Gaussian method theorem. Gauss method for dummies: examples of solutions. My comments on the school version of the Gauss method

The Gaussian method is easy! Why? The famous German mathematician Johann Carl Friedrich Gauss, during his lifetime, received recognition as the greatest mathematician of all time, a genius, and even the nickname “King of Mathematics.” And everything ingenious, as you know, is simple! By the way, not only suckers get money, but also geniuses - Gauss’s portrait was on the 10 Deutschmark banknote (before the introduction of the euro), and Gauss still smiles mysteriously at Germans from ordinary postage stamps.

The Gauss method is simple in that the KNOWLEDGE OF A FIFTH-GRADE STUDENT IS ENOUGH to master it. You must know how to add and multiply! It is no coincidence that teachers often consider the method of sequential exclusion of unknowns in school mathematics electives. It’s a paradox, but students find the Gaussian method the most difficult. Nothing surprising - it’s all about the methodology, and I will try to talk about the algorithm of the method in an accessible form.

First, let's systematize a little knowledge about systems of linear equations. A system of linear equations can:

1) Have a unique solution.
2) Have infinitely many solutions.
3) Have no solutions (be non-joint).

The Gauss method is the most powerful and universal tool for finding a solution any systems of linear equations. As we remember, Cramer's rule and matrix method are unsuitable in cases where the system has infinitely many solutions or is inconsistent. And the method of sequential elimination of unknowns Anyway will lead us to the answer! In this lesson, we will again consider the Gauss method for case No. 1 (the only solution to the system), the article is devoted to the situations of points No. 2-3. I note that the algorithm of the method itself works the same in all three cases.

Let's return to the simplest system from the lesson How to solve a system of linear equations?
and solve it using the Gaussian method.

The first step is to write down extended system matrix:
. I think everyone can see by what principle the coefficients are written. The vertical line inside the matrix does not have any mathematical meaning - it is simply a strikethrough for ease of design.

Reference :I recommend you remember terms linear algebra. System Matrix is a matrix composed only of coefficients for unknowns, in this example the matrix of the system: . Extended System Matrix– this is the same matrix of the system plus a column of free terms, in this case: . For brevity, any of the matrices can be simply called a matrix.

After the extended system matrix is ​​written, it is necessary to perform some actions with it, which are also called elementary transformations.

The following elementary transformations exist:

1) Strings matrices Can rearrange in some places. For example, in the matrix under consideration, you can painlessly rearrange the first and second rows:

2) If there are (or have appeared) proportional (as a special case - identical) rows in the matrix, then you should delete from the matrix all these rows except one. Consider, for example, the matrix . In this matrix, the last three rows are proportional, so it is enough to leave only one of them: .

3) If a zero row appears in the matrix during transformations, then it should also be delete. I won’t draw, of course, the zero line is the line in which all zeros.

4) The matrix row can be multiply (divide) to any number non-zero. Consider, for example, the matrix . Here it is advisable to divide the first line by –3, and multiply the second line by 2: . This action is very useful because it simplifies further transformations of the matrix.

5) This transformation causes the most difficulties, but in fact there is nothing complicated either. To a row of a matrix you can add another string multiplied by a number, different from zero. Let's look at our matrix from a practical example: . First I'll describe the transformation in great detail. Multiply the first line by –2: , And to the second line we add the first line multiplied by –2: . Now the first line can be divided “back” by –2: . As you can see, the line that is ADDED LIhasn't changed. Always the line TO WHICH IS ADDED changes UT.

In practice, of course, they don’t write it in such detail, but write it briefly:

Once again: to the second line added the first line multiplied by –2. A line is usually multiplied orally or on a draft, with the mental calculation process going something like this:

“I rewrite the matrix and rewrite the first line: »

“First column. At the bottom I need to get zero. Therefore, I multiply the one at the top by –2: , and add the first one to the second line: 2 + (–2) = 0. I write the result in the second line: »

“Now the second column. At the top, I multiply -1 by -2: . I add the first to the second line: 1 + 2 = 3. I write the result in the second line: »

“And the third column. At the top I multiply -5 by -2: . I add the first to the second line: –7 + 10 = 3. I write the result in the second line: »

Please carefully understand this example and understand the sequential calculation algorithm, if you understand this, then the Gaussian method is practically in your pocket. But, of course, we will still work on this transformation.

Elementary transformations do not change the solution of the system of equations

! ATTENTION: considered manipulations can not use, if you are offered a task where the matrices are given “by themselves.” For example, with “classical” operations with matrices Under no circumstances should you rearrange anything inside the matrices!

