Как появились планеты для детей. Происхождение Земли (От Большого Взрыва до возникновения Земли). Как же происходит образование и развитие небесных структур


К интересным выводам в ходе исследования свойств времени и возможности путешествий в прошлое и будущее пришел кандидат технических наук В.Чернобров. Так, в частности, он пишет:

«Настоящее есть переход, превращение многовариантного, легко изменяемого Будущего в одновариантное и неизменное Прошлое. Отсюда следует, что полеты в Прошлое (при «отрицательной» плотности-скорости t/tо) и в Будущее будут происходить по-разному.

В какой-то степени их можно сравнить с перемещениями муравья по дереву: из любой точки дерева (из Настоящего) для муравья открывается всего 1 путь вниз (в Прошлое) и множество путей вверх (в Будущее).

Однако среди всех путей в Будущее несомненно существуют наиболее вероятные варианты, маловероятные и почти невероятные. Движение в Будущее будет тем более нестабильным и энергоемким, чем менее вероятным окажется данный вариант Будущего.

В соответствии с данным «законом кроны дерева», возвращение в Настоящее возможно только в том случае, если при пребывании в Прошлом путешествующий не вмешивается в происходящее вокруг него и не изменяет ход прошедшей Истории; в противном случае хронопутешественник вернется в параллельное Настоящее из Прошлого по другой ветви Истории.

Проникновение в Будущее из Настоящего затруднено выбором ветви перемещения, но возвращение из любого варианта Будущего в Настоящее возможно при любом сценарии поведения. Если перед вами не окажется слияний разных вариантов Истории».

Таким образом, даже современные научные исследования подтверждают многомерность времени и разновариантность будущего, а также возможность перемещений в различные его вероятности.

Существует гипотеза, согласно которой ключевые моменты судьбы каждого человека, так называемые «развилки» вероятностей, порождают различные «ветви» реальности в зависимости от наших поступков.

Все эти «ветви» существуют во Вселенной одновременно. Но человеку доступно существование только на одной такой «ветви», хотя иногда и происходят случаи спонтанного перехода с одной «ветви» реальности на другую.

В пользу существования различных вероятностей будущей («ветвей» Древа Жизни, «бороздок» Колеса Времени и т.п.) свидетельствует история, происшедшая с Густавом и Йоханом Шредерманами. Началась она весной 1973 года, когда семья Шредерманов (муж, жена и сын) переехали из Берлина на ферму под Зальцбургом.

Младший из Шредерманов все лето бегал по окрестностям и однажды обнаружил в лесу покосившийся домик, обходя который чуть не провалился в заросший колодец, но вовремя уцепился за куст. Возвращаясь домой, он испытал странное головокружение и дома сразу же лег в постель. На следующее утро в дверь дома раздался стук, а когда мальчик открыл ее, то увидел самого себя, мокрого и перепачканного грязью.

Оказалось, что все прошлое у обоих мальчиков полностью совпадает, разные вероятности судеб начинаются после инциндента у колодца, в который один из них провалился, а другой удержался.

Возможно, что сильный стресс и испуг провалившегося мальчика благодаря измененному состоянию сознания переместили его в другую ветвь реальности, где уже существовал он же, но не провалившийся в колодец.

Характерно, что в последствии родители присвоили мальчикам новые имена и каждый из них жил собственной судьбой: один занялся экспортом пива, другой стал архитектором.

Рис. 7.2. Платежная матрица с учетом вероятностей исходов событий

p i – вероятность i-ого варианта исхода событий.

M j – мат. ожидание критерия при выборе j -ого варианта альтернатив действий, определяемое по формуле:

Два вышеназванных подхода позволяют реализовать четыре различных алгоритма выбора решения.

1. Решение на основе правила максимальной вероятности - максимизация наиболее вероятных значений критерия (прибыли или дохода).

2. Решение на основе правила максимальной вероятности - минимизации наиболее вероятных значений критерия (возможных потерь или прямых убытков).

3. Решение на основе правила максимизации математического ожидания (среднего значения) критерия (прибыли или дохода).

4. Решение на основе правила минимизации математического ожидания (среднего значения) критерия (потерь или убытков).

Примеры, которые мы рассматривали до сих пор в этой главе, включали в себя единственное решение. Однако на практике результат одного решения заставляет нас принимать следующее и т.д. Эту последовательность нельзя выразить платежной матрицей, поэтому нужно использовать какой-то другой процесс принятия решений.

Схему"дерево" решений используют, когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исходов событий.

Состав­ляя "дерево" решений, нужно нарисовать "ствол" и "ветви", отображающие структуру проблемы.

· Располагаются "деревья" слева направо. "Ветви" обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возни­кающие в результате этих решений.

· "Ветви" выходят из узлов. Узлы бывают двух типов.

Квадратный узел обозначает место, где принимается решение.

Круглый узел обозначает место, где появляются различные варианты исходов.

· На схеме используются два вида "ветвей":

Первый - пунктирные линии, выходящие из квадратов возможных решений, движение по ним зависит от принимаемых решений. На соответствующей пунктирной "ветви" проставляются все расходы, вызван­ные решением.

Второй - сплош­ные линии, выходящие из кружков возможных исходов. Движение по ним определяется исходом событий. На сплошной линии указывается вероятность данного исхода.

узел принятия решения.

узел ветвления вариантов исходов событий.

ветви, движение по которым зависит от принимаемого решения.

ветви, движение по которым зависит от исхода событий.

Поиск решения разбивается на три этапа.

Этап 1. Строится "дерево" (пример будет рассмотрен на практических занятиях). Когда все решения и их исходы указаны на "дереве", просчитывается каждый из вариантов, и в конце проставляется его денежный доход.


Этап 2. Вычисляются и проставляются на соответствующих ветвях вероятности каждого исхода.

Этап 3. На этом этапе справа налево рассчитываются и проставляются денежные исходы каждого из "узлов". Любые встречаю­щиеся расходы вычитаются из ожидаемых доходов.

После того, как пройдены квадраты "решений", выбирается "ветвь", ведущая к наибольшему из возможных при данном решении ожидаемому доходу (на этой ветви проставляется стрелка).

Другая "ветвь" зачеркивается, а ожи­даемый доход проставляется над квадратом решения.

Таким образом, в конце третьего этапа оказывается сформированной последовательность решений, ведущая к максимальному доходу.

В принципе, в качестве критерия может выступать как максимизация мат. ожидания дохода, так и минимизация мат. ожидания потерь.

