Какое рентгеновское излучение считается жестким. Все о дозах и вреде рентгеновского облучения в медицине. Положение на шкале электромагнитных волн

Рентгеновское излучение — разновидность высокоэнергетического электромагнитного излучения. Оно активно используется в различных отраслях медицины.

Рентгеновские лучи представляют собой электромагнитные волны, энергия фотонов которых на шкале электромагнитных волн находится между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до ~1 МэВ), что соответствует длинам волн от ~10^3 до ~10^−2 ангстрем (от ~10^−7 до ~10^−12 м). То есть это несравнимо более жесткое излучение, чем видимый свет, который находится на этой шкале между ультрафиолетом и инфракрасными («тепловыми») лучами.

Граница между рентгеном и гамма-излучением выделяется условно: их диапазоны пересекаются, гамма-лучи могут иметь энергию от 1 кэв. Различаются они по происхождению: гамма-лучи испускаются в ходе процессов, происходящих в атомных ядрах, рентгеновские же — при процессах, идущих с участием электронов (как свободных, так и находящихся в электронных оболочках атомов). При этом по самому фотону невозможно установить, в ходе какого процесса он возник, то есть деление на рентгеновский и гамма-диапазон во многом условно.

Рентгеновский диапазон делят на «мягкий рентген» и «жесткий». Граница между ними пролегает на уровне длины волны 2 ангстрема и 6 кэв энергии.

Генератор рентгеновского излучения представляет собой трубку, в которой создан вакуум. Там расположены электроды — катод, на который подается отрицательный заряд, и положительно заряженный анод. Напряжение между ними составляет десятки-сотни киловольт. Генерация рентгеновских фотонов происходит тогда, когда электроны «срываются» с катода и с высочайшей скоростью врезаются в поверхность анода. Возникающее при этом рентгеновское излучение называется «тормозным», его фотоны имеют различную длину волны.

Одновременно происходит генерация фотонов характеристического спектра. Часть электронов в атомах вещества анода возбуждается, то есть переходит на более высокие орбиты, а потом возвращается в нормальное состояние, излучая фотоны определенной длины волны. В стандартном генераторе возникают оба типа рентгеновского излучения.

История открытия

8 ноября 1895 года немецкий ученый Вильгельм Конрад Рентген обнаружил, что некоторые вещества под воздействием «катодных лучей», то есть потока электронов, генерируемого катодно-лучевой трубкой, начинают светиться. Он объяснил это явление воздействием неких X-лучей — так («икс-лучи») это излучение и сейчас называется на многих языках. Позже В.К. Рентген изучил открытое им явление. 22 декабря 1895 года он сделал доклад на эту тему в Вюрцбургском университете.

Позже выяснилось, что рентгеновское излучение наблюдалось и ранее, но тогда связанным с ним феноменам не придали большого значения. Катодно-лучевая трубка была изобретена уже давно, но до В.К. Рентгена никто не обращал особого внимания на почернение фотопластинок вблизи нее и т.п. явления. Неизвестна была и опасность, исходящая от проникающей радиации.

Виды и их влияние на организм

«Рентген» — самый мягкий тип проникающей радиации. Избыточное воздействие мягкого рентгена напоминает влияние ультрафиолетового облучения, но в более тяжелой форме. На коже образуется ожог, но поражение оказывается более глубоким, а заживает он намного медленнее.

Жесткий рентген представляет собой полноценную ионизирующую радиацию, способную привести к лучевой болезни. Рентгеновские кванты могут разрывать молекулы белков, из которых состоят ткани человеческого тела, а также молекулы ДНК генома. Но даже если рентгеновский квант разбивает молекулу воды, все равно: при этом образуются химически активные свободные радикалы H и OH, которые сами способны воздействовать на белки и ДНК. Лучевая болезнь протекает в тем более тяжелой форме, чем больше поражаются органы кроветворения.

Рентгеновские лучи обладают мутагенной и канцерогенной активностью. Это значит, что вероятность спонтанных мутаций в клетках при облучении возрастает, а иногда здоровые клетки могут перерождаться в раковые. Повышение вероятности появления злокачественных опухолей — стандартное следствие любого облучения, в том числе рентгеновского. Рентген является наименее опасным видом проникающей радиации, но он все равно может быть опасен.

Рентгеновское излучение: применение и как работает

Рентгеновское излучение применяется в медицине, а также в других сферах человеческой деятельности.

Рентгеноскопия и компьютерная томография

Наиболее частое применение рентгеновского излучения — рентгеноскопия. «Просвечивание» человеческого тела позволяет получить детальное изображение как костей (они видны наиболее четко), так и изображения внутренних органов.

Различная прозрачность тканей тела в рентгеновских лучах связана с их химическим составом. Особенности строения костей в том, что они содержат много кальция и фосфора. Другие же ткани состоят в основном из углерода, водорода, кислорода и азота. Атом фосфора превосходит по весу атом кислорода почти вдвое, а атом кальция — в 2,5 раза (углерод, азот и водород — еще легче кислорода). В связи с этим поглощение рентгеновских фотонов в костях оказывается намного выше.