Let's return to our system. It is practically taken to pieces.

Let us write down the extended matrix of the system and, using elementary transformations, reduce it to stepped view:

(1) The first line was added to the second line, multiplied by –2. And again: why do we multiply the first line by –2? In order to get zero at the bottom, which means getting rid of one variable in the second line.

(2) Divide the second line by 3.

The purpose of elementary transformations reduce the matrix to stepwise form: . In the design of the task, they just mark out the “stairs” with a simple pencil, and also circle the numbers that are located on the “steps”. The term “stepped view” itself is not entirely theoretical; in scientific and educational literature it is often called trapezoidal view or triangular view.

As a result of elementary transformations, we obtained equivalent original system of equations:

Now the system needs to be “unwinded” in the opposite direction - from bottom to top, this process is called inverse of the Gaussian method.

In the lower equation we already have a ready-made result: .

Let's consider the first equation of the system and substitute the already known value of “y” into it:

Let's consider the most common situation, when the Gaussian method requires solving a system of three linear equations with three unknowns.

Example 1

Solve the system of equations using the Gauss method:

Let's write the extended matrix of the system:

Now I will immediately draw the result that we will come to during the solution:

And I repeat, our goal is to bring the matrix to a stepwise form using elementary transformations. Where to start?

First, look at the top left number:

Should almost always be here unit. Generally speaking, –1 (and sometimes other numbers) will do, but somehow it has traditionally happened that one is usually placed there. How to organize a unit? We look at the first column - we have a finished unit! Transformation one: swap the first and third lines:

Now the first line will remain unchanged until the end of the solution. Now fine.

The unit in the top left corner is organized. Now you need to get zeros in these places:

We get zeros using a “difficult” transformation. First we deal with the second line (2, –1, 3, 13). What needs to be done to get zero in the first position? Need to to the second line add the first line multiplied by –2. Mentally or on a draft, multiply the first line by –2: (–2, –4, 2, –18). And we consistently carry out (again mentally or on a draft) addition, to the second line we add the first line, already multiplied by –2:

We write the result in the second line:

We deal with the third line in the same way (3, 2, –5, –1). To get a zero in the first position, you need to the third line add the first line multiplied by –3. Mentally or on a draft, multiply the first line by –3: (–3, –6, 3, –27). AND to the third line we add the first line multiplied by –3:

We write the result in the third line:

In practice, these actions are usually performed orally and written down in one step:

No need to count everything at once and at the same time. The order of calculations and “writing in” the results consistent and usually it’s like this: first we rewrite the first line, and slowly puff on ourselves - CONSISTENTLY and ATTENTIVELY:


And I have already discussed the mental process of the calculations themselves above.

In this example, this is easy to do; we divide the second line by –5 (since all numbers there are divisible by 5 without a remainder). At the same time, we divide the third line by –2, because the smaller the numbers, the simpler the solution:

At the final stage of elementary transformations, you need to get another zero here:

For this to the third line we add the second line multiplied by –2:


Try to figure out this action yourself - mentally multiply the second line by –2 and perform the addition.

The last action performed is the hairstyle of the result, divide the third line by 3.

As a result of elementary transformations, an equivalent system of linear equations was obtained:

Cool.

Now the reverse of the Gaussian method comes into play. The equations “unwind” from bottom to top.

In the third equation we already have a ready result:

Let's look at the second equation: . The meaning of "zet" is already known, thus:

And finally, the first equation: . “Igrek” and “zet” are known, it’s just a matter of little things:


Answer:

As has already been noted several times, for any system of equations it is possible and necessary to check the solution found, fortunately, this is easy and quick.

Example 2


This is an example for an independent solution, a sample of the final design and an answer at the end of the lesson.

It should be noted that your progress of the decision may not coincide with my decision process, and this is a feature of the Gauss method. But the answers must be the same!

Example 3

Solve a system of linear equations using the Gauss method

Let us write down the extended matrix of the system and, using elementary transformations, bring it to a stepwise form:

We look at the upper left “step”. We should have one there. The problem is that there are no units in the first column at all, so rearranging the rows will not solve anything. In such cases, the unit must be organized using an elementary transformation. This can usually be done in several ways. I did this:
(1) To the first line we add the second line, multiplied by –1. That is, we mentally multiplied the second line by –1 and added the first and second lines, while the second line did not change.