человека содержится некий план, с которым пришла сюда душа, все варианты развития событий, в том числе. Можно туда зайти и просмотреть последствия важных решений, которые мы принимаем. Например, о смене работы и образа жизни. Делать это можно как в самостоятельных медитациях, так и в совместных процессах ведущий-ведомый. Ниже описание того, как это было проделано в сеансе

Вероятностные линии

Проецирую три ветки:

1) остаться в Москве на имеющейся работе;

2) продать или сдать квартиру и уехать в Азию к друзьям, чтобы войти партнером в их туристический бизнес;

3) идеальный вариант: ухожу с работы, участвую в бизнесе друзей на проектной основе, при этом есть свой собственный дом, но не в Москве (то ли тоже Азия, но другая, то ли Восточная Европа, то ли Латинская Америка - большая светлая вилла, в которой можно принимать гостей и проводить ретриты), есть пара - собственные партнерские отношения, и есть свое дело.

Выстраиваем все три ветки как дороги, смотрим, есть ли ответвления.

Московская ветка - прочный толстый серый канат, тусклый и надежный, не оторвешься, не потеряешься. От каната идет несколько более тонких веревок, какие то поярче и поинтересней, но ни одна не привлекает, не зовет и не светится. Ощущение - я по прежнему люблю Москву, но эта тема себя изжила.


Ветка с Азией и друзьями - очень яркая и наглядная, но короткая и жидкая, что ли. В ней не хватает потенциала для того,чтобы уверенно развернуться в перспективе. Недостаточно ресурса.

Идеальная третья картинка разделилась на несколько географических точек на карте, каждая со своим специфическим налетом. Третья ветка, внутри которой есть моя собственная история - наиболее привлекательна, конечно же, для меня. Она не такая осязаемая сейчас как московская и не такая цветная как вторая, Но она зовет к себе. И светится, наполненная изнутри. Как тонкий живой лучик, пульсирует и переливается.

Выбор своего пути

В этой версии развития событий я свободно перемещаюсь по всему миру при желании. Доход у меня ниже, чем в Москве, но его достаточно, чтобы ни в чем не нуждаться и ни в чем себе не отказывать, пусть и в меру. Я приезжаю на проекты к друзьям, они гостят у меня. Я что-то пишу и работаю с людьми, делаю это в удовольствие. Имеется еще какой то светский бизнес проект, который тоже более-менее успешен, и дает стабильный заработок.

При этом есть близкий человек, с которым мы совместно реализуем эту историю, в паре. Для того, чтобы она проявилась, нужно не только мое намерение, и с той и с моей стороны потребуется некая плата, само собой, как за любой выбор. Как только ты что-то выбираешь, ты автоматически от чего то отказываешься.. Это всегда страшно и небезопасно, к тому же. Плата как отказ от имеющегося комфорта или свободы. Плата как позволение войти в свою жизнь чему то совершенно новому и неизвестному, пусть и заманчивому. Чистая свобода воли и чистота намерений и с той, и с другой стороны. А там уж - как сложится.. В ином ключе (не на чистом волеизъявлении) эта тема просто не взлетит.

Весь этот процесс сейчас в развертке пребывает. Эта ветка находится на стадии вызревания, и если все сложится хорошо, то она сможет полностью проявиться в моей реальности. Смотрим, есть ли помехи или камни на этой идеальной для меня линии. Вижу упавшее дерево, прямо на дороге. Это страхи и недоверие к самой себе. Из серии - это слишком хорошо, чтобы так оно все и сложилось, так не бывает, это все иллюзии и сказки, придуманные самой себе. Расчищаю дорогу.

Следующий важный шаг - принять окончательное собственное решение - нужно ли туда вообще забрасывать внимание, в эту ветку-мечту, поскольку "отмотать" так просто не получится потом. Понимаю для себя, что так или иначе уже давно напитываю ее энергией и внутренне активирую. И это происходит даже не из-за упрямства или желания, чтобы было по моему.

Гораздо более тонкие вещи и знаки, которые сигнализируют о том, что это судьба, как бы громко это ни звучало. Эта ветка постепенно становится все более и более ощутимой. Она уплотняется, медленно и верно. Хотя, конечно же, все еще крайне неопределенно и может свернуться в любой момент, но есть ощущение, что она сама ко мне идет, эта ветка.

Поскольку она давно уже была спроектирована и предопределена, заказана, можно сказать. И я понимаю, куда это ведет. И как оно складывается. И что это правильное развитие событий. Хотя иногда тупо боюсь в это поверить..

И еще очень не хочется эту ветку цементировать. Делать жесткой и однозначной.. Не нужно в нее встраивать жесткую привязку к определенному месту или роду занятий, или к чему то еще. Хочется чтобы в ней было много стихии: воздуха, воды, огня, земли, чтобы она дышала, чтобы была гибкой и неразрушимой - мобильной, трансформируемой и перенастраиваемой. И чтобы все, что в ней происходило, было бы результатом сотворчества, не автономными действиями. Это в любом случае парная история, она не может родиться как принуждение, тут важна максимальная корректность - ни в коем случае не навязывать и не давить.. Все на свободе воли. А дальше - куда позовет*

Усиление ветки вниманием

Протягиваю из своей Искры луч в направлении этой ветки, в ту точку, куда она стремится, соединяюсь с ней своим вниманием. Тем самым Искра начинает работать на реализацию этой цели, якорится в ней. Я могу этого не осознавать, но работа будет вестись: формирование событий в пространстве будет происходить таким образом, чтобы эта цель была максимально приближена к моей реальности, к своей реализации.

Луч Искры трансформируется в гравитационный луч и притягивает объекты и события из той ветки вероятностей ко мне, как магнитом. Цель становится совсем близкой, можно сказать, я сейчас в ней. Как телепорт, когда не стараешься перейти в новое место всем своим телом, а материализуешь искомое пространство вокруг себя: настраиваешься на цель и притягиваешь ее к себе. И чем ближе она к тебе находится, тем больше твоя воля распространяется на ее реализацию. А уже Искра ответственна за то, чтобы сформировать те события, которые повлекут за собой воплощение этой ветки в действительность, позволят ей сыграть.

Рисую свое будущее светом своей Искры. Там так классно, в этой линии вероятностей - очень красивая история, куда хочется всех позвать в гости.. Большая светлая комната, наполненная жизнью, солнцем и воздухом.. Даю ей топливо, заряжаю потенциалом, чтобы она получила возможность проявиться в реальности. Когда будет готовность принять финальное решение или понадобится посмотреть какие то ответы по развитию этой ветки, можно просто вспоминать это состояние притяжения, пропитываться эмоционально атмосферой и настроением этой комнаты, почувствовать эмоцию творчества и партнерства. Эмоция созидания - это всегда любовь..