Помимо двухмерных «снимков» рентгенография дает возможность создать трехмерное изображение органа: эта разновидность рентгенографии называется компьютерной томографией. Для этих целей применяется мягкий рентген. Объем облучения, полученный при одном снимке, невелик: он примерно равен облучению, получаемому при 2-часовом полете на самолете на высоте 10 км.

Рентгеновская дефектоскопия позволяет выявлять мелкие внутренние дефекты в изделиях. Для нее используется жесткий рентген, так как многие материалы (металл например) плохо «просвечиваются» из-за высокой атомной массы составляющего их вещества.

Рентгеноструктурный и рентгенофлуоресцентный анализ

У рентгеновских лучей свойства позволяют с их помощью детально рассматривать отдельные атомы. Рентгеноструктурный анализ активно применяется в химии (в том числе биохимии) и кристаллографии. Принцип его работы — дифракционное рассеивание рентгеновских лучей на атомах кристаллов или сложных молекул. При помощи рентгеноструктурного анализа была определена структура молекулы ДНК.

Рентгенофлуоресцентный анализ позволяет быстро определить химический состав вещества.

Существует множество форм радиотерапии, но все они подразумевают использование ионизирующей радиации. Радиотерапия делится на 2 типа: корпускулярный и волновой. Корпускулярный использует потоки альфа-частиц (ядер атомов гелия), бета-частиц (электронов), нейтронов, протонов, тяжелых ионов. Волновой использует лучи электромагнитного спектра — рентгеновские и гамма.

Используются радиотерапевтические методы прежде всего для лечения онкологических заболеваний. Дело в том, что радиация поражает в первую очередь активно делящиеся клетки, поэтому так страдают органы кроветворения (их клетки постоянно делятся, производя все новые эритроциты). Раковые клетки тоже постоянно делятся и более уязвимы для радиации, чем здоровая ткань.

Используется уровень облучения, который подавляет активность раковых клеток, умеренно влияя на здоровые. Под воздействием радиации происходит не разрушение клеток как таковое, а поражение их генома — молекул ДНК. Клетка с разрушенным геномом может некоторое время существовать, но уже не может делиться, то есть рост опухоли прекращается.

Рентгенотерапия — наиболее мягкая форма радиотерапии. Волновая радиация мягче корпускулярной, а рентген — мягче гамма-излучения.

При беременности

Использовать ионизирующую радиацию при беременности опасно. Рентгеновские лучи обладают мутагенной активностью и могут вызвать нарушения у плода. Рентгенотерапия несовместима с беременностью: она может применяться только в том случае, если уже решено производить аборт. Ограничения на рентгеноскопию мягче, но в первые месяцы она тоже строго запрещена.

В случае крайней необходимости рентгенологическое исследование заменяют магниторезонансной томографией. Но в первый триместр стараются избегать и ее (этот метод появился недавно, и с абсолютной уверенностью говорить об отсутствии вредных последствий).

Однозначная опасность возникает при облучении суммарной дозой не менее 1 мЗв (в старых единицах — 100 мР). При простом рентгеновском снимке (например, при прохождении флюорографии) пациентка получает примерно в 50 раз меньше. Для того, чтобы получить такую дозу за 1 раз, нужно подвергнуться детальной компьютерной томографии.

То есть сам по себе факт 1-2-кратного «рентгена» на ранней стадии беременности не грозит тяжелыми последствиями (но лучше не рисковать).

Лечение с помощью него

Рентгеновские лучи применяют прежде всего при борьбе со злокачественными опухолями. Этот метод хорош тем, что высокоэффективен: он убивает опухоль. Плох он тем, что здоровым тканям приходится немногим лучше, имеются многочисленные побочные эффекты. В особой опасности находятся органы кроветворения.

На практике применяются различные методы, позволяющие снизить воздействие рентгена на здоровые ткани. Лучи направляются под углом таким образом, чтобы в зоне их перекрещивания оказалась опухоль (благодаря этому основное поглощение энергии происходит как раз там). Иногда процедура производится в движении: тело пациента относительно источника излучения вращается вокруг оси, проходящей через опухоль. При этом здоровые ткани оказываются в зоне облучения лишь иногда, а больные — постоянно.

Рентген используется при лечении некоторых артрозов и подобных заболеваний, а также кожных болезней. При этом болевой синдром снижается на 50-90%. Так как излучение при этом используется более мягкое, побочных эффектов, аналогичных тем, что возникают при лечении опухолей, не наблюдается.

1. Большая проникающая и ионизирующая способность.

2. Не отклоняются электрическим и магнитным полем.

3. Обладают фотохимическим действием.

4. Вызывают свечение веществ.

5. Отражение, преломление и дифракция как у видимого излучения.

6. Оказывают биологическое действие на живые клетки.

1. Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z³λ³, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах - т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.

В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения - за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ). Однако при другом подходе, когда "ренгеновским" называется излучение, возникшее при взаимодействии электрона и ядра или только электронов, такой процесс имеет место быть. Кроме того, очень жесткое рентгеновское излучение с энергией кванта более 1 МэВ, способно вызвать Ядерный фотоэффект.