Now at the top left there is “minus one”, which suits us quite well. Anyone who wants to get +1 can perform an additional movement: multiply the first line by –1 (change its sign).

(2) The first line multiplied by 5 was added to the second line. The first line multiplied by 3 was added to the third line.

(3) The first line was multiplied by –1, in principle, this is for beauty. The sign of the third line was also changed and it was moved to second place, so that on the second “step” we had the required unit.

(4) The second line was added to the third line, multiplied by 2.

(5) The third line was divided by 3.

A bad sign that indicates an error in calculations (more rarely, a typo) is a “bad” bottom line. That is, if we got something like , below, and, accordingly, , then with a high degree of probability we can say that an error was made during elementary transformations.

We charge the reverse, in the design of examples they often do not rewrite the system itself, but the equations are “taken directly from the given matrix.” The reverse stroke, I remind you, works from bottom to top. Yes, here is a gift:


Answer: .

Example 4

Solve a system of linear equations using the Gauss method

This is an example for you to solve on your own, it is somewhat more complicated. It's okay if someone gets confused. Full solution and sample design at the end of the lesson. Your solution may be different from my solution.

In the last part we will look at some features of the Gaussian algorithm.
The first feature is that sometimes some variables are missing from the system equations, for example:

How to correctly write the extended system matrix? I already talked about this point in class. Cramer's rule. Matrix method. In the extended matrix of the system, we put zeros in place of missing variables:

By the way, this is a fairly easy example, since the first column already has one zero, and there are fewer elementary transformations to perform.

The second feature is this. In all the examples considered, we placed either –1 or +1 on the “steps”. Could there be other numbers there? In some cases they can. Consider the system: .

Here on the upper left “step” we have a two. But we notice the fact that all the numbers in the first column are divisible by 2 without a remainder - and the other is two and six. And the two at the top left will suit us! In the first step, you need to perform the following transformations: add the first line multiplied by –1 to the second line; to the third line add the first line multiplied by –3. This way we will get the required zeros in the first column.

Or another conventional example: . Here the three on the second “step” also suits us, since 12 (the place where we need to get zero) is divisible by 3 without a remainder. It is necessary to carry out the following transformation: add the second line to the third line, multiplied by –4, as a result of which the zero we need will be obtained.

Gauss's method is universal, but there is one peculiarity. You can confidently learn to solve systems using other methods (Cramer’s method, matrix method) literally the first time - they have a very strict algorithm. But in order to feel confident in the Gaussian method, you need to get good at it and solve at least 5-10 systems. Therefore, at first there may be confusion and errors in calculations, and there is nothing unusual or tragic about this.

Rainy autumn weather outside the window.... Therefore, for everyone who wants a more complex example to solve on their own:

Example 5

Solve a system of four linear equations with four unknowns using the Gauss method.

Such a task is not so rare in practice. I think even a teapot who has thoroughly studied this page will understand the algorithm for solving such a system intuitively. Fundamentally, everything is the same - there are just more actions.

Cases when the system has no solutions (inconsistent) or has infinitely many solutions are discussed in the lesson Incompatible systems and systems with a general solution. There you can fix the considered algorithm of the Gaussian method.

I wish you success!

Solutions and answers:

Example 2: Solution : Let us write down the extended matrix of the system and, using elementary transformations, bring it to a stepwise form.


Elementary transformations performed:
(1) The first line was added to the second line, multiplied by –2. The first line was added to the third line, multiplied by –1. Attention! Here you may be tempted to subtract the first from the third line; I highly recommend not subtracting it - the risk of error greatly increases. Just fold it!
(2) The sign of the second line was changed (multiplied by –1). The second and third lines have been swapped. note, that on the “steps” we are satisfied not only with one, but also with –1, which is even more convenient.
(3) The second line was added to the third line, multiplied by 5.
(4) The sign of the second line was changed (multiplied by –1). The third line was divided by 14.

Reverse:

Answer: .

Example 4: Solution : Let us write down the extended matrix of the system and, using elementary transformations, bring it to a stepwise form:

Conversions performed:
(1) A second line was added to the first line. Thus, the desired unit is organized on the upper left “step”.
(2) The first line multiplied by 7 was added to the second line. The first line multiplied by 6 was added to the third line.

With the second “step” everything gets worse , the “candidates” for it are the numbers 17 and 23, and we need either one or –1. Transformations (3) and (4) will be aimed at obtaining the desired unit

(3) The second line was added to the third line, multiplied by –1.
(4) The third line was added to the second line, multiplied by –3.
(3) The second line was added to the third line, multiplied by 4. The second line was added to the fourth line, multiplied by –1.
(4) The sign of the second line was changed. The fourth line was divided by 3 and placed in place of the third line.
(5) The third line was added to the fourth line, multiplied by –5.