Проявление и закрепление результата

Чтобы запечатлеть ту картинку, которая выглядит такой привлекательной, но зыбкой сейчас, нужно пропустить через него свет, влить эмоцию, зарядить позитивом. Войти в состояние ананды - радостного подъема, любящего и любимого существа, влюбленного и наполненного любовью и перенаправить это свое внутреннее топливо в идеальный вариант развития событий.

Прочистить путь и снять вопросы. Сонастроить с другими ветками реальности, окружающими меня и сопричастных игроков, чтобы все это синхронизировалось по месту и по времени. Совпало с намерениями, волей и свободой выбора. Напитать все это своим собственным светом, теплом и любовью для реализации в будущем своего творческого потенциала в том ключе, который так нравится. Экспонировать нужный результат так, чтобы изображение впечаталось светом в чувствительную пленку - канву грядущих событий, прожгло в ней свой оттиск как световая проекция. И выдержать немного, чтобы эффект был как можно ярче.

Теперь нужно обработать созданный отпечаток мечты, чтобы он перешел в слой материальной реальности. Следующий этап - стабилизация. Нужно добавить в картинку немного энергии темноты и холода, чтобы она выкристаллизовалась и приобрела более твердые очертания, перешла из состояния волшебного миража в более плотные слои, закрепилась и проявилась.

Работа с негативным отпечатком.. Результат буквально фиксируется на листе реальности, примерно также, как когда на аналоговую фотобумагу проецируем изображение с аналоговой фотопленки, а потом льем по очереди проявитель и закрепитель чтобы можно было в деталях рассмотреть, что же такое мы запечатлели с помощью света и намерения и войти туда, когда это будет уместно и своевременно.

Поскольку за общение с миром и творческую реализацию отвечает горловая чакра, отправляю туда, в избранную ветку луч из горловой чакры. За ним попросился луч и из второй чакры, следом - из третьей. Потом и остальные чакры подключились, получился такой лучевой душ, как из цветика-семицветика. Промываю и просушиваю все получившееся, наполняю движением, материальной энергией земли, видением, всеми качествами жизненной силы и магнетизма, притягиваю ветку вероятности в свою реальность еще больше, связываю напрямую с каждым из чакральных центров, прописываю ее там в них..

* человек забывает, что будущее многовариантно и часто приявзывается к шаблонным моделям (таковые обычно определяются нумерологией, астрологией и тп). На самом деле каждый из нас -- это поток, а потоку нужно течь, не зацикливаться на рамках, с легкостью отпускать старое и впускать новое, адаптироваться. Поэтому, если будете делать подобные практики, ни в коем случае не "цементируйте" свое намерение, тк мир всегда предлагает еще более классыне варианты, о которых мы сами можем даже не догадываться, особенно сейчас.


Реальность многомерна, мнения о ней многогранны. Здесь показана лишь одна или несколько граней. Не стоит принимать их за истину в последней инстанции, ибо , а у каждого уровня сознания и . Учимся отделять наше от не нашего, либо добывать информацию автономно)

ТЕМАТИЧЕСКИЕ РАЗДЕЛЫ:
| | | | | | | | |

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность всех событий. А вероятность событий, которые мы считаем неблагоприятными (когда вытащим красный фломастер) - .

Таким образом, вероятность вытащить НЕ красный фломастер - .

Ответ:

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Что должно произойти? Мы должны вытащить (красный ИЛИ зеленый).

Теперь понятно, складываем вероятности этих событий:

Ответ:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Ответ:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

  1. В колоде карты каждого достоинства, значит:
  2. События зависимы, так как после первой вытащенной карты количество карт в колоде уменьшилось (как и количество «картинок»). Всего вальтов, дам, королей и тузов в колоде изначально, а значит вероятность первой картой вытащить «картинку»:

    Поскольку мы убираем из колоды первую карту, то значит в колоде осталось уже карта, из них картинок. Вероятность второй картой вытащить картинку:

    Поскольку нас интересует ситуация, когда мы достаем из колоды: «картинку» И «картинку», то нужно перемножать вероятности:

    Ответ:

  3. После первой вытащенной карты, количество карт в колоде уменьшится.Таким образом, нам подходит два варианта:
    1) Первой картой вытаскиваем Туза, второй - валета, даму или короля
    2) Первой картой вытаскиваем валета, даму или короля, второй - туза.Т.е. (туз и (валет или дама или король)) или ((валет или дама или король) и туз). Не забываем про уменьшение количества карт в колоде!

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

  1. (Выпал орел и выпал орел) или (выпала решка и выпала решка): .
  2. Какие есть варианты? и. Тогда:
    Выпало (и) или (и) или (и): .

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

Ой, как же не хочется перебирать варианты… Орел-решка-решка, Орел-орел-решка, … А и не надо! Вспоминаем про полную вероятность. Вспомнил? Какова вероятность, что орел не выпадет ни разу ? Это же просто: все время летят решки, значит.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

Споры и гипотезы о существовании неизвестных нам планет-двойников, параллельных вселенных и даже галактик насчитывают уже многие десятилетия. Все они основываются на теории вероятности без привлечения представлений современной физики. В последние годы к ним добавилось еще представление о существовании сверхвселенной, основанное на проверенных теориях - квантовой механике и теории относительности. "Полит.ру" публикует статью Макса Тегмарка "Параллельные вселенные", в которой выдвигается гипотеза о строении предполагаемой сверхвселенной, теоретически включающей в себя четыре уровня. Однако уже в ближайшее десятилетие у ученых может появиться реальная возможность получить новые данные о свойствах космического простраства и, соответственно, подтвердить или опровергнуть данную гипотезу. Статья опубликована в журнале "В мире науки" (2003. № 8).

Эволюция снабдила нас интуицией в отношении повседневной физики, жизненно важной для наших далеких предков; поэтому, как только мы выходим за рамки повседневности, мы вполне можем ожидать странностей.