[править]

2. Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

[править]

3. Регистрация

Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.

Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30-100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.

В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.

Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20-60 кв и кожно-фокусном расстоянии 3-7 см (короткодистанционная рентгенотерапия) или при напряжении 180-400 кв и кожно-фокусном расстоянии 30-150 см (дистанционная рентгенотерапия).

Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

[править]

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

Рентгенология - раздел радиологии, изучающий воздействие на организм животных и человека рентгеновского излучения, возникающие от этого заболевания, их лечение и профилактику, а также методы диагностики различных патологий при помощи рентгеновских лучей (рентгенодиагностика). В состав типового рентгенодиагностического аппарата входит питающее устройство (трансформаторы), высоковольтный выпрямитель, преобразующий переменный ток электрической сети в постоянный, пульт управления, штатив и рентгеновская трубка.

Рентгеновские лучи - это вид электромагнитных колебаний, которые образуются в рентгеновской трубке при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода. В настоящее время общепризнанной считается точка зрения, что рентгеновские лучи по своей физической природе являются одним из видов лучистой энергии, спектр которых включает также радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи и гамма-лучи радиоактивных элементов. Рентгеновское излучение можно характеризовать как совокупность его наименьших частиц - квантов или фотонов.

Рис. 1 - передвижной рентгеновский аппарат:

A - рентгеновская трубка;
Б - питающее устройство;
В - регулируемый штатив.


Рис. 2 - пульт управления рентгеновским аппаратом (механический - слева и электронный - справа):

A - панель для регулирования экспозиции и жёсткости;
Б - кнопка подачи высокого напряжения.


Рис. 3 - блок-схема типичного рентгенаппарата

1 - сеть;
2 - автотрансформатор;
3 - повышающий трансформатор;
4 - рентгеновская трубка;
5 - анод;
6 - катод;
7 - понижающий трансформатор.

Механизм образования рентгеновского излучения

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1% - в рентгеновское излучение.

Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума (10 -7 –10 -8 мм. рт. ст.). На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка - небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны, - это и есть место образования рентгеновских лучей.


Рис. 4 - устройство рентгеновской трубки:

А - катод;
Б - анод;
В - вольфрамовая нить накала;
Г - фокусирующая чашечка катода;
Д - поток ускоренных электронов;
Е - вольфрамовая мишень;
Ж - стеклянная колба;
З - окно из бериллия;
И - образованные рентгеновские лучи;
К - алюминиевый фильтр.

К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5-15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20–140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию.

После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс - на анод, и отрицательный - на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду - за счёт такой разности потенциалов достигается высокая скорость движения - 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия.

Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.


Рис. 5 - принцип образования тормозного рентгеновского излучения.
Рис. 6 - принцип образования характеристического рентгеновского излучения.

Основные свойства рентгеновского излучения

  1. Рентгеновские лучи невидимы для визуального восприятия.
  2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света.
  3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.
  • Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,
  • Кристаллы вольфрамата кальция - фиолетово-голубым.
  • Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.
  • Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие.
  • Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших - может привести к развитию лучевых поражений, а также острой лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.
  • Шкала электромагнитных колебаний

    Рентгеновские лучи имеют определённую длину волны и частоту колебаний. Длина волны (λ) и частота колебаний (ν) связаны соотношением: λ ν = c, где c - скорость света, округлённо равная 300 000 км в секунду. Энергия рентгеновских лучей определяется формулой E = h ν, где h - постоянная Планка, универсальная постоянная, равная 6,626 10 -34 Дж⋅с. Длина волны лучей (λ) связана с их энергией (E) соотношением: λ = 12,4 / E.

    Рентгеновское излучение отличается от других видов электромагнитных колебаний длиной волны (см. таблицу) и энергией кванта. Чем короче длина волны, тем выше её частота, энергия и проникающая способность. Длина волны рентгеновского излучения находится в интервале

    . Изменяя длину волны рентгеновского излучения, можно регулировать его проникающую способность. Рентгеновские лучи имеют очень малую длину волны, но большую частоту колебаний, поэтому невидимы человеческим глазом. Благодаря огромной энергии кванты обладают большой проникающей способностью, что является одним из главных свойств, обеспечивающих использование рентгеновского излучения в медицине и других науках.

