What is the root of a quadratic equation. Solving quadratic equations: root formula, examples

The transformation of a complete quadratic equation into an incomplete one looks like this (for the case \(b=0\)):

For cases when \(c=0\) or when both coefficients are equal to zero, everything is similar.

Please note that \(a\) is not equal to zero, it cannot be equal to zero, since in this case it turns into:

Solution of incomplete quadratic equations.

First of all, you need to understand that the incomplete quadratic equation is still, therefore, it can be solved in the same way as the usual quadratic (through). To do this, we simply add the missing component of the equation with a zero coefficient.

Example : Find the roots of the equation \(3x^2-27=0\)
Solution :

We have an incomplete quadratic equation with the coefficient \(b=0\). That is, we can write the equation in the following form:

\(3x^2+0\cdot x-27=0\)

In fact, here is the same equation as at the beginning, but now it can be solved as an ordinary square. First we write down the coefficients.

\(a=3;\) \(b=0;\) \(c=-27;\)

Calculate the discriminant using the formula \(D=b^2-4ac\)

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Let's find the roots of the equation using the formulas
\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) and \(x_(2)=\)\(\frac(-b-\sqrt(D) )(2a)\)

\(x_(1)=\) \(\frac(-0+\sqrt(324))(2\cdot3)\)\(=\)\(\frac(18)(6)\) \(=3\)

\(x_(2)=\) \(\frac(-0-\sqrt(324))(2\cdot3)\)\(=\)\(\frac(-18)(6)\) \(=-3\)


Write down the answer

Answer : \(x_(1)=3\); \(x_(2)=-3\)


Example : Find the roots of the equation \(-x^2+x=0\)
Solution :

Again, an incomplete quadratic equation, but now the coefficient \(c\) is equal to zero. We write the equation as complete.

Quadratic equations often appear during the solution various tasks physics and mathematics. In this article, we will consider how to solve these equalities in a universal way "through the discriminant". Examples of using the acquired knowledge are also given in the article.

What equations are we talking about?

The figure below shows a formula in which x is an unknown variable, and the Latin characters a, b, c represent some known numbers.

Each of these symbols is called a coefficient. As you can see, the number "a" is in front of the squared variable x. This is the maximum power of the represented expression, which is why it is called a quadratic equation. Another name is often used: a second-order equation. The value a itself is a square coefficient (squaring the variable), b is a linear coefficient (it is next to the variable raised to the first power), and finally the number c is a free term.

Note that the form of the equation shown in the figure above is a general classical quadratic expression. In addition to it, there are other second-order equations in which the coefficients b, c can be zero.

When the task is set to solve the equality under consideration, this means that such values ​​of the variable x must be found that would satisfy it. The first thing to remember here is the following: since the maximum power of x is 2, this type of expression cannot have more than 2 solutions. This means that if, when solving the equation, 2 x values ​​\u200b\u200bthat satisfy it were found, then you can be sure that there is no 3rd number, substituting which instead of x, the equality would also be true. Solutions to an equation in mathematics are called its roots.

Methods for solving second-order equations

Solving equations of this type requires knowledge of some theory about them. In the school course of algebra, 4 different methods of solution are considered. Let's list them:

  • using factorization;
  • using the formula for the perfect square;
  • applying the graph of the corresponding quadratic function;
  • using the discriminant equation.

The advantage of the first method is its simplicity, however, it can not be applied to all equations. The second method is universal, but somewhat cumbersome. The third method is distinguished by its clarity, but it is not always convenient and applicable. And finally, using the discriminant equation is a universal and fairly simple way to find the roots of absolutely any second-order equation. Therefore, in the article we will consider only it.

Formula for obtaining the roots of the equation

Let us turn to the general form of the quadratic equation. Let's write it down: a*x²+ b*x + c =0. Before using the method of solving it "through the discriminant", equality should always be reduced to the written form. That is, it must consist of three terms (or less if b or c is 0).

For example, if there is an expression: x²-9*x+8 = -5*x+7*x², then first you should transfer all its members to one side of equality and add the terms containing the variable x in the same powers.

AT this case this operation will lead to the following expression: -6*x²-4*x+8=0, which is equivalent to the equation 6*x²+4*x-8=0 (here we have multiplied the left and right sides of the equation by -1).


