
Перший урок – безкоштовно!

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

На області визначення статечної функції y = x p мають місце такі формули:
; ;
;
; ;
; ;
; .

Властивості статечних функцій та їх графіки

Ступінна функція з показником рівним нулю, p = 0

Якщо показник статечної функції y = x p дорівнює нулю, p = 0, то статечна функція визначена для всіх x ≠ 0 і є постійною рівною одиниці:
y = x p = x 0 = 1, x ≠ 0 .

Ступінна функція з натуральним непарним показником, p = n = 1, 3, 5, ...

Розглянемо статечну функцію y = x p = x n з натуральним непарним показником ступеня n = 1, 3, 5, .... Такий показник також можна записати у вигляді: n = 2k + 1 де k = 0, 1, 2, 3, ... - ціле не негативне. Нижче наведено властивості та графіки таких функцій.

Графік статечної функції y = x n з натуральним непарним показником за різних значень показника ступеня n = 1, 3, 5, ... .

Область визначення: -∞ < x < ∞
Безліч значень: -∞ < y < ∞
Парність:непарна, y(-x) = - y(x)
Монотонність:монотонно зростає
Екстремуми:ні
Випуклість:
при -∞< x < 0 выпукла вверх
при 0< x < ∞ выпукла вниз
Точки перегинів: x = 0, y = 0
x = 0, y = 0
Межі:
;
Приватні значення:
при x = -1
y(-1) = (-1) n ≡ (-1) 2k+1 = -1
за x = 0, y(0) = 0 n = 0
за x = 1, y(1) = 1 n = 1
Зворотня функція:
при n = 1 , функція є зворотною до самої себе: x = y
при n ≠ 1 зворотною функцією є корінь ступеня n :

Ступінна функція з натуральним парним показником, p = n = 2, 4, 6, ...

Розглянемо статечну функцію y = x p = x n з натуральним парним показником ступеня n = 2, 4, 6, .... Такий показник можна записати у вигляді: n = 2k , де k = 1, 2, 3, ... - натуральне. Властивості та графіки таких функцій наведені нижче.

Графік статечної функції y = x n з натуральним парним показником за різних значень показника ступеня n = 2, 4, 6, ... .

Область визначення: -∞ < x < ∞
Безліч значень: 0 ≤ y< ∞
Парність:парна, y(-x) = y(x)
Монотонність:
при x ≤ 0 монотонно зменшується
при x ≥ 0 монотонно зростає
Екстремуми:мінімум, x = 0, y = 0
Випуклість:випукла вниз
Точки перегинів:ні
Точки перетину з осями координат: x = 0, y = 0
Межі:
;
Приватні значення:
при x = -1, y(-1) = (-1) n ≡ (-1) 2k = 1
за x = 0, y(0) = 0 n = 0
за x = 1, y(1) = 1 n = 1
Зворотня функція:
при n = 2 квадратний корінь:
при n ≠ 2, корінь ступеня n:

Ступінна функція з цілим негативним показником, p = n = -1, -2, -3, ...

Розглянемо статечну функцію y = x p = x n з цілим негативним показником ступеня n = -1, -2, -3, .... Якщо покласти n = -k де k = 1, 2, 3, ... - натуральне, то її можна представити у вигляді:

Графік статечної функції y = x n з цілим негативним показником за різних значень показника ступеня n = -1, -2, -3, ... .

Непарний показник, n = -1, -3, -5, ...

Нижче представлені властивості функції y = x n з непарним негативним показником n = -1, -3, -5, ....

Область визначення: x ≠ 0
Безліч значень: y ≠ 0
Парність:непарна, y(-x) = - y(x)
Монотонність:монотонно зменшується
Екстремуми:ні
Випуклість:
при x< 0 : выпукла вверх
при x > 0: опукла вниз
Точки перегинів:ні
Точки перетину з осями координат:ні
Знак:
при x< 0, y < 0
при x>0, y>0
Межі:
; ; ;
Приватні значення:
за x = 1, y(1) = 1 n = 1
Зворотня функція:
при n = -1
при n< -2 ,

Чітний показник, n = -2, -4, -6, ...

