Почему искусственный спутник не падает на землю. Может ли спутник упасть вам на голову? Но как спутник остается на орбите? Разве он не полетел бы по прямой в космос

Земля обладает мощным гравитационным полем, которое притягивает к себе не только предметы, находящиеся на ее поверхности, но и те космические объекты, которые, по каким – то причинам, оказываются в непосредственной от нее близости. Но если это так, то как объяснить тот факт, что запущенные человеком на земную орбиту искусственные спутники, не падают на ее поверхность?

Согласно законам физики, любой предмет, находящийся на земной орбите, обязательно должен упасть на ее поверхность, будучи притянут ее гравитационным полем. Все это абсолютно справедливо, но только в том случае, если бы планета имела форму идеальной сферы, и на объекты, находящиеся на ее орбите, не действовали бы сторонние силы. На самом же деле, это не так. Земля, ввиду вращения вокруг собственной оси, несколько раздута на экваторе, и сплюснута на полюсах. К тому же, на искусственные спутники действуют сторонние силы, исходящие от Солнца и Луны. По этой причине и не происходит их падение на поверхность Земли.

На орбите они удерживаются именно благодаря тому, что наша планета не идеальна по форме. Исходящее от Земли гравитационное поле стремиться притянуть к себе спутники, не позволяя Луне и Солнцу сделать то же самое. Происходит компенсация гравитационных сил, действующих на спутники, в результате чего, параметры их орбит не меняются. Во время их приближения к полюсам, земная гравитация становится меньше, а сила притяжения Луны больше. Спутник начинает смещаться в ее сторону. Во время его прохождения через зону экватора, ситуация становится прямопротивоположной.

Происходит как бы естественная коррекция орбиты искусственных спутников. По этой причине они и не падают. Кроме того, под действием земной гравитации спутник будет летать по скругленной орбите, стараясь приблизиться к земной поверхности. Но так как Земля круглая, то эта поверхность будет постоянно от него убегать.

Этот факт можно продемонстрировать на простом примере. Если привязать к веревке грузик и начать его вращать по кругу, то он будет постоянно стремиться от вас убежать, но не может этого сделать, удерживаемый веревкой, что, применительно к спутникам, является аналогом земной гравитации. Именно она удерживает на своей орбите, стремящиеся улететь в открытый космос спутники. По этой причине они и будут вечно вращаться вокруг планеты. Хотя, это чисто теория. Существует огромное количество дополнительных факторов, которые способны изменить эту ситуацию, и заставить спутник упасть на Землю. По этой причине на той же МКС постоянно проводится коррекция орбиты.

Простые вопросы. Книга, похожая на энциклопедию Антонец Владимир Александрович

Почему спутники не падают на Землю?

Ответ на этот вопрос дают еще в школе. При этом одновременно обычно еще и объясняют, как возникает невесомость. Все это настолько не соответствует интуиции, основанной на опыте земной жизни, что плохо укладывается в голове. И поэтому, когда школьные знания выветриваются (есть даже такой педагогический термин - «остаточные знания»), люди опять недоумевают, почему же спутники не падают на Землю и внутри космического корабля во время полета возникает невесомость.

Между прочим, если мы сможем ответить на эти вопросы, то одновременно проясним для себя, почему Луна не падает на Землю, а Земля, в свою очередь, не падает на Солнце, хотя сила притяжения Солнца, действующая на Землю, огромна - примерно 3,6 млрд млрд тонн. Кстати, человека массой 75 кг Солнце притягивает с силой около 50 г.

Движение тел с очень высокой точностью подчиняется законам Ньютона. Согласно этим законам два взаимодействующих тела, на которые не влияют никакие внешние силы, могут находиться в покое друг относительно друга, только если силы их взаимодействия уравновешиваются. Нам удается неподвижно стоять на земной поверхности, потому что сила земного притяжения в точности компенсируется силой давления поверхности Земли на поверхность нашего тела. При этом Земля и наше тело деформируются, благодаря чему мы и ощущаем тяжесть. Если, например, мы станем поднимать какой-то груз, то ощутим его тяжесть через напряжение мышц и деформацию тела, посредством которого груз опирается на землю.