In the example above, a = 6, b=4, c=-8. Note that all terms of the considered equality are always summed among themselves, therefore, if the "-" sign appears, this means that the corresponding coefficient is negative, like the number c in this case.


Having analyzed this point, we now turn to the formula itself, which makes it possible to obtain the roots of a quadratic equation. It looks like the photo below.


As can be seen from this expression, it allows you to get two roots (you should pay attention to the "±" sign). To do this, it is enough to substitute the coefficients b, c, and a into it.

The concept of discriminant

In the previous paragraph, a formula was given that allows you to quickly solve any second-order equation. In it, the radical expression is called the discriminant, that is, D \u003d b²-4 * a * c.

Why is this part of the formula singled out, and does it even have its own name? The fact is that the discriminant connects all three coefficients of the equation into a single expression. The last fact means that it completely carries information about the roots, which can be expressed by the following list:

  1. D>0: equality has 2 various solutions, both of which are real numbers.
  2. D=0: The equation has only one root, and it is a real number.

The task of determining the discriminant


Here is a simple example of how to find the discriminant. Let the following equality be given: 2*x² - 4+5*x-9*x² = 3*x-5*x²+7.

Let's bring it to the standard form, we get: (2*x²-9*x²+5*x²) + (5*x-3*x) + (- 4-7) = 0, from which we come to equality: -2*x² +2*x-11 = 0. Here a=-2, b=2, c=-11.

Now you can use the named formula for the discriminant: D \u003d 2² - 4 * (-2) * (-11) \u003d -84. The resulting number is the answer to the task. Since the discriminant in the example is less than zero, we can say that this quadratic equation has no real roots. Its solution will be only numbers of complex type.

An example of inequality through the discriminant

Let's solve problems of a slightly different type: the equality -3*x²-6*x+c = 0 is given. It is necessary to find such values ​​of c for which D>0.

In this case, only 2 out of 3 coefficients are known, so it will not be possible to calculate the exact value of the discriminant, but it is known that it is positive. We use the last fact when compiling the inequality: D= (-6)²-4*(-3)*c>0 => 36+12*c>0. The solution of the obtained inequality leads to the result: c>-3.

Let's check the resulting number. To do this, we calculate D for 2 cases: c=-2 and c=-4. The number -2 satisfies the result (-2>-3), the corresponding discriminant will have the value: D = 12>0. In turn, the number -4 does not satisfy the inequality (-4Thus, any numbers c that are greater than -3 will satisfy the condition.

An example of solving an equation

Here is a problem that consists not only in finding the discriminant, but also in solving the equation. It is necessary to find the roots for the equality -2*x²+7-9*x = 0.

In this example, the discriminant is equal to the following value: D = 81-4*(-2)*7= 137. Then the roots of the equation are determined as follows: x = (9±√137)/(-4). These are the exact values ​​of the roots, if you calculate the root approximately, then you get the numbers: x \u003d -5.176 and x \u003d 0.676.

geometric problem

We will solve a problem that will require not only the ability to calculate the discriminant, but also the use of skills abstract thinking and knowledge of how to write quadratic equations.

Bob had a 5 x 4 meter duvet. The boy wanted to sew a continuous strip of beautiful fabric around the entire perimeter. How thick will this strip be if it is known that Bob has 10 m² of fabric.


Let the strip have a thickness of x m, then the area of ​​​​the fabric along the long side of the blanket will be (5 + 2 * x) * x, and since there are 2 long sides, we have: 2 * x * (5 + 2 * x). On the short side, the area of ​​the sewn fabric will be 4*x, since there are 2 of these sides, we get the value 8*x. Note that 2*x has been added to the long side because the length of the quilt has increased by that number. The total area of ​​fabric sewn to the blanket is 10 m². Therefore, we get the equality: 2*x*(5+2*x) + 8*x = 10 => 4*x²+18*x-10 = 0.

For this example, the discriminant is: D = 18²-4*4*(-10) = 484. Its root is 22. Using the formula, we find the desired roots: x = (-18±22)/(2*4) = (- 5; 0.5). Obviously, of the two roots, only the number 0.5 is suitable for the condition of the problem.

