Строение солнечной системы. Солнце солнце, центральное тело солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса среди звезд солнце по размеру и яркости занимает среднее положение Две точки зрения в объяснении магнитн

Солнечная система является одной из 200 млрд. звездных систем, находящихся в галактике Млечный Путь . Она расположена примерно по середине между центром галактики и его краем.
Солнечная система - это определенное скопление небесных тел, которые связаны силами гравитации со звездой (Солнцем). В нее входят: центральное тело - Солнце , 8 больших планет с их спутниками, несколько тысяч малых планет или астероидов, несколько сот наблюдавшихся комет и бесконечное множество метеорных тел.

Большие планеты подразделяются на 2 основные группы :
— планеты земной группы (Меркурий , Венера , Земля и Марс);
— планеты юпитерской группы или планеты гиганты (Юпитер, Сатурн, Уран и Нептун).
В этой классификации нет места Плутону. В 2006 году было установлено, что Плутон из-за своих маленьких размеров и большой отдаленности от Солнца обладает низким гравитационным полем и ее орбита не похожа на соседние с нею орбиты, более близких к Солнцу планет. К тому же вытянутая эллипсоидная орбита Плутона (у остальных планет она почти круговая) пересекается с орбитой восьмой планеты Солнечной системы - Нептуна. Именно поэтому, с недавних времен, было решено лишить Плутона статуса "планеты".







Планеты земной группы сравнительно малы и имеют большую плотность. Основными их составляющими являются силикаты (соединения кремния) и железо. У планет-гигантов практически нет твердой поверхности. Это огромные газовые планеты, образованны преимущественно из водорода и гелия, атмосфера которых постепенно уплотняясь плавно переходить в жидкую мантию.
Конечно же основным элементов Солнечной системы является Солнце . Без него все планеты, в том числе и наша, разлетелись бы на огромные расстояния, а быть может даже и за пределы галактики. Именно Солнце из-за своей огромной массы (99,87% от массы всей Солнечной системы) создает невероятно мощное гравитационное воздействие на все планеты, их спутники, кометы и астероиды, заставляя вращаться каждого из них по своей орбите.

В Солнечной системе , помимо планет, имеются две области, заполненные малыми телами (карликовыми планетами, астероидами, кометами, метеоритами). Первая область - это Пояс Астероидов , который находится между Марсом и Юпитером. По составу он сходен с планетами земной группы, так как состоит из силикатов и металлов. За пределами Нептуна располагается вторая область которая называется Пояс Койпера . Располагает в себе много объектов (в основном карликовые планеты), состоящие из замершей воды, аммиака и метана, крупнейшим из которых является и Плутон.

Пояс Койпнера начинается сразу после орбиты Нептуна.

Внешнее кольцо ее заканчивается на расстоянии

в 8,25 млрд. км от Солнца. Это огромное кольцо вокруг всей

Солнечной системы, представляет из себя бесконечное

количество летучих веществ из льдинков метана, аммиака и воды.

Пояс Астероидов - рассположен между орбитой Марса и Юпитера.

Внешняя граница рассположена в 345 млн. км от Солнца.

Содержит десятки тысяч, возможно миллионы объектов более одного

километра в диаметре. Самые крупные из них - карликовые планеты

(диаметр от 300 до 900 км) .

Все планеты и большинство других объектов обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца). Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — период обращения составляет 165 земных лет. Большая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°).

Раньше предполагалось, что граница Солнечной системы заканчивается сразу после орбиты Плутона. Однако в 1992 году были открыты новые небесные тела, которые несомненно принадлежат нашей системе, так как находятся непосредственно под гравитационным влиянием Солнца.

Каждому небесному объекту свойственны такие понятия как год и сутки. Год - это то время, за которое тело оборачивается вокруг Солнца на угол 360 градусов, т.е совершает полный круговой оборот. А сутки - это период вращения тела вокруг собственной оси. Самая близкая, от Солнца, планета Меркурий обращается вокруг Солнца за 88 земных суток, а вокруг своей оси - за 59 суток. Это значит, что на планете за один год проходит даже меньше двух суток (для примера на Земле один год включает в себя 365 дней, т.е именно столько раз Земля обернется вокруг своей оси за один оборот вокруг Солнца). В то время, как на самой отдаленной, от Солнца, карликовой планете Плутоне сутки составляют 153,12 часов (6,38 земных суток). А период обращения вокруг Солнца равен 247,7 земных лет. Т.е только наши прапрапраправнуки застанут тот момент когда Плутон наконец то пройдет весь путь по своей орбите.

галактическим годом . Помимо кругового движения по орбите, Солнечная система совершает вертикальные колебания относительно галактической плоскости, пересекая ее каждые 30-35 млн. лет и оказываясь то в северном, то в южном галактическом полушарии.
Возмущающим фактором для планет Солнечной системы является их гравитационное влияние друг на друга. Оно несколько изменяет орбиту по сравнению с той, по которой каждая планета двигалась бы под действием одного только Солнца. Вопрос в том могут ли эти возмущения накапливаться вплоть до падения планеты на Солнце либо удаление ее за пределы Солнечной системы , или они имеют периодический характер и параметры орбиты будут всего лишь колебаться вокруг некоторых средних значений. Результаты теоретических и исследовательских работ, выполненных астрономами более чем за 200 последних лет, говорят в пользу второго предположения. об этом же свидетельствуют данные геологии, палеонтологии и других наук о Земле: уже 4,5 млрд лет расстояние нашей планеты от Солнца практически не меняется.И в будущем ни падения на Солнце, ни уход из Солнечной системы , как и Земле , так и другим планетам не угрожает.