    Характеристики рентгеновского излучения

    Интенсивность - количественная характеристика рентгеновского излучения, которая выражается количеством лучей, испускаемых трубкой в единицу времени. Интенсивность рентгеновского излучения измеряется в миллиамперах. Сравнивая её с интенсивностью видимого света от обычной лампы накаливания, можно провести аналогию: так, лампа на 20 Ватт будет светить с одной интенсивностью, или силой, а лампа на 200 Ватт - с другой, при этом качество самого света (его спектр) является одинаковым. Интенсивность рентгеновского излучения, по сути, это его количество. Каждый электрон создаёт на аноде один или несколько квантов излучения, следовательно, количество рентгеновских лучей при экспонировании объекта регулируется путём изменения количества электронов, стремящихся к аноду, и количества взаимодействий электронов с атомами вольфрамовой мишени, что можно осуществить двумя путями:

    1. Изменяя степень накала спирали катода при помощи понижающего трансформатора (количество электронов, образующихся при эмиссии, будет зависеть от того, насколько сильно раскалена вольфрамовая спираль, а количество квантов излучения будет зависеть от количества электронов);
    2. Изменяя величину высокого напряжения, подводимого повышающим трансформатором к полюсам трубки - кадоду и аноду (чем выше напряжение подаётся на полюса трубки, тем большую кинетическую энергию получают электроны, которые за счёт своей энергии могут взаимодействовать с несколькими атомами вещества анода поочерёдно - см. рис. 5 ; электроны с низкой энергией смогут вступить в меньшее число взаимодействий).

    Интенсивность рентгеновского излучения (анодный ток), помноженная на выдержку (время работы трубки), соответствует экспозиции рентгеновского излучения, которая измеряется в мАс (миллиамперах в секунду). Экспозиция - это параметр, который, также как и интенсивность, характеризует количество лучей, испускаемых рентгеновской трубкой. Разница состоит лишь в том, что экспозиция учитывает ещё и время работы трубки (так, например, если трубка работает 0,01 сек., то количество лучей будет одним, а если 0,02 сек, то количество лучей будет другим - в два раза больше). Экспозиция излучения устанавливается рентгенологом на контрольной панели рентгеновского аппарата в зависимости от вида исследования, размеров исследуемого объекта и диагностической задачи.

    Жёсткость - качественная характеристика рентгеновского излучения. Измеряется величиной высокого напряжения на трубке - в киловольтах. Определяет проникающую способность рентгеновских лучей. Регулируется величиной высокого напряжения, подводимого к рентгеновской трубке повышающим трансформатором. Чем выше разность потенциалов создаётся на электродах трубки, тем с большей силой электроны отталкиваются от катода и устремляются к аноду и тем сильнее их столкновение с анодом. Чем сильнее их столкновение, тем короче длина волны у возникающего рентгеновского излучения и выше проникающая способность данной волны (или жёсткость излучения, которая, так же как и интенсивность, регулируется на контрольной панели параметром напряжением на трубке - киловольтажем).

    Рис. 7 - Зависимость длины волны от энергии волны:

    λ - длина волны;
    E - энергия волны

    • Чем выше кинетическая энергия движущихся электронов, тем сильнее их удар об анод и меньше длина волны образующегося рентгеновского излучения. Рентгеновское излучение с большой длиной волны и малой проникающей способностью называется «мягким», с малой длиной волны и высокой проникающей способностью - «жёстким».
    Рис. 8 - Соотношение напряжения на рентгеновской трубке и длины волны образующегося рентгеновского излучения:
    • Чем выше напряжение подаётся на полюса трубки, тем сильнее на них возникает разность потенциалов, следовательно, кинетическая энергия движущихся электронов будет выше. Напряжение на трубке определяет скорость движения электронов и силу их столкновения с веществом анода, следовательно, напряжение определяет длину волны возникающего рентгеновского излучения.

    Классификация рентгеновских трубок

    1. По назначению
      1. Диагностические
      2. Терапевтические
      3. Для структурного анализа
      4. Для просвечивания
    2. По конструкции
      1. По фокусности
    • Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)
    • Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)
    1. По типу анода
    • Стационарный (неподвижный)
    • Вращающийся

    Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

    В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода - чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

    Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно - участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12 ). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.


    Рис. 9 - рентгеновская трубка со стационарным анодом.
    Рис. 10 - рентгеновская трубка с вращающимся анодом.
    Рис. 11 - устройство рентгеновской трубки с вращающимся анодом.
    Рис. 12 - схема образования реального и эффективного фокусного пятна.


    1. Тормозное и характеристическое рентгеновское излучение,

    основные свойства и характеристики.

    В 1895 году немецкий ученый Рентген впервые обнаружил свечение флуоресцентного экрана, которое было вызвано невидимым для глаза излучением, идущим от участка стекла газоразрядной трубки, расположенного против катода. Этот вид излучения обладал способностью проходить через вещества, непроницаемые для видимого света. Рентген назвал их Х-лучами и установил основные свойства, позволяющие, применять их в различных отраслях науки и техники, в том числе и в медицине.

    Рентгеновским называется излучение с длиной волны 80-10 -5 нм. Длинноволновое рентгеновское излучение перекрывает коротковолновое УФ-излучение, коротковолновое перекрывается длинноволновым g-излучением. В медицине используется рентгеновское излучение с длиной волны от 10 до 0,005 нм, чему соответствует энергия фотонов от 10 2 ЭВ до 0,5 МэВ. Рентгеновское излучение невидимо для глаза, поэтому все наблюдения с ним производятся с помощью флюоресцирующих экранов или фотопленок, так как оно вызывает рентгенолюминесценцию и оказывает фотохимическое действие. Характерно, что большинство тел, непроницаемых для оптического излучения, в значительной мере прозрачно для рентгеновского, имеющего свойства общие для электромагнитных волн. Однако, вследствие малости длины волны, некоторые свойства трудно обнаружить. Поэтому волновая природа излучения была установлена значительно позже их открытия.