Reverse:



KOSTROMA BRANCH OF THE MILITARY UNIVERSITY OF RCB PROTECTION

Department of Automation of Troop Control

For teachers only

"I approve"

Head of Department No. 9

Colonel YAKOVLEV A.B.

"____"______________ 2004

Associate Professor SMIRNOVA A.I.

"MATRICES. GAUSS METHOD"

LECTURE No. 2 / 3

Discussed at department meeting No. 9

"____"___________ 2003

Protocol No.___________

Kostroma, 2003

Cpossession

Introduction

1. Operations on matrices.

2. Solving systems of linear equations using the Gauss method.

Conclusion

Literature

1. V.E. Schneider et al., A short course in higher mathematics, volume I, chapter 2, §6, 7.

2. V.S. Shchipachev, Higher Mathematics, Ch. 10, § 1, 7.

INTRODUCTION

The lecture discusses the concept of a matrix, operations on matrices, as well as the Gauss method for solving systems of linear equations. For a special case, the so-called square matrices, you can calculate determinants, the concept of which was discussed in the previous lecture. The Gauss method is more general than the previously discussed Cramer method for solving linear systems. The questions discussed in the lecture are used in various branches of mathematics and in applied issues.


1st study question ACTIONS ON MATRICES

DEFINITION 1. Rectangular table ofm, nnumbers containingm– lines andn– columns, like:

called size matrix m ´ n

The numbers that make up the matrix are called elements of the matrix.

Element position Ai j in the matrix are characterized by a double index:

first i– line number;

second j– the number of the column at the intersection of which the element is located.

Matrices are abbreviated in capital letters: A, B, C...

Briefly it can be written like this:

DEFINITION 2.A matrix in which the number of rows is equal to the number of columns, i.e.m = n, called square.

The number of rows (columns) of a square matrix is ​​called the order of the matrix.

EXAMPLE.

REMARK 1. We will consider matrices whose elements are numbers. In mathematics and its applications, there are matrices whose elements are other objects, for example, functions, vectors.

REMARK 2. Matrix is ​​a special mathematical concept. Using matrices it is convenient to write various transformations, linear systems, etc., therefore matrices are often found in mathematical and technical literature.

DEFINITION 3.Size Matrix 1 n, consisting of one line, is called matrix - row.

T size matrix 1 consisting of one column is called matrix - column.

DEFINITION 4. Zero matrix is a matrix whose elements are all zero.

Consider a square matrix of order n:

side diagonal

main diagonal

The diagonal of a square matrix going from the top left element of the table to the bottom right is called main diagonal of the matrix(on the main diagonal there are elements of the form Ai i).

The diagonal going from the top right element to the bottom left element is called secondary diagonal of the matrix.

Let's consider some particular types of square matrices.

1) A square matrix is ​​called diagonal, if all elements not on the main diagonal are equal to zero.

2) A diagonal matrix in which all elements of the main diagonal are equal to one is called single. Indicated by:

3) A square matrix is ​​called triangular, if all elements located on one side of the main diagonal are equal to zero:

top bottom

triangular matrix triangular matrix

For a square matrix, the following concept is introduced: matrix determinant. This is a determinant made up of matrix elements. Indicated by:

It is clear that the determinant of the identity matrix is ​​1: ½ E½ = 1

COMMENT. A non-square matrix has no determinant.

If the determinant of a quadratic matrix is ​​nonzero, then the matrix is ​​called non-degenerate, if the determinant is zero, then the matrix is ​​called degenerate.

DEFINITION 5.The matrix obtained from a given one by replacing its rows with columns with the same numbers is called transposed to the given one.

Matrix transposed to A, denote A T.

EXAMPLE.

3 3 2

DEFINITION.Two matrices of the same size are called equal if all their corresponding elements are equal .

Let's consider operations on matrices.

MATRIX ADDITION.

The addition operation is introduced only for matrices of the same size.

DEFINITION 7. The sum of two matrices A = (a i j ) and B = ( b i j ) same size called matrix C = (ci j)of the same size, the elements of which are equal to the sums of the corresponding elements of the terms of the matrices, i.e. Withi j = a i j + b i j

The sum of matrices is denoted A + B.

EXAMPLE.