(лат. Sol) - единственная звезда в . и семь других вращаются вокруг Солнца. Кроме них вокруг Солнца вращаются кометы, астероиды и другие мелкие объекты.

Солнце как звезда

Солнце - центральное и массивные тело Солнечной системы. Его масса приблизительно в 333 000 раз больше массы Земли и в 750 раз превышает массу всех других планет, вместе взятых. Солнце - мощный источник энергии, которую оно постоянно излучает во всех участках спектра электромагнитных волн - от рентгеновских и ультрафиолетовых лучей до радиоволн. Это излучение влияет на все тела Солнечной системы: нагревает их, сказывается на атмосферах планет, дает свет и тепло, необходимые для жизни на Земле.

Вместе Солнце - ближайшая к нам звезда, у которой, в отличие от всех других звезд, можно наблюдать диск, и с помощью телескопа изучать на нем мелкие детали, размером до нескольких сотен километров. Это типичная звезда, поэтому ее изучение помогает понять природу звезд вообще. По звездной классификации Солнце имеет спектральный класс G2V. В популярной литературе Солнце довольно часто классифицируют как желтый карлик.

Видимый угловой диаметр Солнца несколько меняется через эллиптичность орбиты Земли. В среднем он составляет около 32 "или 1 / 107 Радиана, т.е. диаметр Солнца равен 1 / 107 а.е. , или примерно 1400000 км.

Строение Солнца

Как и все звезды, Солнце - раскаленный газовый шар. Химический состав (по числу атомов) определены из анализа солнечного спектра:

  • водород составляет около 90%,
  • гелий - 10%,
  • остальные элементы - менее 0,1%.

Вещество на Солнце очень ионизирована, т.е. атомы потеряли свои внешние электроны и вместе с ними стали свободными частицами ионизированного газа - плазмы.

Средняя плотность солнечного вещества ρ ≈ 1400 кг / м ³. Это значение близко к плотности воды и в тысячу раз больше плотности воздуха у поверхности Земли. Однако во внешних слоях Солнца плотность в миллионы раз меньше, а в центре - в 100 раз больше средней.
Вычисления, учитывающие рост плотности и температуры к центру, показывают, что в центре Солнца плотность составляет около 1,5 × 10 5 кг / м ³, давление - около 2 × 10 18 Па, а температура - около 15 млн К.

При такой температуре ядра атомов водорода (протоны и дейтрона) имеют очень большие скорости (сотни километров в секунду) и могут приближаться друг к другу, несмотря на действие электростатической силы отталкивания. Некоторые столкновения заканчиваются ядерными реакциями, в результате которых из водорода образуется гелий и высвобождается значительное количество энергии, которая превращается в тепло. Эти реакции являются источником энергии Солнца на современном этапе его эволюции. Вследствие этого количество гелия в центральной части светила постепенно увеличивается, а водорода - уменьшается.

Поток энергии, возникающей в недрах Солнца, передается во внешние слои и распределяется на все большую площадь. Вследствие этого температура солнечной плазмы снижается с удалением от центра. Зависимости от температуры и характера процессов, которой определяются, Солнце можно условно разделить на 4 части:

  • внутренняя, центральная часть (ядро), где давление и температура обеспечивают ход ядерных реакций, она простирается от центра на
  • расстояние примерно 1 / 3 радиуса
  • лучистая зона (расстояние от 1 / 3 до 2 / 3 радиуса), в которой энергия передается наружу результате последовательного поглощения и излучения квантов электромагнитной энергии;
  • конвективная зона - от верхней части «лучистой» зоны почти до видимой поверхности Солнца. Здесь температура быстро уменьшается с приближением к видимой поверхности светила, вследствие чего увеличивается концентрация нейтральных атомов, вещество становится прозрачнее, лучистое переноса становится менее эффективным и тепло передается в основном за счет перемешивания вещества (конвекция), подобно кипения жидкости в сосуде, который подогревается снизу;
  • солнечная атмосфера, которая начинается сразу за конвективной зоной и выходит далеко за пределы видимого диска Солнца. Нижний слой атмосферы - фотосфера, тонкий слой газов, который мы воспринимаем как поверхность Солнца. Верхних слоев атмосферы непосредственно не видно из-за значительной разреженности, их можно наблюдать или при полных солнечных затмений, либо с помощью специальных приборов.
Солнечная атмосфера и солнечная активность

Солнечная вспышка


Солнечную атмосферу можно условно разделить на несколько слоев.
Глубокий слой атмосферы, толщиной 200-300 км, называется фотосферой (сфера света). Из него излучается почти вся энергия, которая наблюдается в видимой части спектра.