    По способу возбуждения рентгеновское излучение подразделяется на тормозное и характеристическое излучение.

    Тормозное рентгеновское излучение обусловлено торможением быстро движущихся электронов электрическим полем атома (ядра и электронов) вещества, через которое они пролетают. Механизм этого излучения можно объяснить тем, что любой движущийся заряд представляет собой ток, вокруг которого создается магнитное поле, индукция (В) которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и, в соответствии с теорией Максвелла, появляется электромагнитная волна.

    При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Частота (длина волны) фотона зависит от начальной кинетической энергии электрона и интенсивности его торможения. Причем даже если начальная кинетическая энергия одинакова, то в веществе условия торможения будут различны, поэтому и излучаемые фотоны будут иметь самую разнообразную энергию, а, следовательно, и длину волны, т.е. спектр рентгеновского излучения будет сплошным. На рис.1 показан спектр тормозного рентгеновского излу чения при различных напряжениях U 1

    .

    Если U выразить в киловольтах и учесть соотношение между другими величинами, то формула имеет вид: l к = 1,24/U (нм) или l к =1,24/U (Å) (1Å = 10 -10 м).

    Из приведенных выше графиков можно установить, что длина волны l m , на которую приходится максимум энергии излучения, находится в постоянном соотношении с граничной длиной волны l к:

    .

    Длина волны характеризует энергию фотона, от которой зависит проникающая способность излучения при взаимодействии его с веществом.

    Коротковолновое рентгеновское излучение обычно обладает большой проникающей способностью и называется жестким, а длинноволновое – мягким. Как видно из приведенной выше формулы, длина волны, на которую приходится максимум энергии излучения, обратно пропорциональна напряжению между анодом и катодом трубки. Увеличивая напряжение на аноде рентгеновской трубки, изменяют спектральный состав излучения и увеличивают его жесткость.

    При изменении напряжения накала (изменяется температура накала катода) изменяется количество электронов, испускаемых катодом в единицу времени, или соответственно сила тока в цепи анода трубки. При этом мощность излучения изменяется пропорционально первой степени силы тока. Спектральный же состав излучения не изменится.

    Общий поток (мощность) излучения, распределение энергии по длинам волн, а также граница спектра со стороны коротких длин волн зависит от следующих трех причин: напряжения U, ускоряющего электроны и приложенного между анодом и катодом трубки; количества электронов, участвующих в образовании излучения, т.е. силы тока накала трубки; атомного номера Z вещества анода, в котором происходит торможение электрона.

    Поток тормозного рентгеновского излучения вычисляется по формуле: , где ,

    Z-порядковый номер атома вещества (атомный номер).

    Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного тормозного рентгеновского излучения появление отдельных линий (линейчатый спектр), что соответствует характеристическому рентгеновскому излучению. Оно возникает при переходе электронов между внутренними оболочками атомов в веществе (оболочки К, L, М). Линейчатый характер спектра характеристического излучения возникает вследствие того, что ускоренные электроны проникают вглубь атомов и из их внутренних слоев выбивают электроны за пределы атома. На свободные места переходят электроны (рис.2) с верхних слоев, в результате чего излучаются фотоны рентгеновского излучения с частотой, соответствующей разности уровней энергии перехода. Линии в спектре характеристического излучения объединяются в серии, соответствующие переходам электронов с более высоким уровнем на уровне К, L, М.

    Внешнее воздействие, в результате которого электрон выбивается из внутренних слоев, должно быть достаточно сильным. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, т.к. силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядер. Такая зависимость известна как закон Мозли: , где А и В–постоянные; Z-порядковый номер элемента.

    Есть еще одно отличие между рентгеновскими и оптическими спектрами. Характеристический спектр атома не зависит от химического соединения, в которое атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 , Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновских спектров атомов и послужила основанием для названия «характеристические».

    Характеристическое излучение возникает всегда, когда имеются в наличии свободные места во внутренних слоях атома независимо от причин, которые его вызвали. Например, оно сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

    2. Устройство рентгеновских трубок и простейшего

    рентгеновского аппарата.

    Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка – двухэлектродный вакуумный прибор (рис.3). Она представляет собой стеклянный баллон (p = 10 -6 – 10 -7 мм. рт. ст.) с двумя электродами – анодом А и катодом К, между которыми создается высокое напряжение. Подогретый катод (К) испускает электроны. Анод А часто называют антикатодом. Он имеет наклонную поверхность для того, чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготавливается из металла с хорошей теплопроводностью (медь) для отвода тепла, образующегося при ударе электронов. На скошенном торце анода имеется пластинка З из тугоплавкого металла (вольфрам) с высоким атомным номером, называемая зеркалом анода. В отдельных случаях анод специально охлаждают водой или маслом. Для диагностических трубок важна точечность источника рентгеновских лучей, что можно достигнуть, сфокусировав электроны в одном месте анода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны электроны должны попадать на одно место анода, с другой стороны, чтобы не допускать перегрева, желательно распределение электронов по разным участкам анода. В связи с этим некоторые рентгеновские трубки изготавливаются с вращающимся анодом.