MULTIPLYING MATRICES BY A REAL NUMBER

DEFINITION 8.To multiply a matrix by a numberk, you need to multiply each element of the matrix by this number:

If A=(Ai j ), That k · A= (k · a i j )

EXAMPLE.

PROPERTIES OF MATRIX ADDITION AND MULTIPLICATION BY A NUMBER

1. Commutative property: A + B = B + A

2. Combination property: (A + B) + C = A + (B + C)

3. Distributive property: k · (A + B) = k A + k B, Where k number

MATRIX MULTIPLICATION

Matrix A let's call it consistent with the matrix IN, if the number of matrix columns A equal to the number of rows of the matrix IN, i.e. for matched matrices matrix A has the size m ´ n, matrix IN has the size n ´ k . Square matrices are consistent if they are of the same order.

DEFINITION 9.The product of a matrix A of sizem ´ nper matrix B sizen ´ kcalled a matrix of size Cm ´ k, whose element ai j , located ini-th line andj– th column, equal to the sum of the products of the elementsi– th rows of matrix A into the corresponding elementsj– column of matrix B, i.e.

c i j = a i 1 b 1 j + a i 2 b 2 j +……+ a i n b n j

Let's denote: C = A· IN.

That

Work IN´ A does not make sense, because matrices

not agreed upon.

NOTE 1. If A´ IN makes sense then IN´ A may not make sense.

NOTE 2. If it makes sense A´ IN And IN´ A, then, generally speaking

A´ IN ¹ IN´ A, i.e. Matrix multiplication does not have a commutative law.

NOTE 3. If A is a square matrix and E is the identity matrix of the same order, then A´ E= E´ A = A.

It follows that the identity matrix plays the role of one when multiplied.

EXAMPLES. Find it if possible A´ IN And IN´ A.

Solution: Square matrices of the same second order are consistent in that other order, so A´ IN And IN´ A exist.

Let a system of linear algebraic equations be given that needs to be solved (find such values ​​of the unknowns xi that turn each equation of the system into an equality).

We know that a system of linear algebraic equations can:

1) Have no solutions (be non-joint).
2) Have infinitely many solutions.
3) Have a single solution.

As we remember, Cramer's rule and the matrix method are not suitable in cases where the system has infinitely many solutions or is inconsistent. Gauss methodthe most powerful and versatile tool for finding solutions to any system of linear equations, which in every case will lead us to the answer! The method algorithm itself works the same in all three cases. If the Cramer and matrix methods require knowledge of determinants, then to apply the Gauss method you only need knowledge of arithmetic operations, which makes it accessible even to primary school students.

Augmented matrix transformations ( this is the matrix of the system - a matrix composed only of the coefficients of the unknowns, plus a column of free terms) systems of linear algebraic equations in the Gauss method:

1) With troki matrices Can rearrange in some places.

2) if proportional (as a special case – identical) rows appear (or exist) in the matrix, then you should delete from the matrix all these rows except one.

3) if a zero row appears in the matrix during transformations, then it should also be delete.

4) a row of the matrix can be multiply (divide) to any number other than zero.

5) to a row of the matrix you can add another string multiplied by a number, different from zero.

In the Gauss method, elementary transformations do not change the solution of the system of equations.

The Gauss method consists of two stages:

  1. “Direct move” - using elementary transformations, bring the extended matrix of a system of linear algebraic equations to a “triangular” step form: the elements of the extended matrix located below the main diagonal are equal to zero (top-down move). For example, to this type:

To do this, perform the following steps:

1) Let us consider the first equation of a system of linear algebraic equations and the coefficient for x 1 is equal to K. The second, third, etc. we transform the equations as follows: we divide each equation (coefficients of the unknowns, including free terms) by the coefficient of the unknown x 1 in each equation, and multiply by K. After this, we subtract the first from the second equation (coefficients of unknowns and free terms). For x 1 in the second equation we obtain the coefficient 0. From the third transformed equation we subtract the first equation until all equations except the first, for unknown x 1, have a coefficient 0.

2) Let's move on to the next equation. Let this be the second equation and the coefficient for x 2 equal to M. We proceed with all “lower” equations as described above. Thus, “under” the unknown x 2 there will be zeros in all equations.

3) Move on to the next equation and so on until one last unknown and the transformed free term remain.

  1. The “reverse move” of the Gauss method is to obtain a solution to a system of linear algebraic equations (the “bottom-up” move). From the last “lower” equation we obtain one first solution - the unknown x n. To do this, we solve the elementary equation A * x n = B. In the example given above, x 3 = 4. We substitute the found value into the “upper” next equation and solve it with respect to the next unknown. For example, x 2 – 4 = 1, i.e. x 2 = 5. And so on until we find all the unknowns.