На фотографиях фотосферы хорошо заметно ее тонкую структуру в виде ярких «зернышек» - гранул размером около 1000 км, разделенных узкими темными промежутками. Эта структура называется грануляцией. Она является результатом движения газов, который происходит в расположенной под атмосферой конвективной зоне Солнца.

В фотосфере, как и в более глубоких слоях Солнца, температура снижается с удалением от центра, изменяясь приблизительно от 8000 до 4000 К: внешние слои фотосферы охлаждаются вследствие излучения из них в межпланетное пространство.

В спектре видимого излучения Солнца, почти полностью образуется в фотосфере, снижению температуры во внешних слоях соответствуют темные линии поглощения. Они называются фраунгоферовых в честь немецкого оптика И. Фраунгофера (1787-1826), впервые 1814 года зарисовал несколько сотен таких линий. По той же причине (снижение температуры от центра Солнца) солнечный диск ближе к краю кажется темнее.

В высших слоях фотосферы температура составляет около 4000 К. При такой температуре и плотностью 10 -3 -10 -4 кг / м ³ водород становится практически нейтральным. Ионизированной лишь около 0,01% атомов, преимущественно металлов.

Однако выше в атмосфере температура, а вместе с ней и ионизация, снова начинают повышаться, сначала медленно, а потом очень быстро. Часть солнечной атмосферы, в которой повышается температура и последовательно ионизируются водород, гелий и другие элементы, называется хромосферой, ее температура составляет десятки и сотни тысяч кельвинов. В виде блестящей розовой каймы хромосферу видно вокруг темного диска в редкие моменты полных солнечных затмений. Выше хромосферы температура солнечных газов составляет 10 6 - 2 × 10 6 К и далее на протяжении многих радиусов Солнца почти не меняется. Эта разреженная и горячая оболочка называется солнечной короной. В виде лучистого жемчужного сияния ее можно наблюдать во время полной фазы затмения Солнца, тогда она представляет необычайно красивое зрелище. «Испаряясь» в межпланетное пространство, газ короны образует поток горячей разреженной плазмы, постоянно течет от Солнца и называется солнечным ветром.

Хромосферу и корону лучше наблюдать со спутников и орбитальных космических станций в ультрафиолетовых и рентгеновских лучах.
Время в некоторых участках фотосферы темные промежутки между гранулами увеличиваются, образуются небольшие круглые поры, некоторые из них развиваются в большие темные пятна, окруженные напивтинню, состоящий из продолговатых, радиально вытянутых фотосферных гранул.

Наблюдая солнечные пятна в телескоп, Галилей заметил, что они передвигаются вдоль видимого диска Солнца. На этом основании он сделал вывод, что Солнце вращается вокруг своей оси. Угловая скорость вращения светила уменьшается от экватора к полюсам, точки на экваторе осуществляют полный оборот за 25 суток, а вблизи полюсов звездный период обращения Солнца увеличивается до 30 суток. Земля движется по своей орбите в том же направлении, в котором вращается Солнце. Поэтому относительно земного наблюдателя период ее вращения больше и пятно в центре солнечного диска снова пройдет через центральный меридиан Солнца через 27 суток.

Интересные факты

  • Средняя плотность Солнца составляет всего 1,4 г / см ³, т.е. равна плотности воды Мертвого моря.
  • Каждую секунду Солнце излучает в 100 000 раз больше энергии, чем человечество выработало за всю свою историю
  • Удельный (на единицу массы) энергозатрат Солнца - всего 2 × 10 -4 Вт / кг, т.е. примерно такая же, как у кучи гнилого листьев.
  • 8 апреля 1947 года на поверхности южного полушария Солнца было зафиксировано наибольшее скопление солнечных пятен за все время наблюдений.
  • Его длина составляла 300 000 км, а ширина - 145 000 км. Оно было примерно в 36 раз больше площади поверхности Земли и его можно было легко разглядеть невооруженным глазом при закате.
  • В честь Солнца названа новую валюту Перу (новый соль)
Вопросы:

1. Назови центральное тело Солнечной системы.

2. Что можно увидеть на Солнце?

3. Погибнет ли Солнце?

СОЛНЦЕ -
Масса = 1.99* 10 30 кг.
Диаметр = 1.392.000 км.
Абсолютная звёздная величина = +4.8
Спектральный класс = G2
Температура поверхности = 5800 о К
Период обращения вокруг оси = 25 ч(полюса) -35 ч(экватор)
Период обращения вокруг центра галактики = 200.000.000 лет
Расстояние до центра галактики = 25000 свет. лет
Скорость движения вокруг центра галактики = 230 км/сек.

Солнце - центральное и самое большое тело Солнечной системы, раскаленный
плазменный шар, типичная звезда-карлик. Химический состав Солнца определил, что оно состоит из
водорода и гелия , остальные элементы менее 0,1%.

Источником Солнечной энергии является реакция превращения водорода в гелий со скоростью 600 миллионов тонн в секунду. При этом в ядре Солнца выделяется свет и тепло. Температура в ядре достигает 15 миллионов градусов.
То есть Солнце является горячим вращаюшимся шаром, состоящим из светящегося газа. Радиус Солнца 696 т. км. Диаметр Солнца : 1392000 км (109 диаметров Земли).