    В трубке любой конструкции электроны, ускоренные напряжением между анодом и катодом, попадают на зеркало анода и проникают вглубь вещества, взаимодействуют с атомами и тормозятся полем атомов. При этом возникает тормозное рентгеновское излучение. Одновременно с тормозным образуется небольшое количество (несколько процентов) характеристического излучения. Только 1-2% электронов, попадающих на анод, вызывают тормозное излучение, а остальная часть – тепловой эффект. Для концентрации электронов катод имеет направляющий колпачок. Часть вольфрамового зеркала, на которую падает основной поток электронов, называется фокусом трубки. От его площади (острота фокуса) зависит ширина пучка излучения.

    Для питания трубки требуется два источника: источник высокого напряжения для анодной цепи и низкого (6-8 В) для питания цепи накала. Оба источника должны иметь независимую регулировку. Путем изменения анодного напряжения регулируется жесткость рентгеновского излучения, а изменением накала – ток выходной цепи и, соответственно, мощность излучения.

    Принципиальная электрическая схема простейшего рентгеновского аппарата приведена на рис.4. В схеме имеется два трансформатора Тр.1 высокого напряжения и Тр.2 для питания накала. Высокое напряжение на трубке регулируется автотрансформатором Тр.3, подключенным к первичной обмотке трансформатора Тр.1. Переключателем К регулируется число витков обмотки автотрансформатора. В связи с этим изменяется и напряжение вторичной обмотки трансформатора, подаваемое на анод трубки, т.е. регулируется жесткость.

    Ток накала трубки регулируется реостатом R, включенным в цепь первичной обмотки трансформатора Тр.2. Ток анодной цепи измеряется миллиамперметром. Подаваемое на электроды трубки напряжение измеряется киловольтметром кV или о величине напряжения в анодной цепи можно судить по положению переключателя К. Величина тока накала, регулируемая реостатом, измеряется амперметром А. В рассматриваемой схеме рентгеновская трубка одновременно выпрямляет высокое переменное напряжение.

    Нетрудно заметить, что такая трубка излучает только в один полупериод переменного тока. Следовательно, её мощность будет небольшой. В целях увеличения излучаемой мощности во многих аппаратах используют высоковольтные двухполупериодные рентгеновские выпрямители. Для этой цели используются 4 специальных кенотрона, которые включены по мостовой схеме. В одну диагональ моста включается рентгеновская трубка.

    3. Взаимодействие рентгеновского излучения с веществом

    (когерентное рассеяние, некогерентное рассеяние, фотоэффект).

    При падении рентгеновского излучения на какое-либо тело оно в небольшом количестве отражается от него, а в основном проходит вглубь. В массе тела излучение частично поглощается, частично рассеивается, а частично проходит насквозь. Проходя через тело, фотоны рентгеновского излучения, взаимодействуют в основном с электронами атомов и молекул вещества. Регистрация и использование рентгеновского излучения, а также воздействия его на биологические объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами. В зависимости от соотношения энергии Е фотона и энергии ионизации А И имеют место три главных процесса.

    а) Когерентное рассеяние.

    Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Взаимодействие фотона с электронами внутренних оболочек, крепко связанных с ядром, изменяет только его направление, не изменяя его энергии, а значит длины волны (рис.5).

    Когерентное рассеяние возникает, если энергия фотона меньше энергии ионизации: Е = hn<А И. Так как энергия фотона и энергия атома не изменяется, то когерентное рассеяние не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка.

    б) Некогерентное рассеяние (эффект Комптона).

    В 1922 году А. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Рассеяние рентгеновского излучения с изменением длины волны называется эффектом Комптона. Он возникает при взаимодействии фотона любых энергий со слабо связанными с ядром электронами внешних оболочек атомов (рис.6). Электрон отрывается от атома (такие электроны называются электронами отдачи). Энергия фотона уменьшается (длина волны соответственно увеличивается), а также изменяется направление его движения. Эффект Комптона возникает, если энергия фотона рентгеновского излучения больше энергии ионизации: , . При этом появляются электроны отдачи с кинетической энергией Е К. Атомы и молекулы становятся ионами. Если Е К значительна, то электроны могут ионизировать соседние атомы путем соударения, образуя новые (вторичные) электроны.

    в) Фотоэффект.

    Если энергия фотона hn достаточна для отрыва электрона, то при взаимодействии с атомом фотон поглощается, а электрон отрывается от него. Это явление называется фотоэффектом. Атом ионизируется (фотоиноизация). При этом электрон приобретает кинетическую энергию и, если последняя значительна, то он может ионизировать соседние атомы путем соударения, образуя новые (вторичные) электроны. Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атом или молекулы. У некоторых веществ это приводит к последующему излучению фотонов в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям.

    Фотоэффект характерен для фотонов с энергией порядка 0,5-1 МэВ.