Простейшая и самая популярная космологическая модель предсказывает, что у нас есть двойник в галактике, удаленной на расстояние порядка 10 в степени 1028 метров. Расстояние столь велико, что находится за пределами досягаемости астрономических наблюдений, но это не делает нашего двойника менее реальным. Предположение основано на теории вероятности без привлечения представлений современной физики. Принимается лишь допущение, что пространство бесконечно и заполнено материей. Может существовать множество обитаемых планет, в том числе таких, где живут люди с такой же внешностью, такими же именами и воспоминаниями, прошедшие те же жизненные перипетии, что и мы.

Но нам никогда не будет дано увидеть наши иные жизни. Самое далекое расстояние, на которое мы способны заглянуть, это то, которое может пройти свет за 14 млрд. лет, протекших с момента Большого взрыва. Расстояние между самыми далекими от нас видимыми объектами составляет около 431026 м; оно и определяет доступную для наблюдения область Вселенной, называемую объемом Хаббла, или объемом космического горизонта, или просто Вселенной. Вселенные наших двойников представляют собой сферы таких же размеров с центрами на их планетах. Это самый простой пример параллельных вселенных, каждая из которых является лишь малой частью сверхвселенной.

Само определение «вселенная» наводит на мысль, что оно навсегда останется в области метафизики. Однако граница между физикой и метафизикой определяется возможностью экспериментальной проверки теорий, а не существованием неподдающихся наблюдениям объектов. Границы физики постоянно расширяются, включая все более отвлеченные (и бывшие до того метафизическими) представления, например, о шаровидной Земле, невидимых электромагнитных полях, замедлении времени при больших скоростях, суперпозиции квантовых состояний, искривлении пространства и черных дырах. В последние годы к этому перечню добавилось и представление о сверхвселенной. Оно основано на проверенных теориях – квантовой механике и теории относительности – и отвечает обоим основным критериям эмпирической науки: позволяет делать прогнозы и может быть опровергнуто. Ученые рассматривают четыре типа параллельных вселенных. Главный вопрос не в том, существует ли сверхвселенная, а сколько уровней она может иметь.

Уровень I

За нашим космическим горизонтом

Параллельные вселенные наших двойников составляют первый уровень сверхвселенной. Это наименее спорный тип. Мы все признаем существование вещей, которых мы не видим, но могли бы увидеть, переместившись в другое место или просто подождав, как ждем появления корабля из-за горизонта. Подобный статус имеют объекты, находящиеся за пределами нашего космического горизонта. Размер доступной наблюдению области Вселенной ежегодно увеличивается на один световой год, поскольку нас достигает свет, исходящий из все более далеких областей, за которыми скрывается бесконечность, которую еще предстоит увидеть. Мы, вероятно, умрем задолго до того, как наши двойники окажутся в пределах досягаемости для наблюдений, но если расширение Вселенной поможет, наши потомки смогут увидеть их в достаточно мощные телескопы.

Уровень I сверхвселенной представляется до банальности очевидным. Как может пространство не быть бесконечным? Разве есть где-нибудь знак «Берегись! Конец пространства»? Если существует конец пространства, то что находится за ним? Однако теория гравитации Эйнштейна поставила это интуитивное представление под сомнение. Пространство может быть конечным, если оно имеет положительную кривизну или необычную топологию. Сферическая, тороидальная или «кренделевидная» вселенная может иметь конечный объем, не имея границ. Фоновое космическое микроволновое излучение позволяет проверить существование подобных структур. Однако до сих пор факты говорят против них. Данным соответствует модель бесконечной вселенной, а на все прочие варианты наложены строгие ограничения.

Другой вариант таков: пространство бесконечно, но материя сосредоточена в ограниченной области вокруг нас. В одном из вариантов некогда популярной модели «островной Вселенной» принимается, что на больших масштабах вещество разрежается и имеет фрактальную структуру. В обоих случаях почти все вселенные в сверхвселенной уровня I должны быть пусты и безжизненны. Последние исследования трехмерного распределения галактик и фонового (реликтового) излучения показали, что распределение вещества стремится к однородному в больших масштабах и не образует структур размером более 1024 м. Если такая тенденция сохраняется, то пространство за пределами наблюдаемой Вселенной должно изобиловать галактиками, звездами и планетами.

Для наблюдателей в параллельных вселенных первого уровня действуют те же законы физики, что и для нас, но при иных стартовых условиях. Согласно современным теориям, процессы, протекавшие на начальных этапах Большого взрыва, беспорядочно разбросали вещество, так что была вероятность возникновения любых структур.

Космологи принимают, что наша Вселенная с почти однородным распределением вещества и начальными флуктуациями плотности порядка 1/105 весьма типична (по крайней мере, среди тех, в которых есть наблюдатели). Оценки на основе этого допущения показывают, что ваша ближайшая точная копия находится на расстоянии 10 в степени 1028 м. На расстоянии 10 в степени 1092 м должна располагаться сфера радиусом 100 световых лет, идентичная той, в центре которой находимся мы; так что все, что в следующем веке увидим мы, увидят и находящиеся там наши двойники. На расстоянии около 10 в степени 10118 м от нас должен существовать объем Хаббла, идентичный нашему. Эти оценки выведены путем подсчета возможного числа квантовых состояний, которые может иметь объем Хаббла, если его температура не превышает 108 К. Число состояний можно оценить, задавшись вопросом: сколько протонов способен вместить объем Хаббла с такой температурой? Ответ – 10118. Однако каждый протон может либо присутствовать, либо отсутствовать, что дает 2 в степени 10118 возможных конфигураций. «Короб», содержащий такое количество объемов Хаббла, охватывает все возможности. Размер его составляет 10 в степени 10118 м. За его пределами вселенные, включая нашу, должны повторяться. Примерно те же цифры можно получить на основе термодинамических или квантовогравитационных оценок общего информационного содержания Вселенной.

Впрочем, наш ближайший двойник скорее всего находится к нам ближе, чем дают эти оценки, поскольку процесс формирования планет и эволюция жизни благоприятствуют этому. Астрономы полагают, что наш объем Хаббла содержит по крайней мере 1020 пригодных для жизни планет, некоторые из которых могут быть похожи на Землю.