Нижче представлені властивості функції y = x n з парним негативним показником n = -2, -4, -6, ....

Область визначення: x ≠ 0
Безліч значень: y > 0
Парність:парна, y(-x) = y(x)
Монотонність:
при x< 0 : монотонно возрастает
при x > 0: монотонно зменшується
Екстремуми:ні
Випуклість:випукла вниз
Точки перегинів:ні
Точки перетину з осями координат:ні
Знак: y > 0
Межі:
; ; ;
Приватні значення:
за x = 1, y(1) = 1 n = 1
Зворотня функція:
при n = -2
при n< -2 ,

Ступенева функція з раціональним (дрібним) показником

Розглянемо статечну функцію y = x p з раціональним (дрібним) показником ступеня, де n – ціле, m > 1 – натуральне. Причому n, m немає спільних дільників.

Знаменник дробового показника – непарний

Нехай знаменник дрібного показника ступеня непарний: m = 3, 5, 7, ... . У цьому випадку статечна функція x p визначена як для позитивних, так і для негативних значень аргументу x . Розглянемо властивості таких статечних функцій, коли p знаходиться в певних межах.

Показник p негативний, p< 0

Нехай раціональний показник ступеня (з непарним знаменником m = 3, 5, 7, ...) менше за нуль: .

Графіки статечних функцій з раціональним негативним показником при різних значеннях показника ступеня, де m = 3, 5, 7, ... - непарне.

Непарний чисельник, n = -1, -3, -5, ...

Наводимо властивості статечної функції y = x p з раціональним негативним показником , де n = -1, -3, -5, ... - непарне негативне ціле, m = 3, 5, 7 ... - непарне натуральне.

Область визначення: x ≠ 0
Безліч значень: y ≠ 0
Парність:непарна, y(-x) = - y(x)
Монотонність:монотонно зменшується
Екстремуми:ні
Випуклість:
при x< 0 : выпукла вверх
при x > 0: опукла вниз
Точки перегинів:ні
Точки перетину з осями координат:ні
Знак:
при x< 0, y < 0
при x>0, y>0
Межі:
; ; ;
Приватні значення:
при x = -1, y(-1) = (-1) n = -1
за x = 1, y(1) = 1 n = 1
Зворотня функція:

Чітний чисельник, n = -2, -4, -6, ...

Властивості статечної функції y = x p з раціональним негативним показником , де n = -2, -4, -6, ... - парне негативне ціле, m = 3, 5, 7 ... - непарне натуральне.

Область визначення: x ≠ 0
Безліч значень: y > 0
Парність:парна, y(-x) = y(x)
Монотонність:
при x< 0 : монотонно возрастает
при x > 0: монотонно зменшується
Екстремуми:ні
Випуклість:випукла вниз
Точки перегинів:ні
Точки перетину з осями координат:ні
Знак: y > 0
Межі:
; ; ;
Приватні значення:
при x = -1, y(-1) = (-1) n = 1
за x = 1, y(1) = 1 n = 1
Зворотня функція:

Показник p позитивний, менше одиниці, 0< p < 1

Графік статечної функції з раціональним показником (0< p < 1 ) при различных значениях показателя степени , где m = 3, 5, 7, ... - нечетное.

Непарний чисельник, n = 1, 3, 5, ...

< p < 1 , где n = 1, 3, 5, ... - нечетное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область визначення: -∞ < x < +∞
Безліч значень: -∞ < y < +∞
Парність:непарна, y(-x) = - y(x)
Монотонність:монотонно зростає
Екстремуми:ні
Випуклість:
при x< 0 : выпукла вниз
при x > 0: опукла вгору
Точки перегинів: x = 0, y = 0
Точки перетину з осями координат: x = 0, y = 0
Знак:
при x< 0, y < 0
при x>0, y>0
Межі:
;
Приватні значення:
за x = -1, y(-1) = -1
за x = 0, y(0) = 0
за x = 1, y(1) = 1
Зворотня функція:

Чітний чисельник, n = 2, 4, 6, ...