Солнечная атмосфера (хромосфера и солнечная корона) очень активна, в ней наблюдаюся различные явления: вспышки, протуберанцы, солнечный ветер (постоянное истечение вещества короны в межпланетное пространство).

ПРОТУБЕРАНЦЫ (от лат. protubero вздуваюсь), громадные, протяженностью до сотен тысяч километров, языки раскаленного газа в солнечной короне, имеющие большую плотность и меньшую температуру, чем окружающая их плазма короны. На диске Солнца наблюдаются в виде темных волокон, а на его краю в виде светящихся облаков, арок или струй. Их темперагура может достигать до 4000 градусов.

СОЛНЕЧНАЯ ВСПЫШКА, самое мощное проявление солнечной активности, внезапное местное выделение энергии магнитных полей в короне и хромосфере Солнца. При солнечных вспышках наблюдаются:увеличение яркости хромосферы (8-10 мин), ускорение электронов, протонов и тяжелых ионов, рентгеновское и радиоизлучение.

СОЛНЕЧНЫЕ ПЯТНА
, образования в фотосфере Солнца, развиваются из пор, могут достигать 200 тыс. км в поперечнике, существуют в среднем 10-20 суток. Температура в солнечных пятнах ниже температуры фотосферы, вследствие чего они в 2-5 раз темнее фотосферы. Для солнечных пятен характерны сильные магнитные поля.

ВРАЩЕНИЕ СОЛНЦА вокруг оси, происходит в том же направлении, что и Земли (с запада на восток).Один оборот относительно Земли совершается за 27,275 сут (синодический период обращения), относительно неподвижных звезд за 25,38 сут (сидерический период обращения).

ЗАТМЕНИЯ солнечные и лунные, происходят либо когда Земля попадает в тень,
отбрасываемую Луной (солнечные затмения), либо когда Луна попадает в тень Земли
(лунные затмения).
Длительность полных солнечных затмений не превышает 7,5 мин,
частных (большой фазы) 2 ч. Лунная тень скользит по Земле со скоростью ок. 1 км/с,
пробегая расстояние до 15 тыс. км, ее диаметром ок. 270 км. Полные лунные затмения могут длиться до 1 ч 45мин. Затмения повторяются в определенной последовательности через период времени в 6585 1/3 сут. Ежегодно бывает не более 7 затмений (из них не более 3 лунных).

Активность солнечной атмосферы переодически повторяется, 11-летний переод.

Солнце - основной источник энергии для Земли, оно оказывает влияние на все земные процессы. Земля находится на удачном расстоянии от Солнца, поэтому на ней сохранилась жизнь. Солнечное излучение создает пригодные для живых организмов условия. Если бы наша планета была ближе - она была бы слишком горячей, и наоборот.
Так поверхность Венеры разогрета почти до 500 градусов и давление атмосферы огромно, поэтому встретить там жизнь практически невозможно. Марс находится дальше от Солнца, для человека там слишком холодно, иногда температура ненадолго поднимается до 16 градусов. Обычно же на этой планете сильные морозы, при которых замерзает даже углекислый газ, из которого состоит атмосфера Марса.

Как долго будет существовать Солнце?
Каждую секунду Солнце перерабатывает около 600 млн. т. водорода, производя при этом примерно 4 млн. т. гелия. Сопоставляя такую скорость с массой Солнца, возникает вопрос: как долго просуществует наше светило? Совершенно ясно, что Солнце не будет существовать вечно, хотя впереди у него невероятно долгая жизнь. Сейчас оно находится в среднем возрасте. На переработку половины своего водородного топлива у него ушло 5 млрд. лет. В грядущие годы Солнце будет медленно разогреваться и немного увеличиваться в размере. В течение следующих 5 млрд. лет его температура и объем будут постепенно возрастать по мере того, как водород будет сгорать. Когда весь водород в центральном ядре израсходуется, Солнце будет в три раза больше, чем теперь. Все океаны на Земле выкипят. Умирающее Солнце поглотит Землю и превратит твердую породу в расплавленную лаву. В глубине Солнца ядра гелия будут комбинироваться, образуя ядра углерода и более тяжелых веществ. В конечном счете, Солнце остынет, превратившись в шар ядерных отходов, так называемый белый карлик.

Здравствуйте уважаемые читатели! В данном посте речь пойдет о строении Солнечной системы. Я считаю, что просто необходимо знать о том, в каком месте Вселенной находится наша планета, а также что еще есть в нашей Солнечной системе помимо планет...

Строение Солнечной системы.

Солнечная система – это система космических тел, которая кроме центрального светила – Солнца, включает в себя девять больших планет, их спутники, множество маленьких планет, кометы, космическую пыль и мелкие метеорные тела, которые движутся в сфере преимущественного гравитационного действия Солнца.

В средине XVI века была раскрыта общая структура строения Солнечной системы польским астрономом Николаем Коперником. Он опровергнул представление того, что Земля – это центр Вселенной и обосновал представление движения планет вокруг Солнца. Такая модель Солнечной системы получила название гелиоцентрической.