В современной космологии понятие сверхвселенной уровня I широко применяется для проверки теории. Рассмотрим, как используют космологи реликтовое излучение для того, чтобы отвергнуть модель конечной сферической геометрии. Горячие и холодные «пятна» на картах реликтового излучения имеют характерный размер, зависящий от кривизны пространства. Так вот, размер наблюдаемых пятен слишком мал, чтобы согласоваться со сферической геометрией. Их средний размер случайным образом меняется от одного объема Хаббла к другому, поэтому не исключено, что наша Вселенная сферическая, но имеет аномально малые пятна. Когда космологи говорят, что они исключают сферическую модель на доверительном уровне 99,9%, они имеют в виду, что если модель верна, то меньше чем один объем Хаббла из тысячи будет характеризоваться столь малыми пятнами, как наблюдаемые. Из этого следует, что теория сверхвселенной поддается проверке и может быть отвергнута, хотя мы и не в состоянии видеть иные вселенные. Главное – предсказать, что представляет собой ансамбль параллельных вселенных, и найти распределение вероятностей или то, что математики называют мерой ансамбля. Наша Вселенная должна быть одной из наиболее вероятных. Если же нет, если в рамках теории сверхвселенной наша Вселенная окажется маловероятной, то эта теория столкнется с трудностями. Как мы увидим далее, проблема меры может стать весьма острой.

Уровень II

Другие постинфляционные домены

Если вам трудно было представить сверхвселенную уровня I, то попытайтесь вообразить бесконечное множество таких сверхвселенных, часть которых имеет иную размерность пространства-времени и характеризуется иными физическими константами. В совокупности они составляют сверхвселенную уровня II, предсказанную теорией хаотической вечной инфляции.

Теория инфляции – это обобщение теории Большого взрыва, позволяющее устранить недочеты последней, например, неспособность объяснить, почему Вселенная столь велика, однородна и плоска. Быстрое растяжение пространства в давние времена позволяет объяснить эти и многие другие свойства Вселенной. Такое растяжение предсказывается широким классом теорий элементарных частиц, и все имеющиеся свидетельства подтверждают его. Выражение «хаотическая вечная» по отношению к инфляции указывает на то, что происходит в самых крупных масштабах. В целом пространство постоянно растягивается, но в некоторых областях расширение прекращается, и возникают отдельные домены, как изюминки в поднимающемся тесте. Появляется бесконечное множество таких доменов, и каждый из них служит зародышем сверхвселенной уровня I, заполненной веществом, рожденным энергией поля, вызывающего инфляцию.

Соседние домены удалены от нас более чем на бесконечность, в том смысле, что их невозможно достичь, даже если вечно двигаться со скоростью света, поскольку пространство между нашим доменом и соседними растягивается быстрее, чем можно перемещаться в нем. Наши потомки никогда не увидят своих двойников на уровне II. А если расширение Вселенной ускоряется, как о том свидетельствуют наблюдения, то они никогда не увидят своих двойников даже на уровне I.

Сверхвселенная уровня II гораздо разнообразнее сверхвселенной уровня I. Домены различаются не только начальными условиями, но и своими фундаментальными свойствами. У физиков преобладает мнение, что размерность пространства-времени, свойства элементарных частиц и многие так называемые физические константы не встроены в физические законы, а являются результатом процессов, известных как нарушение симметрии. Предполагают, что пространство в нашей Вселенной некогда имело девять равноправных измерений. В начале космической истории три из них приняли участие в расширении и стали теми тремя измерениями, которые характеризуют сегодняшнюю Вселенную. Шесть остальных сейчас невозможно обнаружить либо потому, что они остались микроскопическими, сохранив тороидальную топологию, либо потому, что вся материя сосредоточена в трехмерной поверхности (мембране, или просто бране) в девятимерном пространстве. Так была нарушена исходная симметрия измерений. Квантовые флуктуации, обусловливающие хаотическую инфляцию, могли вызвать различные нарушения симметрии в разных кавернах. Одни могли стать четырехмерными; другие – содержать только два, а не три поколения кварков; а третьи – иметь более сильную космологическую постоянную, чем наша Вселенная.

Другой путь возникновения сверхвселенной уровня II можно представить как цикл рождений и разрушений вселенных. В 1930-е гг. физик Ричард Толмен (Richard C. Tolman) высказал эту идею, а недавно Пол Стейнхардт (Paul J. Steinhardt) из Принстонского университета и Нил Тьюрок (Neil Turok) из Кембриджского университета развили ее. Модель Стейнхардта и Тьюрока предусматривает вторую трехмерную брану, совершенно параллельную нашей и лишь смещенную относительно нее в измерении более высокого порядка. Эту параллельную вселенную нельзя считать отдельной, поскольку она взаимодействует с нашей. Однако ансамбль вселенных – прошлых, нынешних и будущих, который эти браны образуют, представляет собой сверхвселенную с разнообразием, по-видимому, близким к возникающему в результате хаотической инфляции. Еще одну гипотезу сверхвселенной предложил физик Ли Смолин (Lee Smolin) из Института Периметра в г. Ватерлоо (пров. Онтарио, Канада). Его сверхвселенная по разнообразию близка к уровню II, но она мутирует и порождает новые вселенные посредством черных дыр, а не бран.

Хотя мы и не можем взаимодействовать с параллельными вселенными уровня II, космологи судят об их существовании по косвенным признакам, поскольку они могут быть причиной странных совпадений в нашей Вселенной. Например, в гостинице вам предоставляют номер 1967, и вы отмечаете, что родились в 1967 г. «Какое совпадение», – говорите вы. Однако, подумав, приходите к выводу, что это не так уж и удивительно. В гостинице сотни номеров, и вам не пришло бы в голову задумываться о чем-либо, если бы предложили номер, ничего для вас не значащий. Если бы вы ничего не знали о гостиницах, то для объяснения этого совпадения вы могли бы предположить, что в гостинице существуют и другие номера.

В качестве более близкого примера рассмотрим массу Солнца. Как известно, светимость звезды определяется ее массой. С помощью законов физики мы можем вычислить, что жизнь на Земле может существовать лишь при условии, что масса Солнца лежит в пределах: от 1,6х1030 до 2,4х1030 кг. В противном случае климат Земли был бы холоднее, чем на Марсе, или жарче, чем на Венере. Измерения массы Солнца дали значение 2,0х1030 кг. На первый взгляд, попадание массы Солнца в интервал значений, обеспечивающий жизнь на Земле, является случайным.

Массы звезд занимают диапазон от 1029 до 1032 кг; если бы Солнце приобрело свою массу случайно, то шанс попасть именно в оптимальный для нашей биосферы интервал был бы крайне мал.

Кажущееся совпадение можно объяснить, предположив существование ансамбля (в данном случае – множества планетных систем) и фактора отбора (наша планета должна быть пригодной для жизни). Такие критерии отбора, связанные с наблюдателем, называют антропными; и хотя упоминание о них обычно вызывает полемику, все же большинство физиков согласно, что пренебрегать этими критериями при отборе фундаментальных теорий нельзя.