Thus, the strip of fabric that Bob sews to his blanket will be 50 cm wide.

Formulas for the roots of a quadratic equation. The cases of real, multiple and complex roots are considered. Factorization square trinomial. Geometric interpretation. Examples of determining roots and factorization.

Basic formulas

Consider the quadratic equation:
(1) .
The roots of a quadratic equation(1) are determined by the formulas:
; .
These formulas can be combined like this:
.
When the roots of the quadratic equation are known, then the polynomial of the second degree can be represented as a product of factors (factored):
.

Further, we assume that are real numbers.
Consider discriminant of a quadratic equation:
.
If the discriminant is positive, then the quadratic equation (1) has two different real roots:
; .
Then the factorization of the square trinomial has the form:
.
If the discriminant zero, , then the quadratic equation (1) has two multiple (equal) real roots:
.
Factorization:
.
If the discriminant is negative, then the quadratic equation (1) has two complex conjugate roots:
;
.
Here is the imaginary unit, ;
and are the real and imaginary parts of the roots:
; .
Then

.

Graphic interpretation

If build function graph
,
which is a parabola, then the points of intersection of the graph with the axis will be the roots of the equation
.
When , the graph intersects the abscissa axis (axis) at two points.
When , the graph touches the x-axis at one point.
When , the graph does not cross the x-axis.

Below are examples of such graphs.

Useful Formulas Related to Quadratic Equation

(f.1) ;
(f.2) ;
(f.3) .

Derivation of the formula for the roots of a quadratic equation

We perform transformations and apply formulas (f.1) and (f.3):




,
where
; .

So, we got the formula for the polynomial of the second degree in the form:
.
From this it can be seen that the equation

performed at
and .
That is, and are the roots of the quadratic equation
.

Examples of determining the roots of a quadratic equation

Example 1


(1.1) .

Solution


.
Comparing with our equation (1.1), we find the values ​​of the coefficients:
.
Finding the discriminant:
.
Since the discriminant is positive, the equation has two real roots:
;
;
.

From here we obtain the decomposition of the square trinomial into factors:

.

Graph of the function y = 2 x 2 + 7 x + 3 crosses the x-axis at two points.

Let's plot the function
.
The graph of this function is a parabola. It crosses the x-axis (axis) at two points:
and .
These points are the roots of the original equation (1.1).

Answer

;
;
.

Example 2

Find the roots of a quadratic equation:
(2.1) .

Solution

We write the quadratic equation in general view:
.
Comparing with the original equation (2.1), we find the values ​​of the coefficients:
.
Finding the discriminant:
.
Since the discriminant is zero, the equation has two multiple (equal) roots:
;
.

Then the factorization of the trinomial has the form:
.

Graph of the function y = x 2 - 4 x + 4 touches the x-axis at one point.

Let's plot the function
.
The graph of this function is a parabola. It touches the x-axis (axis) at one point:
.
This point is the root of the original equation (2.1). Since this root is factored twice:
,
then such a root is called a multiple. That is, they consider that there are two equal roots:
.

Answer

;
.

Example 3

Find the roots of a quadratic equation:
(3.1) .

Solution

We write the quadratic equation in general form:
(1) .
Let us rewrite the original equation (3.1):
.
Comparing with (1), we find the values ​​of the coefficients:
.
Finding the discriminant:
.
The discriminant is negative, . Therefore, there are no real roots.

You can find complex roots:
;
;
.

Then


.

The graph of the function does not cross the x-axis. There are no real roots.

Let's plot the function
.
The graph of this function is a parabola. It does not cross the abscissa (axis). Therefore, there are no real roots.

Answer

There are no real roots. Complex roots:
;
;
.

With this math program you can solve quadratic equation.

The program not only gives the answer to the problem, but also displays the solution process in two ways:
- using the discriminant
- using the Vieta theorem (if possible).

Moreover, the answer is displayed exact, not approximate.
For example, for the equation \(81x^2-16x-1=0\), the answer is displayed in this form:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ instead of this: \(x_1 = 0.247; \quad x_2 = -0.05 \)

This program can be useful for high school students general education schools in preparation for control work and exams, when testing knowledge before the exam, parents to control the solution of many problems in mathematics and algebra. Or maybe it's too expensive for you to hire a tutor or buy new textbooks? Or do you just want to get it done as soon as possible? homework math or algebra? In this case, you can also use our programs with a detailed solution.