В XVII веке Кеплер открыл закон движения планет, а Ньютон сформулировал закон всемирного притяжения. Но только после того, как Галилей в 1609 году изобрел телескоп, стало возможным изучение физических характеристик, входящих в состав Солнечной системы, космических тел.

Так Галилей, наблюдая за солнечными пятнами, впервые открыл вращение Солнца вокруг своей оси.

Планета Земля – это одно из девяти небесных тел (или планет), которые движутся вокруг Солнца в космическом пространстве.

Основную часть Солнечной системы составляют планеты , которые с разной скоростью вращаются вокруг Солнца в одном направлении и почти в одной плоскости по эллиптическим орбитам и находятся от него на разных расстояниях.

Планеты расположены в следующем порядке от Солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Но Плутон иногда удаляется от Солнца более чем на 7 млрд. км, но из-за огромной массы Солнца, которая почти в 750 раз превышает массу всех остальных планет, остается в сфере его притяжения.

Самая крупная из планет – это Юпитер. Его диаметр в 11 раз превышает диаметр Земли и составляет 142 800 км. Самая маленькая из планет – это Плутон, диаметр которого составляет всего лишь 2 284 км.

Планеты, которые находятся ближе всего к Солнцу (Меркурий, Венера, Земля, Марс) очень сильно отличаются от последующих четырех. Они называются планетами земного типа , так как, подобно Земле, состоят из твердых пород.

Юпитер, Сатурн, Уран и Нептун, называются планетами юпитерианского типа , а также планетами-гигантами, и в отличие от них состоят в основном из водорода.


Также существуют еще и другие различия между планетами юпитерианского и земного типа. «Юпитерианцы» вместе с многочисленными спутниками образуют собственные «солнечные системы».

По меньшей мере, 22 спутника у Сатурна. И всего три спутника, включая Луну, у планет земного типа. И кроме всего, планеты юпитерианского типа окружены кольцами.

Обломки планет.

Между орбитами Марса и Юпитера существует большой промежуток, где могла бы разместиться еще одна планета. Это пространство, на самом деле, заполнено множеством небесных тел небольшого размера, которые называют астероидами, или малыми планетами.

Церера – это название самого крупного астероида, диаметр которого около 1000 км. К настоящему времени открыто 2500 астероидов, которые в своих размерах значительно меньше Цереры. Это глыбы с поперечниками, которые не превышают в размере нескольких километров.

Большая часть астероидов вращаются вокруг Солнца в широком «астероидном поясе», который находится между Марсом и Юпитером. Орбиты некоторых астероидов выходят далеко за пределы этого пояса, а иногда приближаются довольно-таки близко к Земле.

Эти астероиды нельзя увидеть невооруженным глазом, потому что их размеры слишком малы, и они очень от нас удалены. Но другие обломки – например, кометы – могут быть видимы в ночном небе благодаря своему яркому сиянию.

Кометы – это небесные тела, которые состоят изо льда, твердых частиц и пыли. Большую часть времени комета движется в дальних участках нашей Солнечной системы и невидима для глаза человека, но когда она приближается к Солнцу, то начинает светиться.

Это происходит под воздействием солнечного тепла. Лед частично испаряется и превращается в газ, высвобождая частички пыли. Комета становится видимой, потому что газопылевое облако отражает солнечный свет. Облако, под давлением солнечного ветра, превращается в развевающийся длинный хвост.

Также существуют и такие космические объекты, которые можно наблюдать почти каждый вечер. Они сгорают при попадании в атмосферу Земли, оставляя при этом в небе узкий светящийся след – метеор . Эти тела называются метеорными, а их размеры не больше песчинки.

Метеориты — это крупные метеорные тела, которые достигают земной поверхности. Из-за столкновения с Землей огромных метеоритов, в далеком прошлом, образовались огромные кратеры на ее поверхности. Почти миллион тонн метеоритной пыли ежегодно оседает на Земле.

Рождение Солнечной системы.

Большие газопылевые туманности, или облака разбросаны среди звезд нашей галактики. В таком же облаке, около 4600 млн. лет назад, родилась и наша Солнечная система. Произошло это рождение в результате коллапса (сжатия) этого облака под действи ем сил гравитации.

Затем это облако начало вращение. А со временем оно превратилось во вращающийся диск, основная масса вещества которого сосредоточилась в центре. Гравитационный коллапс продолжался, центральное уплотнение постоянно уменьшалось и разогревалось.

Термоядерная реакция началась при температуре в десятки миллионов градусов, и тогда центральное уплотнение вещества вспыхнуло новой звездой – Солнцем.

Планеты сформировались из находящихся в диске пыли и газа. Столкновение частиц пыли, а также их превращение в большие глыбы, происходило во внутренних разогретых областях. Этот процесс называется аккреция – приращение.

Взаимное притяжение и столкновение этих всех глыб и привело к образованию планет земного типа.

Эти планеты имели слабое гравитационное поле и были слишком малы для того, чтобы притянуть к себе легкие газы (такие как гелий и водород), которые входят в состав аккреционного диска.