А какое отношение все эти примеры имеют к параллельным вселенным? Оказывается, небольшое изменение физических констант, определяемых нарушением симметрии, приводит к качественно иной вселенной – такой, в которой мы бы не могли существовать. Будь масса протона больше всего на 0,2%, протоны распадались бы с образованием нейтронов, делая атомы нестабильными. Будь силы электромагнитного взаимодействия слабее на 4%, не существовало бы водорода и обычных звезд. Будь слабое взаимодействие еще слабее, не было бы водорода; а будь оно сильнее, сверхновые не могли бы заполнять межзвездное пространство тяжелыми элементами. Будь космологическая постоянная заметно больше, Вселенная невероятно раздулась бы еще до того, как смогли образоваться галактики.

Приведенные примеры позволяют ожидать существование параллельных вселенных с иными значениями физических констант. Теория сверхвселенной второго уровня предсказывает, что физики никогда не смогут вывести значения этих констант из фундаментальных принципов, а смогут лишь рассчитывать распределение вероятностей различных наборов констант в совокупности всех вселенных. При этом результат должен согласоваться с нашим существованием в одной из них.

Уровень III

Квантовое множество вселенных

Сверхвселенные уровней I и II содержат параллельные вселенные, чрезвычайно удаленные от нас за пределы возможностей астрономии. Однако следующий уровень сверхвселенной лежит прямо вокруг нас. Он возникает из знаменитой и весьма спорной интерпретации квантовой механики – идеи о том, что случайные квантовые процессы заставляют вселенную «размножаться», образуя множество своих копий – по одной для каждого возможного результата процесса.

В начале ХХ в. квантовая механика объяснила природу атомного мира, который не подчинялся законам классической ньютоновской механики. Несмотря на очевидные успехи, среди физиков шли жаркие споры о том, в чем же истинный смысл новой теории. Она определяет состояние Вселенной не в таких понятиях классической механики, как положения и скорости всех частиц, а через математический объект, называемый волновой функцией. Согласно уравнению Шрёдингера, это состояние изменяется с течением времени таким образом, который математики определяют термином «унитарный». Он означает, что волновая функция вращается в абстрактном бесконечномерном пространстве, называемом гильбертовым. Хотя квантовую механику часто определяют как принципиально случайную и неопределенную, волновая функция эволюционирует вполне детерминистским образом. В отношении нее нет ничего случайного или неопределенного.

Самое трудное – связать волновую функцию с тем, что мы наблюдаем. Многие допустимые волновые функции соответствуют противоестественным ситуациям вроде той, когда кошка одновременно и мертва, и жива в виде так называемой суперпозиции. В 20-е гг. XX в. физики обошли эту странность, постулировав, что волновая функция коллапсирует к некоторому определенному классическому исходу, когда кто-либо осуществляет наблюдение. Это дополнение позволило объяснить результаты наблюдений, но превратило изящную унитарную теорию в неряшливую и не унитарную. Принципиальная случайность, приписываемая обычно квантовой механике, является следствием именно этого постулата.

Со временем физики отказались от этой точки зрения в пользу другой, предложенной в 1957 г. выпускником Принстонского университета Хью Эвереттом (Hugh Everett III). Он показал, что можно обойтись и без постулата о коллапсе. Чистая квантовая теория не налагает никаких ограничений. Хотя она и предсказывает, что одна классическая реальность постепенно расщепляется на суперпозицию нескольких таких реальностей, наблюдатель субъективно воспринимает это расщепление просто как небольшую хаотичность с распределением вероятностей, в точности совпадающим с тем, которое давал старый постулат коллапса. Эта суперпозиция классических вселенных и есть сверхвселенная уровня III.

Более сорока лет такая интерпретация смущала ученых. Однако физическую теорию легче понять, сравнивая две точки зрения: внешнюю, с позиции физика, изучающего математические уравнения (подобно птице, оглядывающей пейзаж с высоты своего полета); и внутреннюю, с позиции наблюдателя (назовем его лягушкой), живущего на ландшафте, обозреваемом птицей.

С точки зрения птицы, сверхвселенная уровня III является простой. Существует всего одна волновая функция, которая плавно эволюционирует во времени без расщепления и параллелизма. Абстрактный квантовый мир, описываемый эволюционирующей волновой функцией, содержит в себе огромное количество непрерывно расщепляющихся и сливающихся линий параллельных классических историй, а также ряд квантовых явлений, не поддающихся описанию в рамках классических представлений. Но с точки зрения лягушки, можно видеть только малую часть этой реальности. Она может видеть вселенную уровня I, однако процесс нарушения когерентности, подобный коллапсу волновой функции, но с сохранением унитарности, не позволяет ей видеть параллельные копии самой себя на уровне III.

Когда наблюдателю задают вопрос, на который он должен быстро дать ответ, квантовый эффект в его мозге приводит к суперпозиции решений вроде такой: «продолжать читать статью» и «бросить читать статью». С точки зрения птицы, акт принятия решения заставляет человека размножиться на копии, одни из которых продолжают читать, а другие прекращают чтение. Однако с внутренней точки зрения, ни один из двойников не знает о существовании других и воспринимает расщепление просто как небольшую неопределенность, некоторую вероятность продолжения или прекращения чтения.

Сколь бы странным это ни казалось, но точно такая же ситуация возникает даже в супервселенной уровня I. Очевидно, вы решили продолжать чтение, но кто-то из ваших двойников в далекой галактике отложил журнал после первого же абзаца. Уровни I и III различаются только тем, где находятся ваши двойники. На уровне I они живут где-то далеко, в добром старом трехмерном пространстве, а на уровне III – на другой квантовой ветви бесконечномерного гильбертова пространства.

Существование уровня III возможно лишь при условии, что эволюция волновой функции во времени унитарна. До сих пор эксперименты не выявили ее отклонений от унитарности. В последние десятилетия ее подтверждали для всех более крупных систем, включая фуллерен С60 и оптические волокна километровой длины. В теоретическом плане положение об унитарности было подкреплено открытием нарушения когерентности. Некоторые теоретики, работающие в области квантовой гравитации, ставят ее под сомнение. В частности, предполагается, что испаряющиеся черные дыры могут разрушать информацию, а это не унитарный процесс. Однако недавние достижения в теории струн позволяют считать, что даже квантовое тяготение является унитарным.