Example.

Let's solve the system of linear equations using the Gauss method, as some authors advise:

Let us write down the extended matrix of the system and, using elementary transformations, bring it to a stepwise form:

We look at the upper left “step”. We should have one there. The problem is that there are no units in the first column at all, so rearranging the rows will not solve anything. In such cases, the unit must be organized using an elementary transformation. This can usually be done in several ways. Let's do this:
1 step . To the first line we add the second line, multiplied by –1. That is, we mentally multiplied the second line by –1 and added the first and second lines, while the second line did not change.

Now at the top left there is “minus one”, which suits us quite well. Anyone who wants to get +1 can perform an additional action: multiply the first line by –1 (change its sign).

Step 2 . The first line, multiplied by 5, was added to the second line. The first line, multiplied by 3, was added to the third line.

Step 3 . The first line was multiplied by –1, in principle, this is for beauty. The sign of the third line was also changed and it was moved to second place, so that on the second “step” we had the required unit.

Step 4 . The third line was added to the second line, multiplied by 2.

Step 5 . The third line was divided by 3.

A sign that indicates an error in calculations (more rarely, a typo) is a “bad” bottom line. That is, if we got something like (0 0 11 |23) below, and, accordingly, 11x 3 = 23, x 3 = 23/11, then with a high degree of probability we can say that an error was made during elementary transformations.

Let’s do the reverse; in the design of examples, the system itself is often not rewritten, but the equations are “taken directly from the given matrix.” The reverse move, I remind you, works from the bottom up. In this example, the result was a gift:

x 3 = 1
x 2 = 3
x 1 + x 2 – x 3 = 1, therefore x 1 + 3 – 1 = 1, x 1 = –1

Answer:x 1 = –1, x 2 = 3, x 3 = 1.

Let's solve the same system using the proposed algorithm. We get

4 2 –1 1
5 3 –2 2
3 2 –3 0

Divide the second equation by 5, and the third by 3. We get:

4 2 –1 1
1 0.6 –0.4 0.4
1 0.66 –1 0

Multiplying the second and third equations by 4, we get:

4 2 –1 1
4 2,4 –1.6 1.6
4 2.64 –4 0

Subtract the first equation from the second and third equations, we have:

4 2 –1 1
0 0.4 –0.6 0.6
0 0.64 –3 –1

Divide the third equation by 0.64:

4 2 –1 1
0 0.4 –0.6 0.6
0 1 –4.6875 –1.5625

Multiply the third equation by 0.4

4 2 –1 1
0 0.4 –0.6 0.6
0 0.4 –1.875 –0.625

Subtracting the second from the third equation, we obtain a “stepped” extended matrix:

4 2 –1 1
0 0.4 –0.6 0.6
0 0 –1.275 –1.225

Thus, since the error accumulated during the calculations, we obtain x 3 = 0.96 or approximately 1.

x 2 = 3 and x 1 = –1.

By solving in this way, you will never get confused in the calculations and, despite the calculation errors, you will get the result.

This method of solving a system of linear algebraic equations is easily programmable and does not take into account the specific features of coefficients for unknowns, because in practice (in economic and technical calculations) one has to deal with non-integer coefficients.

I wish you success! See you in class! Tutor.

blog.site, when copying material in full or in part, a link to the original source is required.

Since the beginning of the 16th-18th centuries, mathematicians have intensively begun to study functions, thanks to which so much in our lives has changed. Computer technology simply would not exist without this knowledge. Various concepts, theorems, and solution techniques have been created to solve complex problems, linear equations, and functions. One of such universal and rational methods and techniques for solving linear equations and their systems was the Gauss method. Matrices, their rank, determinant - everything can be calculated without using complex operations.

What is SLAU

In mathematics, there is the concept of SLAE - a system of linear algebraic equations. What is she like? This is a set of m equations with the required n unknown quantities, usually denoted as x, y, z, or x 1, x 2 ... x n, or other symbols. Solving a given system using the Gaussian method means finding all the unknown unknowns. If a system has the same number of unknowns and equations, then it is called an nth order system.