Рождение Солнечной системы было обычным явлением – постоянно и повсеместно во Вселенной рождаются подобные системы. И может быть, в одной из таких систем есть планета похожая на Землю, на которой существует разумная жизнь…

Вот мы и рассмотрели строение Солнечной системы, и теперь можем вооружиться знаниями для их дальнейшего применения на практике 😉

Вселенная (космос) — это весь окружающий нас мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает вечно движущаяся материя. Безграничность Вселенной отчасти можно представить в ясную ночь с миллиардами разной величины светящихся мерцающих точек на небе, представляющих далекие миры. Лучи света при скорости 300 000 км/с из наиболее отдаленных частей Вселенной доходят до Земли примерно за 10 млрд лет.

По мнению ученых, образовалась Вселенная в результате «Большого Взрыва» 17 млрд лет назад.

Она состоит из скоплений звезд, планет, космической пыли и других космических тел. Эти тела образуют системы: планеты со спутниками (например. Солнечная система), галактики, метагалактики (скопление галактик).

Галактика (позднегреч.galaktikos - молочный, млечный, от греческогоgala - молоко) — обширная звездная система, которая состоит из множества звезд, звездных скоплений и ассоциаций, газовых и пылевых туманностей, а также отдельных атомов и частиц, рассеянных в межзвездном пространстве.

Во Вселенной существует множество галактик различного размера и формы.

Все звезды, видимые с Земли, входят в состав галактики Млечный Путь. Свое название она получила благодаря тому, что большинство звезд можно увидеть ясной ночью в виде Млечного Пути — белесой размытой полосы.

Всего же Галактика Млечный Путь содержит около 100 млрд звезд.

Наша галактика находится в постоянном вращении. Скорость ее движения во Вселенной — 1,5 млн км/ч. Если смотреть на нашу галактику со стороны ее северного полюса, то вращение происходит по часовой стрелке. Солнце и ближайшие к нему звезды совершают полный оборот вокруг центра галактики за 200 млн лет. Этот срок принято считать галактическим годом.

По размеру и форме сходна с галактикой Млечный Путь галактика Андромеды, или Туманность Андромеды, которая находится на расстоянии примерно 2 млн световых лет от нашей галактики. Световой год — расстояние, проходимое светом за год, приблизительно равное 10 13 км (скорость света — 300 000 км/с).

Для наглядности изучения движения и расположения звезд, планет и других небесных тел используется понятие небесной сферы.

Рис. 1. Основные линии небесной сферы

Небесная сфера — это воображаемая сфера сколь угодно большого радиуса, в центре которой находится наблюдатель. На небесную сферу проецируются звезды, Солнце, Луна, планеты.

Важнейшими линиями на небесной сфере являются: отвесная линия, зенит, надир, небесный экватор, эклиптика, небесный меридиан и др. (рис. 1).

Отвесная линия — прямая, проходящая через центр небесной сферы и совпадающая с направлением нити отвеса в месте наблюдения. Для наблюдателя, находящегося на поверхности Земли, отвесная линия проходит через центр Земли и точку наблюдения.

Отвесная линия пересекается с поверхностью небесной сферы в двух точках - зените, над головой наблюдателя, и надире — диаметрально противоположной точке.

Большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии, называется математическим горизонтом. Он делит поверхность небесной сферы на две половины: видимую для наблюдателя, с вершиной в зените, и невидимую, с вершиной в надире.

Диаметр, вокруг которого происходит вращение небесной сферы, - ось мира. Она пересекается с поверхностью небесной сферы в двух точках - северном полюсе мира и южном полюсе мира. Северным полюсом называется тот, со стороны которого вращение небесной сферы происходит по часовой стрелке, если смотреть на сферу извне.

Большой круг небесной сферы, плоскость которого перпендикулярна оси мира, носит название небесного экватора. Он делит поверхность небесной сферы на два полушария: северное, с вершиной в северном полюсе мира, и южное, с вершиной в южном полюсе мира.

Большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира, — небесный меридиан. Он делит поверхность небесной сферы на два полушария - восточное и западное.

Линия пересечения плоскости небесного меридиана и плоскости математического горизонта - полуденная линия.

Эклиптика (от греч.ekieipsis - затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца, точнее — его центра.

Плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°26"21".

Чтобы легче запомнить местоположение звезд на небе, люди в древности придумали объединять самые яркие из них в созвездия.

В настоящее время известны 88 созвездий, которые носят имена мифических персонажей (Геркулес, Пегас и др.), знаков зодиака (Телец, Рыбы, Рак и др.), предметов (Весы, Лира и др.) (рис. 2).

Рис. 2. Летне-осенние созвездия

Происхождение галактик. Солнечной системы и ее отдельных планет, до сих пор остается неразгаданной тайной природы. Существует несколько гипотез. В настоящее время считается, что наша галактика образовалась из газового облака, состоявшего из водорода. На начальной стадии эволюции галактики из межзвездной газово-пылевой среды образовались первые звезды, а 4,6 млрд лет назад — Солнечная система.