Если это так, то черные дыры не разрушают информацию, а просто передают ее куда-то. Если физика унитарна, стандартная картина влияния квантовых флуктуаций на начальных этапах Большого взрыва должна быть изменена. Эти флуктуации не случайным образом определяют суперпозицию всех возможных начальных условий, которые сосуществуют одновременно. При этом нарушение когерентности заставляет начальные условия вести себя классическим образом на различных квантовых ветвях. Ключевое положение гласит: распределение исходов на разных квантовых ветвях одного объема Хаббла (уровень III) идентично распределению исходов в разных объемах Хаббла одной квантовой ветви (уровень I). Это свойство квантовых флуктуаций известно в статистической механике как эргодичность.

Эти же рассуждения применимы к уровню II. Процесс нарушения симметрии приводит не к однозначному исходу, а к суперпозиции всех исходов, которые быстро расходятся по своим отдельным путям. Таким образом, если физические константы, размерность пространства-времени и проч. могут различаться в параллельных квантовых ветвях на уровне III, то они будут так же различаться в параллельных вселенных на уровне II.

Иными словами, сверхвселенная уровня III не добавляет ничего нового к тому, что имеется на уровнях I и II, лишь большее число копий тех же самых вселенных – такие же исторические линии развиваются снова и снова на разных квантовых ветвях. Горячие споры вокруг теории Эверетта, похоже, скоро утихнут в результате открытия столь же грандиозных, но менее спорных сверхвселенных уровней I и II.

Приложения этих идей глубоки. Например, такой вопрос: происходит ли экспоненциальное увеличение числа вселенных со временем? Ответ неожиданный: нет. С точки зрения птицы, существует только одна квантовая вселенная. А каково число отдельных вселенных в данный момент для лягушки? Это число заметно различающихся объемов Хаббла. Различия могут быть невелики: представьте себе планеты, движущиеся в иных направлениях, вообразите себя с кем-то другим в браке и т.д. На квантовом уровне существуют 10 в степени 10118 вселенных с температурой не выше 108 К. Число гигантское, но конечное.

Для лягушки эволюция волновой функции соответствует бесконечному движению от одного из этих 10 в степени 10118 состояний к другому. Сейчас вы находитесь во вселенной А, где и читаете это предложение. А теперь вы уже во вселенной В, где читаете следующее предложение. Иначе говоря, в В есть наблюдатель, идентичный наблюдателю во вселенной А, с той лишь разницей, что у него есть лишние воспоминания. В каждый момент существуют все возможные состояния, так что течение времени может происходить перед глазами наблюдателя. Эту мысль выразил в своем научно-фантастическом романе «Город перестановок» (1994 г.) писатель Грег Иган (Greg Egan) и развили физик Дэвид Дойч (David Deutsch) из Оксфордского университета, независимый физик Джулиан Барбу (Julian Barbour) и др. Как видим, идея сверхвселенной может играть ключевую роль в понимании природы времени.

Уровень IV

Другие математические структуры

Начальные условия и физические константы в сверхвселенных уровней I, II и III могут различаться, но фундаментальные законы физики одинаковы. Почему мы на этом остановились? Почему не могут различаться сами физические законы? Как насчет вселенной, подчиняющейся классическим законам без каких-либо релятивистских эффектов? Как насчет времени, движущегося дискретными шагами, как в компьютере?

А как насчет вселенной в виде пустого додекаэдра? В сверхвселенной уровня IV все эти альтернативы действительно существуют.

О том, что такая сверхвселенная не является абсурдной, свидетельствует соответствие мира отвлеченных рассуждений нашему реальному миру. Уравнения и другие математические понятия и структуры – числа, векторы, геометрические объекты – описывают реальность с удивительным правдоподобием. И наоборот, мы воспринимаем математические структуры как реальные. Да они и отвечают фундаментальному критерию реальности: одинаковы для всех, кто их изучает. Теорема будет верна независимо от того, кто ее доказал – человек, компьютер или интеллектуальный дельфин. Другие любознательные цивилизации найдут те же математические структуры, какие знаем мы. Поэтому математики говорят, что они не создают, а открывают математические объекты.

Существуют две логичные, но диаметрально противоположные парадигмы соотношения математики и физики, возникшие еще в древние времена. Согласно парадигме Аристотеля, физическая реальность первична, а математический язык является лишь удобным приближением. В рамках парадигмы Платона, истинно реальны именно математические структуры, а наблюдатели воспринимают их несовершенно. Иными словами, эти парадигмы различаются пониманием того, что первично – лягушачья точка зрения наблюдателя (парадигма Аристотеля) или птичий взгляд с высоты законов физики (точка зрения Платона).

Парадигма Аристотеля – это то, как мы воспринимали мир с раннего детства, задолго то того, как впервые услышали о математике. Точка зрения Платона – это приобретенное знание. Современные физики-теоретики склоняются к ней, предполагая, что математика хорошо описывает Вселенную именно потому, что Вселенная математична по своей природе. Тогда вся физика сводится к решению математической задачи, и безгранично умный математик может лишь на основе фундаментальных законов рассчитать картину мира на уровне лягушки, т.е. вычислить, какие наблюдатели существуют во Вселенной, что они воспринимают и какие языки они изобрели для передачи своего восприятия.

Математическая структура – абстракция, неизменная сущность вне времени и пространства. Если бы история была кинофильмом, то математическая структура соответствовала не одному кадру, а фильму в целом. Возьмем для примера мир, состоящий из частиц нулевых размеров, распределенных в трехмерном пространстве. С точки зрения птицы, в четырехмерном пространстве-времени траектории частиц представляют собой «спагетти». Если лягушка видит частицы движущимися с постоянными скоростями, то птица видит пучок прямых, не сваренных «спагетти». Если лягушка видит две частицы, обращающиеся по орбитам, то птица видит две «спагеттины», свитые в двойную спираль. Для лягушки мир описывают законы движения и тяготения Ньютона, для птицы – геометрия «спагетти», т.е. математическая структура. Сама лягушка для нее – толстый их клубок, сложное переплетение которых соответствует группе частиц, хранящих и перерабатывающих информацию. Наш мир сложнее рассмотренного примера, и ученые не знают, какой из математических структур он соответствует.