Представлені властивості статечної функції y = x p з раціональним показником, що знаходиться в межах 0< p < 1 , где n = 2, 4, 6, ... - четное натуральное, m = 3, 5, 7 ... - нечетное натуральное.

Область визначення: -∞ < x < +∞
Безліч значень: 0 ≤ y< +∞
Парність:парна, y(-x) = y(x)
Монотонність:
при x< 0 : монотонно убывает
при x > 0: монотонно зростає
Екстремуми:мінімум при x = 0, y = 0
Випуклість:опукла вгору при x ≠ 0
Точки перегинів:ні
Точки перетину з осями координат: x = 0, y = 0
Знак:при x ≠ 0, y > 0
Межі:
;
Приватні значення:
за x = -1, y(-1) = 1
за x = 0, y(0) = 0
за x = 1, y(1) = 1
Зворотня функція:

Показник p більше одиниці, p > 1

Графік статечної функції з раціональним показником (p > 1) при різних значеннях показника ступеня, де m = 3, 5, 7, ... - непарне.

Непарний чисельник, n = 5, 7, 9, ...

Властивості статечної функції y = x p з раціональним показником, більшим за одиницю: . Де n = 5, 7, 9, ... - непарне натуральне, m = 3, 5, 7 ... - непарне натуральне.

Область визначення: -∞ < x < ∞
Безліч значень: -∞ < y < ∞
Парність:непарна, y(-x) = - y(x)
Монотонність:монотонно зростає
Екстремуми:ні
Випуклість:
при -∞< x < 0 выпукла вверх
при 0< x < ∞ выпукла вниз
Точки перегинів: x = 0, y = 0
Точки перетину з осями координат: x = 0, y = 0
Межі:
;
Приватні значення:
за x = -1, y(-1) = -1
за x = 0, y(0) = 0
за x = 1, y(1) = 1
Зворотня функція:

Чітний чисельник, n = 4, 6, 8, ...

Властивості статечної функції y = x p з раціональним показником, більшим за одиницю: . Де n = 4, 6, 8, … – парне натуральне, m = 3, 5, 7… – непарне натуральне.

Область визначення: -∞ < x < ∞
Безліч значень: 0 ≤ y< ∞
Парність:парна, y(-x) = y(x)
Монотонність:
при x< 0 монотонно убывает
при x>0 монотонно зростає
Екстремуми:мінімум при x = 0, y = 0
Випуклість:випукла вниз
Точки перегинів:ні
Точки перетину з осями координат: x = 0, y = 0
Межі:
;
Приватні значення:
за x = -1, y(-1) = 1
за x = 0, y(0) = 0
за x = 1, y(1) = 1
Зворотня функція:

Знаменник дробового показника – парний

Нехай знаменник дробового показника ступеня парний: m = 2, 4, 6, .... У цьому випадку статечна функція x p не визначена для негативних значень аргументу. Її властивості збігаються з властивостями статечної функції з ірраціональним показником (див. наступний розділ).

Ступенева функція з ірраціональним показником

Розглянемо статечну функцію y = x p з ірраціональним показником ступеня p. Властивості таких функцій відрізняються від розглянутих тим, що вони не визначені для негативних значень аргументу x . Для позитивних значень аргументу властивості залежать тільки від величини показника ступеня p і не залежать від того, чи є р цілим, раціональним або ірраціональним.


y = x p при різних значеннях показника p.