The most popular methods for solving SLAEs

In educational institutions of secondary education, various methods for solving such systems are studied. Most often these are simple equations consisting of two unknowns, so any existing method for finding the answer to them will not take much time. This can be like a substitution method, when another is derived from one equation and substituted into the original one. Or the method of term-by-term subtraction and addition. But the Gauss method is considered the easiest and most universal. It makes it possible to solve equations with any number of unknowns. Why is this particular technique considered rational? It's simple. The good thing about the matrix method is that it does not require rewriting unnecessary symbols several times as unknowns; it is enough to perform arithmetic operations on the coefficients - and you will get a reliable result.

Where are SLAEs used in practice?

The solution to SLAEs are the points of intersection of lines on the graphs of functions. In our high-tech computer age, people who are closely associated with the development of games and other programs need to know how to solve such systems, what they represent and how to check the correctness of the resulting result. Most often, programmers develop special linear algebra calculator programs, which also includes a system of linear equations. The Gauss method allows you to calculate all existing solutions. Other simplified formulas and techniques are also used.

SLAU compatibility criterion

Such a system can only be solved if it is compatible. For clarity, let us represent the SLAE in the form Ax=b. It has a solution if rang(A) equals rang(A,b). In this case, (A,b) is an extended form matrix that can be obtained from matrix A by rewriting it with free terms. It turns out that solving linear equations using the Gaussian method is quite easy.

Perhaps some of the symbols are not entirely clear, so it is necessary to consider everything with an example. Let's say there is a system: x+y=1; 2x-3y=6. It consists of only two equations, in which there are 2 unknowns. The system will have a solution only if the rank of its matrix is ​​equal to the rank of the extended matrix. What is rank? This is the number of independent lines of the system. In our case, the rank of the matrix is ​​2. Matrix A will consist of coefficients located near the unknowns, and the coefficients located behind the “=” sign also fit into the extended matrix.

Why can SLAEs be represented in matrix form?

Based on the compatibility criterion according to the proven Kronecker-Capelli theorem, a system of linear algebraic equations can be represented in matrix form. Using the Gaussian cascade method, you can solve the matrix and get a single reliable answer for the entire system. If the rank of an ordinary matrix is ​​equal to the rank of its extended matrix, but is less than the number of unknowns, then the system has an infinite number of answers.

Matrix transformations

Before moving on to solving matrices, you need to know what actions can be performed on their elements. There are several elementary transformations:

  • By rewriting the system in matrix form and solving it, you can multiply all elements of the series by the same coefficient.
  • In order to transform the matrix into canonical form, you can swap two parallel rows. The canonical form implies that all matrix elements that are located along the main diagonal become ones, and the remaining ones become zeros.
  • The corresponding elements of parallel rows of the matrix can be added to one another.

Jordan-Gauss method

The essence of solving systems of linear homogeneous and inhomogeneous equations using the Gaussian method is to gradually eliminate the unknowns. Let's say we have a system of two equations in which there are two unknowns. To find them, you need to check the system for compatibility. The equation is solved very simply by the Gauss method. It is necessary to write down the coefficients located near each unknown in matrix form. To solve the system, you will need to write out the extended matrix. If one of the equations contains a smaller number of unknowns, then “0” must be put in place of the missing element. All known transformation methods are applied to the matrix: multiplication, division by a number, adding the corresponding elements of the series to each other, and others. It turns out that in each row it is necessary to leave one variable with the value “1”, the rest should be reduced to zero. For a more precise understanding, it is necessary to consider the Gauss method with examples.

A simple example of solving a 2x2 system

To begin with, let's take a simple system of algebraic equations, in which there will be 2 unknowns.

Let's rewrite it into an extended matrix.

To solve this system of linear equations, only two operations are required. We need to bring the matrix to canonical form so that there are ones along the main diagonal. So, transferring from the matrix form back to the system, we get the equations: 1x+0y=b1 and 0x+1y=b2, where b1 and b2 are the resulting answers in the solution process.

  1. The first action when solving an extended matrix will be this: the first row must be multiplied by -7 and added corresponding elements to the second row in order to get rid of one unknown in the second equation.
  2. Since solving equations using the Gauss method involves reducing the matrix to canonical form, then it is necessary to perform the same operations with the first equation and remove the second variable. To do this, we subtract the second line from the first and get the required answer - the solution of the SLAE. Or, as shown in the figure, we multiply the second row by a factor of -1 and add the elements of the second row to the first row. It is the same.

As we can see, our system was solved by the Jordan-Gauss method. We rewrite it in the required form: x=-5, y=7.