В парадигме Платона заключен вопрос: почему наш мир таков, каков он есть? Для Аристотеля это бессмысленный вопрос: мир есть, и он таков! Но последователи Платона интересуются: а мог бы наш мир быть иным? Если Вселенная математична по сути, то почему в ее основе лежит только одна из множества математических структур? Похоже, что фундаментальная асимметрия заключена в самой сути природы.Чтобы разгадать головоломку, я выдвинул предположение, что математическая симметрия существует: что все математические структуры реализуются физически, и каждая из них соответствует параллельной вселенной. Элементы этой сверхвселенной не находятся в одном и том же пространстве, но существуют вне времени и пространства. В большинстве из них, вероятно, нет наблюдателей. Гипотезу можно рассматривать как крайний платонизм, утверждающий, что математические структуры платоновского мира идей, или «умственного пейзажа» математика Руди Ракера (Rudy Rucker) из Университета Сан-Хосе, существуют в физическом смысле. Это сродни тому, что космолог Джон Барроу (John D. Barrow) из Кембриджского университета называл «p в небесах», философ Роберт Нозик (Robert Nozick) из Гарвардского университета описывал как «принцип плодовитости», а философ Дэвид Льюис (David K. Lewis) из Принстонского университета именовал «модальной реальностью». Уровень IV замыкает иерархию сверхвселенных, поскольку любая самосогласованная физическая теория может быть выражена в форме некой математической структуры.

Гипотеза о сверхвселенной уровня IV позволяет сделать несколько поддающихся проверке предсказаний. Как и на уровне II, она включает ансамбль (в данном случае – совокупность всех математических структур) и эффекты отбора. Занимаясь классификацией математических структур, ученые должны заметить, что структура, описывающая наш мир, является наиболее общей из тех, что согласуются с наблюдениями. Поэтому результаты наших будущих наблюдений должны стать наиболее общими из числа тех, которые согласуются с данными прежних исследований, а данные прежних исследований – самыми общими из тех, что вообще совместимы с нашим существованием.

Оценить степень общности – непростая задача. Одна из поразительных и обнадеживающих черт математических структур состоит в том, что свойства симметрии и инвариантности, обеспечивающие простоту и упорядоченность нашей Вселенной, как правило, являются общими. Математические структуры обычно обладают этими свойствами по умолчанию, и для избавления от них требуется введение сложных аксиом.

Что говорил Оккам?

Таким образом, теории параллельных вселенных имеют четырехуровневую иерархию, где на каждом следующем уровне вселенные все менее напоминают нашу. Они могут характеризоваться различными начальными условиями (уровень I), физическими константами и частицами (уровень II) или физическими законами (уровень IV). Забавно, что наибольшей критике в последние десятилетия подвергался уровень III как единственный, не вводящий качественно новых типов вселенных. В грядущем десятилетии детальные измерения реликтового излучения и крупномасштабного распределения вещества во Вселенной позволят точнее определить кривизну и топологию пространства и подтвердить или опровергнуть существование уровня I. Эти же данные позволят получить сведения об уровне II путем проверки теории хаотической вечной инфляции. Успехи астрофизики и физики частиц высоких энергий помогут уточнить степень тонкой настройки физических констант, подкрепив или ослабив позиции уровня II. Если усилия по созданию квантового компьютера будут успешными, появится дополнительный довод в пользу существования уровня III, поскольку для параллельных вычислений будет использоваться параллелизм этого уровня. Экспериментаторы ищут также свидетельства нарушения унитарности, которые позволят отвергнуть гипотезу о существовании уровня III. Наконец, успех или провал попытки решить главнейшую задачу современной физики – объединить общую теорию относительности с квантовой теорией поля – даст ответ на вопрос об уровне IV. Либо будет найдена математическая структура, точно описывающая нашу Вселенную, либо мы наткнемся на предел невероятной эффективности математики и будем вынуждены отказаться от гипотезы об уровне IV.

Итак, можно ли верить в параллельные вселенные? Основные доводы против их существования сводятся к тому, что это слишком расточительно и непостижимо. Первый аргумент состоит в том, что теории сверхвселенной уязвимы для «бритвы Оккама», поскольку они постулируют существование других вселенных, которые мы никогда не увидим. Зачем природе быть столь расточительной и «развлекаться» созданием бесконечного числа различных миров? Однако этот аргумент можно обратить в пользу существования сверхвселенной. В чем именно расточительна природа? Разумеется, не в пространстве, массе или количестве атомов: их бесконечно много уже содержится на уровне I, существование которого не вызывает сомнений, так что нет смысла беспокоиться, что природа потратит их еще сколько-то. Реальный вопрос состоит в кажущемся уменьшении простоты. Скептиков беспокоит дополнительная информация, необходимая для описания невидимых миров.

Однако весь ансамбль часто бывает проще каждого из своих членов. Информационный объем алгоритма числа есть, грубо говоря, выраженная в битах длина самой короткой компьютерной программы, генерирующей это число. Возьмем для примера множество всех целых чисел. Что проще – все множество или отдельное число? На первый взгляд – второе. Однако первое можно построить с помощью очень простой программы, а отдельное число может быть чрезвычайно длинным. Поэтому все множество оказывается проще.

Аналогично, множество всех решений уравнений Эйнштейна для поля проще каждого конкретного решения – первое состоит всего из нескольких уравнений, а второе требует задания огромного количества начальных данных на некой гиперповерхности. Итак, сложность возрастает, когда мы сосредоточиваем внимание на отдельном элементе ансамбля, теряя симметрию и простоту, свойственные совокупности всех элементов.

В этом смысле сверхвселенные более высоких уровней проще. Переход от нашей Вселенной к сверхвселенной уровня I исключает необходимость задавать начальные условия. Дальнейший переход к уровню II устраняет необходимость задавать физические константы, а на уровне IV вообще ничего задавать не нужно. Чрезмерная сложность – это лишь субъективное восприятие, точка зрения лягушки. А с позиции птицы, эта сверхвселенная едва ли может быть еще проще. Жалобы на непостижимость имеют эстетическую, а не научную природу и оправданы лишь при аристотелевском мировосприятии. Когда мы задаем вопрос о природе реальности, не следует ли нам ожидать ответа, который может показаться странным?

Общее свойство всех четырех уровней сверхвселенной состоит в том, что простейшая и, по-видимому, самая изящная теория по умолчанию включает в себя параллельные вселенные. Чтобы отвергнуть их существование, нужно усложнить теорию, добавив не подтверждаемые экспериментом процессы и придуманные для этого постулаты – о конечности пространства, коллапсе волновой функции и онтологической асимметрии. Наш выбор сводится к тому, что считать более расточительным и неизящным – множество слов или множество вселенных. Возможно, со временем мы привыкнем к причудам нашего космоса и сочтем его странность очаровательной.