In this way, you can conduct your own training and/or the training of your younger brothers or sisters, while the level of education in the field of tasks to be solved is increased.

If you are not familiar with the rules for entering a square polynomial, we recommend that you familiarize yourself with them.

Rules for entering a square polynomial

Any Latin letter can act as a variable.
For example: \(x, y, z, a, b, c, o, p, q \) etc.

Numbers can be entered as integers or fractions.
Moreover, fractional numbers can be entered not only as a decimal, but also as an ordinary fraction.

Rules for entering decimal fractions.
In decimal fractions, the fractional part from the integer can be separated by either a dot or a comma.
For example, you can enter decimals so: 2.5x - 3.5x^2

Rules for entering ordinary fractions.
Only a whole number can act as the numerator, denominator and integer part of a fraction.

The denominator cannot be negative.

When entering a numerical fraction, the numerator is separated from the denominator by a division sign: /
whole part separated from the fraction by an ampersand: &
Input: 3&1/3 - 5&6/5z +1/7z^2
Result: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2 \)

When entering an expression you can use brackets. In this case, when solving a quadratic equation, the introduced expression is first simplified.
For example: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Decide

It was found that some scripts needed to solve this task were not loaded, and the program may not work.
You may have AdBlock enabled.
In this case, disable it and refresh the page.

You have JavaScript disabled in your browser.
JavaScript must be enabled for the solution to appear.
Here are instructions on how to enable JavaScript in your browser.

Because There are a lot of people who want to solve the problem, your request is queued.
After a few seconds, the solution will appear below.
Wait, please sec...


If you noticed an error in the solution, then you can write about it in the Feedback Form .
Do not forget indicate which task you decide what enter in the fields.



Our games, puzzles, emulators:

A bit of theory.

Quadratic equation and its roots. Incomplete quadratic equations

Each of the equations
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
has the form
\(ax^2+bx+c=0, \)
where x is a variable, a, b and c are numbers.
In the first equation a = -1, b = 6 and c = 1.4, in the second a = 8, b = -7 and c = 0, in the third a = 1, b = 0 and c = 4/9. Such equations are called quadratic equations.

Definition.
quadratic equation an equation of the form ax 2 +bx+c=0 is called, where x is a variable, a, b and c are some numbers, and \(a \neq 0 \).

The numbers a, b and c are the coefficients of the quadratic equation. The number a is called the first coefficient, the number b is the second coefficient and the number c is the intercept.

In each of the equations of the form ax 2 +bx+c=0, where \(a \neq 0 \), the largest power of the variable x is a square. Hence the name: quadratic equation.

Note that a quadratic equation is also called an equation of the second degree, since its left side is a polynomial of the second degree.

A quadratic equation in which the coefficient at x 2 is 1 is called reduced quadratic equation. For example, the given quadratic equations are the equations
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

If in the quadratic equation ax 2 +bx+c=0 at least one of the coefficients b or c is equal to zero, then such an equation is called incomplete quadratic equation. So, the equations -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 are incomplete quadratic equations. In the first of them b=0, in the second c=0, in the third b=0 and c=0.

Incomplete quadratic equations are of three types:
1) ax 2 +c=0, where \(c \neq 0 \);
2) ax 2 +bx=0, where \(b \neq 0 \);
3) ax2=0.

Consider the solution of equations of each of these types.

To solve an incomplete quadratic equation of the form ax 2 +c=0 for \(c \neq 0 \), its free term is transferred to right side and divide both sides of the equation by a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Since \(c \neq 0 \), then \(-\frac(c)(a) \neq 0 \)

If \(-\frac(c)(a)>0 \), then the equation has two roots.

If \(-\frac(c)(a) To solve an incomplete quadratic equation of the form ax 2 +bx=0 for \(b \neq 0 \) factorize its left side and obtain the equation
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (array)(l) x=0 \\ x=-\frac(b)(a) \end(array) \right. \)

Hence, an incomplete quadratic equation of the form ax 2 +bx=0 for \(b \neq 0 \) always has two roots.