An example of a 3x3 SLAE solution

Suppose we have a more complex system of linear equations. The Gauss method makes it possible to calculate the answer even for the most seemingly confusing system. Therefore, in order to delve deeper into the calculation methodology, you can move on to a more complex example with three unknowns.

As in the previous example, we rewrite the system in the form of an extended matrix and begin to bring it to its canonical form.

To solve this system, you will need to perform much more actions than in the previous example.

  1. First you need to make the first column one unit element and the rest zeros. To do this, multiply the first equation by -1 and add the second equation to it. It is important to remember that we rewrite the first line in its original form, and the second in a modified form.
  2. Next, we remove this same first unknown from the third equation. To do this, multiply the elements of the first row by -2 and add them to the third row. Now the first and second lines are rewritten in their original form, and the third - with changes. As you can see from the result, we got the first one at the beginning of the main diagonal of the matrix and the remaining zeros. A few more steps, and the system of equations by the Gaussian method will be reliably solved.
  3. Now you need to perform operations on other elements of the rows. The third and fourth actions can be combined into one. We need to divide the second and third lines by -1 to get rid of the minus ones on the diagonal. We have already brought the third line to the required form.
  4. Next we bring the second line to canonical form. To do this, we multiply the elements of the third row by -3 and add them to the second row of the matrix. From the result it is clear that the second line is also reduced to the form we need. It remains to perform a few more operations and remove the coefficients of the unknowns from the first line.
  5. To make 0 from the second element of a row, you need to multiply the third row by -3 and add it to the first row.
  6. The next decisive step will be to add the necessary elements of the second row to the first row. This way we get the canonical form of the matrix, and, accordingly, the answer.

As you can see, solving equations using the Gauss method is quite simple.

An example of solving a 4x4 system of equations

Some more complex systems of equations can be solved using the Gaussian method using computer programs. It is necessary to enter the coefficients for the unknowns into the existing empty cells, and the program itself will step by step calculate the required result, describing in detail each action.

Step-by-step instructions for solving such an example are described below.

In the first step, free coefficients and numbers for unknowns are entered into empty cells. Thus, we get the same extended matrix that we write manually.

And all the necessary arithmetic operations are performed to bring the extended matrix to its canonical form. It is necessary to understand that the answer to a system of equations is not always integers. Sometimes the solution may be from fractional numbers.

Checking the correctness of the solution

The Jordan-Gauss method provides for checking the correctness of the result. In order to find out whether the coefficients are calculated correctly, you just need to substitute the result into the original system of equations. The left side of the equation must match the right side behind the equal sign. If the answers do not match, then you need to recalculate the system or try to apply to it another method of solving SLAEs known to you, such as substitution or term-by-term subtraction and addition. After all, mathematics is a science that has a huge number of different solution methods. But remember: the result should always be the same, no matter what solution method you used.

Gauss method: the most common errors when solving SLAEs

When solving linear systems of equations, errors most often occur such as incorrect transfer of coefficients into matrix form. There are systems in which some unknowns are missing from one of the equations; then, when transferring data to an extended matrix, they can be lost. As a result, when solving this system, the result may not correspond to the actual one.

Another major mistake may be incorrectly writing out the final result. It is necessary to clearly understand that the first coefficient will correspond to the first unknown from the system, the second - to the second, and so on.

The Gauss method describes in detail the solution of linear equations. Thanks to it, it is easy to carry out the necessary operations and find the right result. In addition, this is a universal tool for finding a reliable answer to equations of any complexity. Maybe that's why it is so often used when solving SLAEs.

In our calculator you will find for free solving a system of linear equations using the Gauss method online with detailed solutions and even complex numbers. With us you can solve both an ordinary definite and an indefinite system of equations, which has an infinite number of solutions. In this case, in the answer you will receive the dependence of some variables through others - free ones. You can also check the system for consistency using the same Gaussian method.

You can read more about how to use our online calculator in the instructions.

About the method

When solving a system of linear equations using the Gaussian method, the following steps are performed.

  1. We write the extended matrix.
  2. In fact, the algorithm is divided into forward and reverse. A direct move is the reduction of a matrix to a stepwise form. The reverse move is the reduction of the matrix to a special stepwise form. But in practice, it is more convenient to immediately zero out what is located both above and below the element in question. Our calculator uses exactly this approach.
  3. It is important to note that when solving using the Gaussian method, the presence in the matrix of at least one zero row with a NON-zero right-hand side (column of free terms) indicates the inconsistency of the system. There is no solution in this case.

To best understand how the algorithm works, enter any example, select "very detailed solution" and study the answer.