Состав солнечной системы

Совокупность небесных тел, движущихся вокруг Солнца как центрального тела, образует Солнечную систему. Она расположена почти на окраине галактики Млечный Путь. Солнечная система участвует во вращении вокруг центра галактики. Скорость се движения составляет около 220 км/с. Это движение происходит в направлении созвездия Лебедя.

Состав Солнечной системы можно представить в виде упрощенной схемы, приведенной на рис. 3.

Свыше 99,9 % массы вещества Солнечной системы приходится на Солнце и только 0,1 % — на все остальные ее элементы.

Гипотеза И. Канта (1775 г.) — П.Лапласа (1796 г.)

Гипотеза Д. Джинса (начало XX в.)

Гипотеза академика О. П. Шмидта (40-е гг. XX в.)

Ги потеза а кале мика В. Г. Фесенкова (30-е гг. XX в.)

Планеты образовались из газово-пылевой материи (в виде раскаленной туманности). Охлаждение сопровождаюсь сжатием и увеличением скорости вращения какой-то оси. На экваторе туманности возникали кольца. Вещество колец собиралось в раскаленные тела и постепенно остывало

Мимо Солнца когда-то прошла более крупная звезда, сс притяжение вырвало из Солнца струю раскаленного вещества (протуберанец). Образовались сгущения, из которых потом — планеты

Газово-пылевое облако, вращающееся вокруг Солнца, должно было принять сплошную форму в результате соударения частиц и их движения. Частицы объединились в сгущения. Притяжение более мелких частиц сгущениями должно было способствовать росту окружающего вещества. Орбиты сгущений должны были стать почти круговыми и лежащими почти в одной плоскости. Сгущения явились зародышами планет, вобрав в себя почти всс вещество из промежутков между их орбитами

Из вращающегося облака возникло само Солнце, а планеты — из вторичных сгущений в этом облаке. Далее Солнце сильно уменьшилось и охладилось до современного состояния

Рис. 3. Состав Солнечной систем

Солнце

Солнце — это звезда, гигантский раскаленный шар. Его диаметр в 109 раз больше диаметра Земли, масса в 330 000 раз больше массы Земли, зато средняя плотность невелика — всего в 1,4 раза больше плотности воды. Солнце находится на расстоянии около 26 000 световых лет от центра нашей галактики и обращается вокруг него, делая один оборот примерно за 225-250 млн лет. Орбитальная скорость движения Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет.

Рис. 4. Химический состав Солнца

Давление на Солнце в 200 млрд раз выше, чем у поверхности Земли. Плотность солнечного вещества и давление быстро нарастают вглубь; рост давления объясняется весом всех вышележащих слоев. Температура на поверхности Солнца 6000 К, а внутри 13 500 000 К. Характерное время жизни звезды типа Солнца 10 млрд лег.

Таблица 1. Общие сведения о Солнце

Химический состав Солнца примерно такой же, как и у большинства других звезд: около 75 % — это водород, 25 % — гелий и менее 1 % — все другие химические элементы (углерод, кислород, азот и т. д.) (рис. 4).

Центральная часть Солнца с радиусом примерно 150 000 км называется солнечным ядром. Это зона ядерных реакций. Плотность вещества здесь примерно в 150 раз выше плотности воды. Температура превышает 10 млн К (по шкале Кельвина, в пересчете на градусы Цельсия 1 °С = К — 273,1) (рис. 5).

Над ядром, на расстояниях около 0,2-0,7 радиуса Солнца от его центра, находится зона переноса лучистой энергии. Перенос энергии здесь осуществляется путем поглощения и излучения фотонов отдельными слоями частиц (см. рис. 5).

Рис. 5. Строение Солнца

Фотон (от греч.phos - свет), элементарная частица, способная существовать, только двигаясь со скоростью света.

Ближе к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается

преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а слой Солнца, где она происходит, - конвективной зоной. Мощность этого слоя составляет примерно 200 000 км.

Выше конвективной зоны располагается солнечная атмосфера, которая постоянно колеблется. Здесь распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания происходят с периодом около пяти минут.

Внутренний слой атмосферы Солнца называется фотосферой. Она состоит из светлых пузырьков. Это гранулы. Их размеры невелики — 1000-2000 км, а расстояние между ними — 300- 600 км. На Солнце одновременно может наблюдаться около миллиона гранул, каждая из которых существует несколько минут. Гранулы окружены темными промежутками. Если в гранулах вещество поднимается, то вокруг них — опускается. Гранулы создают общий фон, на котором можно наблюдать такие масштабные образования, как факелы, солнечные пятна, протуберанцы и др.

Солнечные пятна — темные области на Солнце, температура которых по сравнению с окружающим пространством понижена.

Солнечными факелами называют яркие поля, окружающие солнечные пятна.

Протуберанцы (от лат.protubero — вздуваюсь) — плотные конденсации относительно холодного (по сравнению с окружающей температурой) вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем. К возникновению магнитного поля Солнца может приводить то, что различные слои Солнца вращаются с разной скоростью: внутренние части вращаются быстрее; особенно быстро вращается ядро.

Протуберанцы, солнечные пятна и факелы — это не единственные примеры солнечной активности. К ней также относятся магнитные бури и взрывы, которые называют вспышками.