An incomplete quadratic equation of the form ax 2 \u003d 0 is equivalent to the equation x 2 \u003d 0 and therefore has a single root 0.

The formula for the roots of a quadratic equation

Let us now consider how quadratic equations are solved in which both coefficients of the unknowns and the free term are nonzero.

We solve the quadratic equation in general form and as a result we obtain the formula of the roots. Then this formula can be applied to solve any quadratic equation.

Solve the quadratic equation ax 2 +bx+c=0

Dividing both its parts by a, we obtain the equivalent reduced quadratic equation
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

We transform this equation by highlighting the square of the binomial:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2 -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

The root expression is called discriminant of a quadratic equation ax 2 +bx+c=0 (“discriminant” in Latin - distinguisher). It is denoted by the letter D, i.e.
\(D = b^2-4ac\)

Now, using the notation of the discriminant, we rewrite the formula for the roots of the quadratic equation:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), where \(D= b^2-4ac \)

It's obvious that:
1) If D>0, then the quadratic equation has two roots.
2) If D=0, then the quadratic equation has one root \(x=-\frac(b)(2a)\).
3) If D Thus, depending on the value of the discriminant, the quadratic equation can have two roots (for D > 0), one root (for D = 0) or no roots (for D When solving a quadratic equation using this formula, it is advisable to do the following way:
1) calculate the discriminant and compare it with zero;
2) if the discriminant is positive or equal to zero, then use the root formula, if the discriminant is negative, then write down that there are no roots.

Vieta's theorem

The given quadratic equation ax 2 -7x+10=0 has roots 2 and 5. The sum of the roots is 7, and the product is 10. We see that the sum of the roots is equal to the second coefficient, taken with the opposite sign, and the product of the roots is equal to the free term. Any reduced quadratic equation that has roots has this property.

The sum of the roots of the given quadratic equation is equal to the second coefficient, taken with the opposite sign, and the product of the roots is equal to the free term.

Those. Vieta's theorem states that the roots x 1 and x 2 of the reduced quadratic equation x 2 +px+q=0 have the property:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

First level

Quadratic equations. Comprehensive guide (2019)

In the term "quadratic equation" the key word is "quadratic". This means that the equation must necessarily contain a variable (the same X) in the square, and at the same time there should not be Xs in the third (or greater) degree.

The solution of many equations is reduced to the solution of quadratic equations.

Let's learn to determine that we have a quadratic equation, and not some other.

Example 1

Get rid of the denominator and multiply each term of the equation by

Let's move everything to the left side and arrange the terms in descending order of powers of x

Now we can say with confidence that this equation is quadratic!

Example 2

Multiply the left and right sides by:

This equation, although it was originally in it, is not a square!

Example 3

Let's multiply everything by:

Scary? The fourth and second degrees ... However, if we make a replacement, we will see that we have a simple quadratic equation:

Example 4

It seems to be, but let's take a closer look. Let's move everything to the left side:

You see, it has shrunk - and now it's a simple linear equation!

Now try to determine for yourself which of the following equations are quadratic and which are not:

Examples:

Answers:

  1. square;
  2. square;
  3. not square;
  4. not square;
  5. not square;
  6. square;
  7. not square;
  8. square.

Mathematicians conditionally divide all quadratic equations into the following types:

  • Complete quadratic equations- equations in which the coefficients and, as well as the free term c, are not equal to zero (as in the example). In addition, among the complete quadratic equations, there are given are equations in which the coefficient (the equation from example one is not only complete, but also reduced!)
  • Incomplete quadratic equations- equations in which the coefficient and or free term c are equal to zero:

    They are incomplete because some element is missing from them. But the equation must always contain x squared !!! Otherwise, it will no longer be a quadratic, but some other equation.

Why did they come up with such a division? It would seem that there is an X squared, and okay. Such a division is due to the methods of solution. Let's consider each of them in more detail.

Solving incomplete quadratic equations

First, let's focus on solving incomplete quadratic equations - they are much simpler!

Incomplete quadratic equations are of types:

  1. , in this equation the coefficient is equal.
  2. , in this equation the free term is equal to.
  3. , in this equation the coefficient and the free term are equal.