    Три основных процесса взаимодействия, рассмотренные выше, являются первичными, они приводят к последующим вторичным, третичным и т.д. явлениям. При попадании рентгеновского излучения в вещество может происходить целый ряд процессов, прежде чем энергия рентгеновского фотона превратится в энергию теплового движения.

    В результате указанных выше процессов первичный поток рентгеновского излучения ослабляется. Этот процесс подчиняется закону Бугера. Запишем его в виде: Ф =Ф 0 е - mх, где m-линейный коэффициент ослабления, зависящий от природы вещества (главным образом от плотности и атомного номера) и от длины волны излучения (энергия фотона). Его можно представить состоящим из трех слагаемых, соответствующих когерентному рассеянию, некогерентному рассеянию и фотоэффекту: .

    Так как линейный коэффициент поглощения зависит от плотности вещества, то предпочитают пользоваться массовым коэффициентом ослабления, который равен отношению линейного коэффициента ослабления к плотности поглотителя и не зависит от плотности вещества . Зависимость потока (интенсивность) рентгеновского излучения от толщины поглощающего фильтра представлена на рис.7 для Н 2 О, Al, и Cu. Расчеты показывают, что слой воды толщиной 36 мм, алюминия 15 мм и меди 1,6 мм уменьшают интенсивность рентгеновского излучения в 2 раза. Эту толщину называют толщиной половинного слоя d. Если вещество ослабляет рентгеновское излучение наполовину, то , тогда , или , ; ; . Зная толщину половинного слоя можно всегда определить m. Размерность .

    4. Использование рентгеновского излучения в медицине

    (рентгеноскопия, рентгенография, рентгеновская томография, флюорография, рентгенотерапия).

    Одним из наиболее распространенных применений рентгеновского излучения в медицине является просвечивание внутренних органов с диагностической целью – рентгенодиагностика.

    Для диагностики используются фотоны с энергией 60-120 кэВ. При этом массовый коэффициент поглощения определяется в основном фотоэффектом. Его значение пропорционально l 3 (в чем проявляется большая проникающая способность жесткого излучения) и пропорционально третьей степени номера атомов вещества – поглотителя: , где К–коэффициент пропорциональности.

    Тело человека состоит из тканей и органов, имеющих различную поглощающую способность по отношению к рентгеновскому излучению. Поэтому при просвечивании его рентгеновскими лучами получается неоднородное теневое изображение на экране, которое дает картину расположения внутренних органов и тканей. Наиболее плотные поглощающее излучение ткани (сердце, крупные сосуды, кости) видны темными, а мало поглощающие ткани (легкие) – светлыми.

    Во многих случаях можно при этом судить об их нормальном или патологическом состоянии. Рентгенодиагностика использует два основных метода: рентгеноскопию (просвечивание) и рентгенографию (снимок). Если исследуемый орган и окружающие его ткани примерно одинаково поглощают поток рентгеновского излучения, то применяют специальные контрастные вещества. Так, например, дают накануне рентгеновского исследования желудка или кишечника кашеобразную массу сульфата бария, в этом случае можно видеть их теневое изображение. При рентгеноскопии и рентгенографии рентгеновское изображение является суммарным изображением всей толщины объекта, через который проходят рентгеновские лучи. Наиболее четко очерчиваются те детали, которые ближе к экрану или пленке, а удаленные становятся нечеткими и размытыми. Если в каком-то органе есть патологически измененный участок, например, разрушение легочной ткани внутри обширного очага воспаления, то в ряде случаев этот участок на рентгенограмме в сумме теней может «потеряться». Чтобы сделать его видимым применяют специальный метод – томографию (послойная запись), которая позволяет получить снимки отдельных слоев изучаемой области. Такого рода послойные снимки–томограммы получают с помощью специального аппарата, называемого томографом, в котором периодически, совместно, в противофазе перемещают рентгеновскую трубку (РТ) и фотопленку (Фп) относительно области исследования. При этом рентгеновские лучи при любом положении РТ будут проходить через одну и ту же точку объекта (измененный участок), являющуюся центром, относительно которого совершается периодическое движение РТ и Фп. Теневое изображение участка будет зафиксировано на пленке. Изменяя положение «центра качания», можно получить послойные изображения объекта. Используя тонкий пучек рентгеновского излучения, специальный экран (вместо Фп) состоящий из полупроводниковых детекторов ионизирующего излучения, можно с помощью ЭВМ обработать изображение при томографии. Такой современный вариант томографии называется компьютерной томографией. Томография широко применяется при исследовании легких, почек, желчного пузыря, желудка, костей и т.д.

    Яркость изображения на экране и время экспозиции на фотопленке зависит от интенсивности рентгеновского излучения. При использовании его для диагностики интенсивность не может быть большой, чтобы не вызвать нежелательного биологического эффекта. Поэтому имеется ряд технических приспособлений, улучающих яркость изображения при малых интенсивностях рентгеновского излучения. Одним из таких приспособлений является электронно-оптический преобразователь.