Ступінна функція з негативним показником p< 0

Область визначення: x > 0
Безліч значень: y > 0
Монотонність:монотонно зменшується
Випуклість:випукла вниз
Точки перегинів:ні
Точки перетину з осями координат:ні
Межі: ;
Приватне значення:За x = 1, y(1) = 1 p = 1

Ступенева функція з позитивним показником p > 0

Показник менше одиниці 0< p < 1

Область визначення: x ≥ 0
Безліч значень: y ≥ 0
Монотонність:монотонно зростає
Випуклість:випукла вгору
Точки перегинів:ні
Точки перетину з осями координат: x = 0, y = 0
Межі:
Приватні значення:За x = 0, y(0) = 0 p = 0 .
За x = 1, y(1) = 1 p = 1

Показник більший за одиницю p > 1

Область визначення: x ≥ 0
Безліч значень: y ≥ 0
Монотонність:монотонно зростає
Випуклість:випукла вниз
Точки перегинів:ні
Точки перетину з осями координат: x = 0, y = 0
Межі:
Приватні значення:За x = 0, y(0) = 0 p = 0 .
За x = 1, y(1) = 1 p = 1

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.

Див. також:

Довжина відрізка координатної осі знаходиться за формулою:

Довжина відрізка на координатній площині шукається за формулою:

Для знаходження довжини відрізка у тривимірній системі координат використовується така формула:

Координати середини відрізка (для координатної осі використовується лише перша формула, для координатної площини - перші дві формули, для тривимірної системи координат - усі три формули) обчислюються за формулами:

Функція– це відповідність виду y= f(x) між змінними величинами, в силу якого кожному значенню, що розглядається, деякої змінної величини x(аргументу або незалежної змінної) відповідає певне значення іншої змінної величини, y(Залежної змінної, іноді це значення просто називають значенням функції). Зверніть увагу, що функція передбачає, що одне значення аргументу хможе відповідати лише одне значення залежної змінної у. При цьому одне й те саме значення уможе бути отримано за різних х.

Область визначення функції– це значення незалежної змінної (аргументу функції, зазвичай це х), у яких функція визначено, тобто. її значення існує. Позначається область визначення D(y). За великим рахунком, Ви вже знайомі з цим поняттям. Область визначення функції інакше називається областю допустимих значень, чи ОДЗ, що Ви давно вмієте знаходити.

Область значень функції– це всі можливі значення залежної змінної цієї функції. Позначається Е(у).

Функція зростаєна проміжку, у якому більшому значенню аргументу відповідає більше значення функції. Функція зменшуєтьсяна проміжку, у якому більшому значенню аргументу відповідає менше значення функції.

Проміжки знаковості функції– це проміжки незалежної змінної, у яких залежна змінна зберігає свій позитивний чи негативний знак.

Нулі функції– це такі значення аргументу, у яких величина функції дорівнює нулю. У цих точках графік функції перетинає вісь абсцис (вісь ОХ). Найчастіше необхідність знайти нулі функції означає необхідність просто вирішити рівняння. Також часто необхідність знайти проміжки знаковості означає необхідність просто вирішити нерівність.

функцію y = f(x) називають парної х

Це означає, що з будь-яких протилежних значень аргументу, значення парної функції рівні. Графік парної функції завжди симетричний щодо осі ординат ОУ.

функцію y = f(x) називають непарноюякщо вона визначена на симетричній множині і для будь-якого хв галузі визначення виконується рівність:

Це означає, що для будь-яких протилежних значень аргументу значення непарної функції також протилежні. Графік непарної функції завжди симетричний щодо початку координат.

Сума коренів парної та непарної функцій (точок перетину осі абсцис ОХ) завжди дорівнює нулю, т.к. на кожен позитивний корінь хприпадає негативний корінь – х.

Важливо: деяка функція необов'язково має бути парною чи непарною. Існує безліч функцій, що не є ні парними ні непарними. Такі функції називаються функціями загального виглядуі для них не виконується жодна з рівностей або властивостей наведених вище.