1. i. Since we know how to extract Square root, then let's express from this equation

The expression can be either negative or positive. A squared number cannot be negative, because when multiplying two negative or two positive numbers, the result will always be positive number, so: if, then the equation has no solutions.

And if, then we get two roots. These formulas do not need to be memorized. The main thing is that you should always know and remember that it cannot be less.

Let's try to solve some examples.

Example 5:

Solve the Equation

Now it remains to extract the root from the left and right parts. After all, do you remember how to extract the roots?

Answer:

Never forget about roots with a negative sign!!!

Example 6:

Solve the Equation

Answer:

Example 7:

Solve the Equation

Ouch! The square of a number cannot be negative, which means that the equation

no roots!

For such equations in which there are no roots, mathematicians came up with a special icon - (empty set). And the answer can be written like this:

Answer:

Thus, this quadratic equation has two roots. There are no restrictions here, since we did not extract the root.
Example 8:

Solve the Equation

Let's take the common factor out of brackets:

In this way,

This equation has two roots.

Answer:

The simplest type of incomplete quadratic equations (although they are all simple, right?). Obviously, this equation always has only one root:

Here we will do without examples.

Solving complete quadratic equations

We remind you that the complete quadratic equation is an equation of the form equation where

Solving full quadratic equations is a bit more complicated (just a little bit) than those given.

Remember, any quadratic equation can be solved using the discriminant! Even incomplete.

The rest of the methods will help you do it faster, but if you have problems with quadratic equations, first master the solution using the discriminant.

1. Solving quadratic equations using the discriminant.

Solving quadratic equations in this way is very simple, the main thing is to remember the sequence of actions and a couple of formulas.

If, then the equation has a root. Special attention should be paid to the step. The discriminant () tells us the number of roots of the equation.

  • If, then the formula at the step will be reduced to. Thus, the equation will have only a root.
  • If, then we will not be able to extract the root of the discriminant at the step. This indicates that the equation has no roots.

Let's go back to our equations and look at a few examples.

Example 9:

Solve the Equation

Step 1 skip.

Step 2

Finding the discriminant:

So the equation has two roots.

Step 3

Answer:

Example 10:

Solve the Equation

The equation is in standard form, so Step 1 skip.

Step 2

Finding the discriminant:

So the equation has one root.

Answer:

Example 11:

Solve the Equation

The equation is in standard form, so Step 1 skip.

Step 2

Finding the discriminant:

This means that we will not be able to extract the root from the discriminant. There are no roots of the equation.

Now we know how to write down such answers correctly.

Answer: no roots

2. Solution of quadratic equations using the Vieta theorem.

If you remember, then there is such a type of equations that are called reduced (when the coefficient a is equal to):

Such equations are very easy to solve using Vieta's theorem:

The sum of the roots given quadratic equation is equal, and the product of the roots is equal.

Example 12:

Solve the Equation

This equation is suitable for solution using Vieta's theorem, because .

The sum of the roots of the equation is, i.e. we get the first equation:

And the product is:

Let's create and solve the system:

  • and. The sum is;
  • and. The sum is;
  • and. The amount is equal.

and are the solution of the system:

Answer: ; .

Example 13:

Solve the Equation

Answer:

Example 14:

Solve the Equation

The equation is reduced, which means:

Answer:

QUADRATIC EQUATIONS. AVERAGE LEVEL

What is a quadratic equation?

In other words, a quadratic equation is an equation of the form, where - unknown, - some numbers, moreover.

The number is called the highest or first coefficient quadratic equation, - second coefficient, a - free member.

Why? Because if, the equation will immediately become linear, because will disappear.

In this case, and can be equal to zero. In this stool equation is called incomplete. If all the terms are in place, that is, the equation is complete.

Solutions to various types of quadratic equations

Methods for solving incomplete quadratic equations:

To begin with, we will analyze the methods for solving incomplete quadratic equations - they are simpler.

The following types of equations can be distinguished:

I. , in this equation the coefficient and the free term are equal.

II. , in this equation the coefficient is equal.

III. , in this equation the free term is equal to.

Now consider the solution of each of these subtypes.