    Другой пример – флюорография, при котором на чувствительной малоформатной пленке получается изображение с большого рентгенолюминесцирующего экрана. При съемке используют линзу большой светосилы, готовые снимки рассматривают на специальном увеличителе.

    Флюорография сочетает в себе большую возможность обнаружения скрытно протекающих заболеваний (заболевания органов грудной клетки, желудочно-кишечного тракта, придаточных пазух носа и т.д.) со значительной пропускной способностью, в связи с чем является весьма эффективным методом массового (поточного) исследования.

    Поскольку фотографирование рентгеновского изображения при флюорографии производится с помощью фотографической оптики, изображение на флюорограмме по сравнению с рентгеновским является уменьшенным. В связи с этим разрешающая способность флюорограммы (т.е. различимость мелких деталей) меньше, чем обычной рентгенограммы, однако, больше, чем при рентгеноскопии.

    Сконструирован аппарат – томофлюорограф, позволяющий получать флюорограммы частей тела и отдельных органов на заданной глубине – так называемые послойные снимки (срезы) – томофлюорограммы.

    Рентгеновское излучение используется также и для лечебных целей (рентгенотерапия). Биологическое действие излучения заключается в нарушении жизнедеятельности клеток, особенно быстро развивающихся. В связи с этим рентгенотерапия применяется для воздействия на злокачественные опухоли. Можно подобрать дозу излучения достаточную для полного разрушения опухоли при относительно незначительном повреждении окружающих здоровых тканей, которые вследствие последующей регенерации восстанавливаются.


    Рентгеновское излучение, с точки зрения физики, это электромагнитное излучение, длина волн которого варьируется в диапазоне от 0,001 до 50 нанометров. Было открыто в 1895 немецким физиком В.К.Рентгеном.

    По природе эти лучи являются родственными солнечному ультрафиолету. В спектре самыми длинными являются радиоволны. За ними идет инфракрасный свет, который наши глаза не воспринимают, но мы ощущаем его как тепло. Далее идут лучи от красного до фиолетового. Затем - ультрафиолет (А, В и С). А сразу за ним рентгеновские лучи и гамма-излучение.

    Рентгеновское может быть получено двумя способами: при торможении в веществе проходящих сквозь него заряженных частиц и при переходе электронов с высших слоев на внутренние при высвобождении энергии.

    В отличие от видимого света эти лучи имеют очень большую длину, поэтому способны проникать через непрозрачные материалы, не отражаясь, не преломляясь и не накапливаясь в них.

    Тормозное излучение получить проще. Заряженные частицы при торможении испускают электромагнитное излучение. Чем больше ускорение этих частиц и, следовательно, резче торможение, тем больше образуется рентгеновского излучения, а длина его волн становится меньше. В большинстве случаев на практике прибегают к выработке лучей в процессе торможения электронов в твердых веществах. Это позволяет управлять источником этого излучения, избегая опасности радиационного облучения, потому что при отключении источника рентгеновское излучение полностью исчезает.

    Самый распространенный источник такого излучения - Испускаемое ей излучение неоднородно. В нем присутствует и мягкое (длинноволновое), и жесткое (коротковолновое) излучения. Мягкое характеризуется тем, что полностью поглощается человеческим телом, поэтому такое рентгеновское излучение вред приносит в два раза больше, чем жесткое. При чрезмерном электромагнитном облучении в тканях организма человека ионизация может привести к повреждению клеток и ДНК.

    Трубка - это с двумя электродами - отрицательным катодом и положительным анодом. При разогревании катода из него испаряются электроны, затем они ускоряются в электрическом поле. Сталкиваясь с твердым веществом анодов, они начинают торможение, которое сопровождается испусканием электромагнитного излучения.

    Рентгеновское излучение, свойства которого широко используются в медицине, базируется на получении теневого изображения исследуемого объекта на чувствительном экране. Если диагностируемый орган просвечивать пучком параллельных друг другу лучей, то проекция теней от этого органа будет передаваться без искажений (пропорционально). На практике источник излучения более похож на точечный, поэтому его располагают на расстоянии от человека и от экрана.

    Чтобы получить человек помещается между рентгеновской трубкой и экраном или пленкой, выступающими в роли приемников излучения. В результате облучения на снимке костная и другие плотные ткани проявляются в виде явных теней, выглядят более контрастно на фоне менее выразительных участков, которые передают ткани с меньшим поглощением. На рентгеновских снимках человек становится «полупрозрачным».

    Распространяясь, рентгеновское излучение может рассеиваться и поглощаться. До поглощения лучи могут проходить сотни метров в воздухе. В плотном веществе они поглощаются гораздо быстрее. Биологические ткани человека неоднородны, поэтому поглощение ими лучей зависит от плотности ткани органов. поглощает лучи быстрее, чем мягкие ткани, потому что содержит вещества, имеющие большие атомные номера. Фотоны (отдельные частицы лучей) поглощаются разными тканями организма человека по-разному, что и позволяет получать контрастное изображение с помощью рентгеновских лучей.

    © 2024. srcaltufevo.ru. Саморазвитие. Здоровье. Истории успеха. Отношения. Наши дети.