Выше фотосферы располагается хромосфера — внешняя оболочка Солнца. Происхождение названия этой части солнечной атмосферы связано с ее красноватым цветом. Мощность хромосферы составляет 10-15 тыс. км, а плотность вещества в сотни тысяч раз меньше, чем в фотосфере. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов. На краю хромосферы наблюдаются спикулы, представляющие собой вытянутые столбики из уплотненного светящегося газа. Температура этих струй выше, чем температура фотосферы. Спикулы сначала поднимаются из нижней хромосферы на 5000-10 000 км, а потом падают обратно, где и затухают. Все это происходит со скоростью около 20 000 м/с. Спи кула живет 5-10 мин. Количество спикул, существующих на Солнце одновременно, составляет около миллиона (рис. 6).

Рис. 6. Строение внешних слоев Солнца

Хромосферу окружает солнечная корона — внешний слой атмосферы Солнца.

Полное количество энергии, излучаемой Солнцем, составляет 3,86 . 1026 Вт, и лишь одну двухмиллиардную часть этой энергии получает Земля.

Солнечная радиация включает корпускулярное и электромагнитное излучения. Корпускулярное основное излучение — это плазменный поток, который состоит из протонов и нейтронов, или по-другому - солнечный ветер, который достигает околоземного пространства и обтекает всю магнитосферу Земли. Электромагнитная радиация — это лучистая энергия Солнца. Она в виде прямой и рассеянной радиации достигает земной поверхности и обеспечивает тепловой режим на нашей планете.

В середине XIX в. швейцарский астроном Рудольф Вольф (1816-1893) (рис. 7) вычислил количественный показатель солнечной активности, известный во всем мире как число Вольфа. Обработав накопленные к середине прошлого века материалы наблюдений за солнечными пятнами, Вольф смог установить средний И-летний цикл солнечной активности. Фактически же интервалы времени между годами максимальных или минимальных чисел Вольфа колеблются от 7 до 17 лет. Одновременно с 11-летним циклом протекает вековой, точнее 80-90-летний, цикл солнечной активности. Несогласованно накладываясь друг на друга, они вносят заметные изменения в процессы, совершающиеся в географической оболочке Земли.

На тесную связь многих земных явлений с солнечной активностью еще в 1936 г. указывал А. Л. Чижевский (1897-1964) (рис. 8), писавший о том, что подавляющее большинство физико-химических процессов на Земле представляет результат воздействия космических сил. Он же был и одним из основоположников такой науки, как гелиобиология (от греч.helios — солнце), изучающей влияние Солнца на живое вещество географической оболочки Земли.

В зависимости от солнечной активности протекают такие физические явления на Земле, как: магнитные бури, частота полярных сияний, количество ультрафиолетовой радиации, интенсивность грозовой деятельности, температура воздуха, атмосферное давление, осадки, уровень озер, рек, грунтовых вод, соленость и деловитость морей и др.

С периодической деятельностью Солнца связана жизнь растений и животных (существует корреляция между солнечной цикличностью и сроком вегетационного периода у растений, размножением и миграцией птиц, грызунов и т. д.), а также человека (заболевания).

В настоящее время взаимосвязи между солнечными и земными процессами продолжают изучаться с помощью искусственных спутников Земли.

Планеты земной группы

Помимо Солнца в составе Солнечной системы выделяют планеты (рис. 9).

По размерам, географическим показателям и химическому составу планеты подразделяются на две группы: планеты земной группы и планеты-гиганты. К планетам земной группы относятся , и . О них и пойдет речь в этом подразделе.

Рис. 9. Планеты Солнечной системы

Земля — третья планета от Солнца. Ей будет посвящен отдельный подраздел.

Давайте обобщим. От местоположения планеты в Солнечной системе зависит плотность вещества планеты, а с учетом ее размеров — и масса. Чем
ближе планета к Солнцу, тем выше у нее средняя плотность вещества. Например, у Меркурия она составляет 5,42 г/см\ Венеры — 5,25, Земли — 5,25, Марса — 3,97 г/см 3 .

Общими характеристиками планет земной группы (Меркурий, Венера, Земля, Марс) являются прежде всего: 1) сравнительно небольшие размеры; 2) высокие температуры на поверхности и 3) высокая плотность вещества планет. Эти планеты сравнительно медленно вращаются вокруг своей оси и имеют мало спутников или не имеют их совсем. В строении планет земной группы выделяют четыре главные оболочки: 1) плотное ядро; 2) покрывающую его мантию; 3) кору; 4) легкую газо- во-водную оболочку (исключая Меркурий). На поверхности этих планет обнаружены следы тектонической деятельности.

Планеты-гиганты

Теперь познакомимся с планетами-гигантами, которые тоже входят в нашу Солнечную систему. Это , .

Планеты-гиганты обладают следующими общими характеристиками: 1) большими размерами и массой; 2) быстро вращаются вокруг оси; 3) имеют кольца, много спутников; 4) атмосфера состоит, в основном, из водорода и гелия; 5) в центре имеют горячее ядро из металлов и силикатов.

Их также отличают: 1) низкие температуры на поверхности; 2) малая плотность вещества планет.