Obviously, this equation always has only one root:

A number squared cannot be negative, because when multiplying two negative or two positive numbers, the result will always be a positive number. That's why:

if, then the equation has no solutions;

if we have two roots

These formulas do not need to be memorized. The main thing to remember is that it cannot be less.

Examples:

Solutions:

Answer:

Never forget about roots with a negative sign!

The square of a number cannot be negative, which means that the equation

no roots.

To briefly write that the problem has no solutions, we use the empty set icon.

Answer:

So, this equation has two roots: and.

Answer:

Let's take the common factor out of brackets:

The product is equal to zero if at least one of the factors is equal to zero. This means that the equation has a solution when:

So, this quadratic equation has two roots: and.

Example:

Solve the equation.

Solution:

We factorize the left side of the equation and find the roots:

Answer:

Methods for solving complete quadratic equations:

1. Discriminant

Solving quadratic equations in this way is easy, the main thing is to remember the sequence of actions and a couple of formulas. Remember, any quadratic equation can be solved using the discriminant! Even incomplete.

Did you notice the root of the discriminant in the root formula? But the discriminant can be negative. What to do? We need to pay special attention to step 2. The discriminant tells us the number of roots of the equation.

  • If, then the equation has a root:
  • If, then the equation has the same root, but in fact, one root:

    Such roots are called double roots.

  • If, then the root of the discriminant is not extracted. This indicates that the equation has no roots.

Why is it possible different amount roots? Let's turn to geometric sense quadratic equation. The graph of the function is a parabola:

In a particular case, which is a quadratic equation, . And this means that the roots of the quadratic equation are the points of intersection with the x-axis (axis). The parabola may not cross the axis at all, or it may intersect it at one (when the top of the parabola lies on the axis) or two points.

In addition, the coefficient is responsible for the direction of the branches of the parabola. If, then the branches of the parabola are directed upwards, and if - then downwards.

Examples:

Solutions:

Answer:

Answer: .

Answer:

This means there are no solutions.

Answer: .

2. Vieta's theorem

Using the Vieta theorem is very easy: you just need to choose a pair of numbers whose product is equal to the free term of the equation, and the sum is equal to the second coefficient, taken with the opposite sign.

It is important to remember that Vieta's theorem can only be applied to given quadratic equations ().

Let's look at a few examples:

Example #1:

Solve the equation.

Solution:

This equation is suitable for solution using Vieta's theorem, because . Other coefficients: ; .

The sum of the roots of the equation is:

And the product is:

Let's select such pairs of numbers, the product of which is equal, and check if their sum is equal:

  • and. The sum is;
  • and. The sum is;
  • and. The amount is equal.

and are the solution of the system:

Thus, and are the roots of our equation.

Answer: ; .

Example #2:

Solution:

We select such pairs of numbers that give in the product, and then check whether their sum is equal:

and: give in total.

and: give in total. To get it, you just need to change the signs of the alleged roots: and, after all, the work.

Answer:

Example #3:

Solution:

The free term of the equation is negative, and hence the product of the roots - a negative number. This is possible only if one of the roots is negative and the other is positive. So the sum of the roots is differences of their modules.

We select such pairs of numbers that give in the product, and the difference of which is equal to:

and: their difference is - not suitable;

and: - not suitable;

and: - not suitable;

and: - suitable. It remains only to remember that one of the roots is negative. Since their sum must be equal, then the root, which is smaller in absolute value, must be negative: . We check:

Answer:

Example #4:

Solve the equation.

Solution:

The equation is reduced, which means:

The free term is negative, and hence the product of the roots is negative. And this is possible only when one root of the equation is negative and the other is positive.

We select such pairs of numbers whose product is equal, and then determine which roots should have a negative sign:

Obviously, only roots and are suitable for the first condition:

Answer:

Example #5:

Solve the equation.

Solution:

The equation is reduced, which means:

The sum of the roots is negative, which means that at least one of the roots is negative. But since their product is positive, it means both roots are minus.

We select such pairs of numbers, the product of which is equal to:

Obviously, the roots are the numbers and.

Answer:

Agree, it is very convenient - to invent roots orally, instead of counting this nasty discriminant. Try to use Vieta's theorem as often as possible.