Если же такой компенсации сил нет, начинается движение тел друг относительно друга. Это движение всегда имеет переменную скорость, причем может меняться как величина скорости, так и ее направление. Теперь представим, что мы разогнали какое-то тело, направив его движение параллельно поверхности Земли. Если стартовая скорость была меньше 7,9 км/с, то есть меньше так называемой первой космической скорости, то под действием земного притяжения скорость тела начнет изменяться и по величине, и по направлению, и оно обязательно упадет на Землю. Если скорость разгона была больше 11,2 км/с, то есть второй космической скорости, тело улетит и никогда не вернется на Землю.

Если же скорость была больше первой, но меньше второй космической скорости, то при движении тела будет меняться только направление скорости, а величина останется постоянной. Как вы понимаете, это возможно, если только тело движется по замкнутому кругу, диаметр которого тем больше, чем ближе скорость ко второй космической. Это и означает, что тело стало искусственным спутником Земли. При определенных условиях движение будет происходить не по круговой, а по вытянутой эллиптической траектории.

Если тело в районе Земли разогнать в направлении, перпендикулярном к отрезку, соединяющему Землю с Солнцем, до скорости 42 км/с, оно навсегда покинет пределы Солнечной системы. У Земли скорость движения по орбите всего 29 км/с, поэтому она, к счастью, не может ни улететь от Солнца, ни упасть на него и навсегда останется его спутником.

Данный текст является ознакомительным фрагментом.

Почему спутник не падает на Землю?

Такой вопрос можно услышать часто. Качественный ответ на него можно получить с помощью следующего мысленного эскперимента. Давайте предположим, что на Земле есть гора высотой 200 км и вы взобрались на ее вершину. Бросайте камень с вершины горы. Чем сильнее вы размахнетесь, тем дальше будет лететь камень. Вначале он будет падать на склоне горы, затем у ее подошвы и, наконец, точка его падения скроется где-то за горизонтом. Конечно, мы предполагаем, что вы обладаете поистине геркулесовской силой (чему, разумеется, немало способствовал чистый горный воздух). Вы можете камень бросить и так, что он упадет на противоположной стороне Земли и даже у подошвы горы, но с другой "стороны, облетев Землю. Еще небольшое усилие и камень, облетев Землю, просвистит над вашей головой, превратившись в своеобразный бумеранг. И вот теперь свяжите полет камня с вопросом - а почему спутник не падает на Землю.

Приведенный мысленный эксперимент показывает, что спутник беспрерывно падает на Землю. Не удивляйтесь, именно падает и старается соприкоснуться с поверхностью Земли. В чем дело? Давайте предположим, что Земля имеет форму шара, поле ее центральное и полет спутников происходит непосредственно над ее поверхностью, скажем, на высоте один метр. Теоретически такое допустить можно. На рис. 21 через ОА обозначен радиус круговой орбиты спутника. Пусть в некоторый момент спутник находится в точке А и скорость его полета направлена вдоль линии АВ, перпендикулярной радиусу ОА .