Лінійною функцієюназивають функцію, яку можна задати формулою:

Графік лінійної функції є прямою і в загальному випадку виглядає наступним чином (наведено приклад для випадку коли k> 0, у разі функція зростаюча; для випадку k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

Графік квадратичної функції (Парабола)

Графік параболи визначається квадратичною функцією:

Квадратична функція, як і будь-яка інша функція, перетинає вісь ОХ в точках є її корінням: ( x 1; 0) та ( x 2; 0). Якщо коріння немає, значить квадратична функція вісь ОХ не перетинає, якщо корінь один, значить у цій точці ( x 0; 0) квадратична функція лише стосується осі ОХ, але з перетинає її. Квадратична функція завжди перетинає вісь OY у точці з координатами: (0; c). Графік квадратичної функції (парабола) може виглядати так (на малюнку приклади, які далеко не вичерпують всі можливі види парабол):

При цьому:

  • якщо коефіцієнт a> 0, функції y = ax 2 + bx + c, то гілки параболи спрямовані вгору;
  • якщо ж a < 0, то ветви параболы направлены вниз.

Координати вершини параболи можуть бути обчислені за такими формулами. Ікс вершини (p- на рисунках вище) параболи (або точка в якій квадратний тричлен досягає свого найбільшого чи найменшого значення):

Гравець вершини (q- на рисунках вище) параболи або максимальне, якщо гілки параболи спрямовані вниз ( a < 0), либо минимальное, если ветви параболы направлены вверх (a> 0), значення квадратного тричлена:

Графіки інших функцій

Ступіньною функцією

Наведемо кілька прикладів графіків статечних функцій:

Назад пропорційною залежністюназивають функцію, задану формулою:

Залежно від знаку числа kграфік обернено пропорційної залежності може мати два важливі варіанти:

Асимптота- це лінія, до якої лінія графіка функції нескінченно близько наближається, але з перетинає. Асимптотами для графіків зворотної пропорційності наведених малюнку вище є осі координат, яких графік функції нескінченно близько наближається, але з перетинає їх.

Показовою функцієюз основою аназивають функцію, задану формулою:

aграфік показової функції може мати два важливі варіанти (наведемо також приклади, див. нижче):

Логарифмічною функцієюназивають функцію, задану формулою:

Залежно від того більше чи менше одиниці число aграфік логарифмічної функції може мати два важливі варіанти:

Графік функції y = |x| виглядає наступним чином:

Графіки періодичних (тригонометричних) функцій

Функція у = f(x) називається періодичноїякщо існує таке, нерівне нулю, число Т, що f(x + Т) = f(x), для будь-якого хз області визначення функції f(x). Якщо функція f(x) є періодичною з періодом T, то функція:

де: A, k, b- Постійні числа, причому kне дорівнює нулю, також періодична з періодом T 1 який визначається формулою:

Більшість прикладів періодичних функцій – це тригонометричні функції. Наведемо графіки основних тригонометричних функцій. На наступному малюнку зображено частину графіка функції y= sin x(весь графік необмежено триває вліво та вправо), графік функції y= sin xназивають синусоїдою:

Графік функції y= cos xназивається косінусоїдою. Цей графік зображено на малюнку. Так як і графік синуса він нескінченно продовжується вздовж осі ОХ вліво та вправо:

Графік функції y= tg xназивають тангенсоідою. Цей графік зображено на малюнку. Як і графіки інших періодичних функцій, цей графік необмежено далеко повторюється вздовж осі ОХ ліворуч і праворуч.

Ну і нарешті, графік функції y= ctg xназивається котангенсоідою. Цей графік зображено на малюнку. Як і графіки інших періодичних та тригонометричних функцій, цей графік необмежено далеко повторюється вздовж осі ОХ вліво та вправо.

  • назад
  • Вперед

Як успішно підготуватися до ЦТ з фізики та математики?