But the Vieta theorem is needed in order to facilitate and speed up finding the roots. To make it profitable for you to use it, you must bring the actions to automatism. And for this, solve five more examples. But don't cheat: you can't use the discriminant! Only Vieta's theorem:

Solutions for tasks for independent work:

Task 1. ((x)^(2))-8x+12=0

According to Vieta's theorem:

As usual, we start the selection with the product:

Not suitable because the amount;

: the amount is what you need.

Answer: ; .

Task 2.

And again, our favorite Vieta theorem: the sum should work out, but the product is equal.

But since it should be not, but, we change the signs of the roots: and (in total).

Answer: ; .

Task 3.

Hmm... Where is it?

It is necessary to transfer all the terms into one part:

The sum of the roots is equal to the product.

Yes, stop! The equation is not given. But Vieta's theorem is applicable only in the given equations. So first you need to bring the equation. If you can’t bring it up, drop this idea and solve it in another way (for example, through the discriminant). Let me remind you that to bring a quadratic equation means to make the leading coefficient equal to:

Excellent. Then the sum of the roots is equal, and the product.

It's easier to pick up here: after all - a prime number (sorry for the tautology).

Answer: ; .

Task 4.

The free term is negative. What's so special about it? And the fact that the roots will be of different signs. And now, during the selection, we check not the sum of the roots, but the difference between their modules: this difference is equal, but the product.

So, the roots are equal and, but one of them is with a minus. Vieta's theorem tells us that the sum of the roots is equal to the second coefficient with the opposite sign, that is. This means that the smaller root will have a minus: and, since.

Answer: ; .

Task 5.

What needs to be done first? That's right, give the equation:

Again: we select the factors of the number, and their difference should be equal to:

The roots are equal and, but one of them is minus. Which? Their sum must be equal, which means that with a minus there will be a larger root.

Answer: ; .

Let me summarize:
  1. Vieta's theorem is used only in the given quadratic equations.
  2. Using the Vieta theorem, you can find the roots by selection, orally.
  3. If the equation is not given or no suitable pair of factors of the free term was found, then there are no integer roots, and you need to solve it in another way (for example, through the discriminant).

3. Full square selection method

If all the terms containing the unknown are represented as terms from the formulas of abbreviated multiplication - the square of the sum or difference - then after the change of variables it is possible to represent the equation in the form of an incomplete quadratic equation of the type.

For example:

Example 1:

Solve the equation: .

Solution:

Answer:

Example 2:

Solve the equation: .

Solution:

Answer:

In general, the transformation will look like this:

This implies: .

Doesn't it remind you of anything? It's the discriminant! That's exactly how the discriminant formula was obtained.

QUADRATIC EQUATIONS. BRIEFLY ABOUT THE MAIN

Quadratic equation is an equation of the form, where is the unknown, are the coefficients of the quadratic equation, is the free term.

Complete quadratic equation- an equation in which the coefficients are not equal to zero.

Reduced quadratic equation- an equation in which the coefficient, that is: .

Incomplete quadratic equation- an equation in which the coefficient and or free term c are equal to zero:

  • if the coefficient, the equation has the form: ,
  • if a free term, the equation has the form: ,
  • if and, the equation has the form: .

1. Algorithm for solving incomplete quadratic equations

1.1. An incomplete quadratic equation of the form, where, :

1) Express the unknown: ,

2) Check the sign of the expression:

  • if, then the equation has no solutions,
  • if, then the equation has two roots.

1.2. An incomplete quadratic equation of the form, where, :

1) Let's take the common factor out of brackets: ,

2) The product is equal to zero if at least one of the factors is equal to zero. Therefore, the equation has two roots:

1.3. An incomplete quadratic equation of the form, where:

This equation always has only one root: .

2. Algorithm for solving complete quadratic equations of the form where

2.1. Solution using the discriminant

1) Let's bring the equation to the standard form: ,

2) Calculate the discriminant using the formula: , which indicates the number of roots of the equation:

3) Find the roots of the equation:

  • if, then the equation has a root, which are found by the formula:
  • if, then the equation has a root, which is found by the formula:
  • if, then the equation has no roots.

2.2. Solution using Vieta's theorem

The sum of the roots of the reduced quadratic equation (an equation of the form, where) is equal, and the product of the roots is equal, i.e. , a.

2.3. Full square solution