Для того щоб успішно підготуватися до ЦТ з фізики та математики, серед іншого, необхідно виконати три найважливіші умови:

  1. Вивчити всі теми та виконати всі тести та завдання наведені у навчальних матеріалах на цьому сайті. Для цього потрібно всього нічого, а саме: присвячувати підготовці до ЦТ з фізики та математики, вивченню теорії та вирішенню завдань по три-чотири години щодня. Справа в тому, що ЦТ це іспит, де мало просто знати фізику чи математику, потрібно ще вміти швидко і без збоїв вирішувати велику кількість завдань з різних тем та різної складності. Останньому навчитися можна лише вирішивши тисячі завдань.
  2. Вивчити всі формули та закони у фізиці, і формули та методи в математиці . Насправді, виконати це теж дуже просто, необхідних формул із фізики всього близько 200 штук, а з математики навіть трохи менше. У кожному з цих предметів є близько десятка стандартних методів вирішення завдань базового рівня складності, які теж цілком можна вивчити, і таким чином, абсолютно на автоматі і без труднощів вирішити в потрібний момент більшу частину ЦТ. Після цього Вам залишиться подумати лише над найскладнішими завданнями.
  3. Відвідати всі три етапи репетиційного тестування з фізики та математики. Кожен РТ можна відвідувати по два рази, щоб вирішувати обидва варіанти. Знову ж таки на ЦТ, крім уміння швидко і якісно вирішувати завдання, і знання формул і методів необхідно також вміти правильно спланувати час, розподілити сили, а головне правильно заповнити бланк відповідей, не переплутавши ні номера відповідей і завдань, ні власне прізвище. Також у ході РТ важливо звикнути до стилю постановки питань у завданнях, що на ЦТ може здатися непідготовленій людині дуже незвичним.

Успішне, старанне та відповідальне виконання цих трьох пунктів, а також відповідальне опрацювання підсумкових тренувальних тестів дозволить Вам показати на ЦТ відмінний результат, максимальний з того, на що Ви здатні.

Знайшли помилку?

Якщо Ви, як Вам здається, знайшли помилку в навчальних матеріалах, напишіть, будь ласка, про неї на електронну пошту (). У листі вкажіть предмет (фізика чи математика), назву чи номер теми чи тесту, номер завдання, чи місце у тексті (сторінку) де на Вашу думку є помилка. Також опишіть у чому полягає ймовірна помилка. Ваш лист не залишиться непоміченим, помилка або буде виправлена, або Вам роз'яснять, чому це не помилка.

Побудувати функцію

Ми пропонуємо до вашої уваги сервіс з потроєння графіків функцій онлайн, всі права на який належать компанії Desmos. Для введення функцій скористайтесь лівою колонкою. Можна вводити вручну або за допомогою віртуальної клавіатури внизу вікна. Для збільшення вікна з графіком можна приховати як ліву колонку, і віртуальну клавіатуру.

Переваги побудови графіків онлайн

  • Візуальне відображення функцій, що вводяться
  • Побудова дуже складних графіків
  • Побудова графіків, заданих неявно (наприклад, еліпс x^2/9+y^2/16=1)
  • Можливість зберігати графіки та отримувати на них посилання, яке стає доступним для всіх в інтернеті.
  • Управління масштабом, кольором ліній
  • Можливість побудови графіків за точками, використання констант
  • Побудова одночасно кількох графіків функцій
  • Побудова графіків у полярній системі координат (використовуйте r та θ(\theta))

З нами легко в режимі онлайн будувати графіки різної складності. Побудова провадиться миттєво. Сервіс затребуваний знаходження точок перетину функцій, зображення графіків для подальшого їх переміщення у Word документ як ілюстрацій під час вирішення завдань, для аналізу поведінкових особливостей графіків функций. Оптимальним браузером для роботи з графіками на цій сторінці є Google Chrome. У разі використання інших браузерів коректність роботи не гарантується.