Если бы отсутствовало притяжение Земли, то спустя некоторое малое время спутник оказался бы в точке В, лежащей на продолжении вектора скорости., и удалился бы от точки А на расстояние АВ. Но за счет притяжения Земли его траектория полета искривится и поэтому спутник окажется в некоторой точке С. А это означает, что когда мы рассматриваем полет спутника с постоянной скоростью с одновременным "падением" к Земле за счет ее притяжения, то получаем не что иное, как круговое движение. Вот теперь становится понятным, почему спутник не достигает поверхности Земли: на сколько спутник отклонится от прямолинейного движения за счет влияния сил притяжения Земли, настолько поверхность Земли за счет сферичности "отойдет" от прямой линии. Образно говоря, спутник беспрерывно как бы старается достичь поверхности Земли, а поверхность Земли, изгибаясь, убегает от него. И этот процесс продолжается в течение всего полета, в результате чего спутник никак не может достичь поверхности Земли. Впрочем, парадоксальность этого явления не удивительна, ему можно найти приличную "земную" аналогию. Вспомните опыт, когда рассматривалось вращение грузика на вытянутой веревочке. В процессе вращения вы беспрерывно с помощью веревочки притягиваете грузик к себе, а он тем не менее никогда не достигает вашей руки и вас это совершенно не удивляет. Нечто аналогичное происходит и в космическом масштабе: сила притяжения Земли есть та самая веревочка, которая удерживает спутник и заставляет его вращаться вокруг Земли.

Как известно, геостационарные спутники висят неподвижно над землёй над одной и той же точкой. Почему они не падают? На той высоте не действует сила притяжения?

Ответ

Геостационарный искусственный спутник Земли представляет собой аппарат, который движется вокруг планеты в восточном направлении (в том же, в каком вращается сама Земля), по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли.

Таким образом, если смотреть с Земли на геостационарный спутник, мы будем видеть его неподвижно висящим на одном и том же месте. Из-за этой неподвижности и большой высоты около 36 000 км, с которой видна почти половина поверхности Земли, на геостационарную орбиту выводят спутники-ретрансляторы для телевидения, радио и коммуникаций.

Из того, что геостационарный спутник висит постоянно над одной и той же точкой поверхности Земли, некоторые делают неверный вывод, что на геостационарный спутник не действует сила притяжения к Земле, что сила тяготения на определённом расстоянии от Земли исчезает, т. е. они опровергают самого Ньютона. Конечно это не так. Сам запуск спутников на геостационарную орбиту рассчитывается именно по закону всемирного тяготения Ньютона.

Геостационарные спутники, как и все остальные спутники, на самом деле падают на Землю, но не достигают её поверхности. На них действует сила притяжения к Земле (гравитационная сила), направленная к её центру, а в обратном направлении на спутник действует отталкивающая от Земли центробежная сила (сила инерции), которые уравновешивают друг друга - спутник не улетает от Земли и не падает на неё точно так же, как ведро, раскручиваемое на верёвке, остаётся на своей орбите.

Если бы спутник совсем не двигался, то он упал бы на Землю под действием притяжения к ней, но спутники движутся, в том числе и геостационарные (геостационарные - с угловой скоростью равной угловой скорости вращения Земли, т. е. один оборот за сутки, а у спутников нижележащих орбит угловая скорость больше, т. е. за сутки они успевают совершить вокруг Земли несколько оборотов). Линейная скорость, сообщаемая спутнику параллельно поверхности Земли при непосредственном выводе на орбиту сравнительно большая (на низкой околоземной орбите - 8 километров в секунду, на геостационарной орбите - 3 километра в секунду). Если бы не было Земли, то спутник с такой скоростью летел бы по прямой, но наличие Земли заставляет спутник падать на неё под действием силы притяжения, искривляя траекторию по направлению к Земле, но поверхность Земли не плоская, она искривлена. На сколько спутник приближается к поверхности Земли, на столько поверхность Земли уходит из-под спутника и, таким образом, спутник постоянно находится на одной и той же высоте, двигаясь по замкнутой траектории. Спутник всё время падает, но никак не может упасть.

Итак, все искусственные спутники Земли падают на Землю, но - по замкнутой траектории. Спутники находятся в состоянии невесомости, как все падающие тела (если лифт в небоскрёбе сорвётся и начнёт свободно падать, то люди внутри тоже будут находиться в состоянии невесомости). Космонавты внутри МКС находятся в невесомости не потому, что на орбите не действует сила притяжения к Земле (она там почти такая же как и на поверхности Земли), а потому, что МКС свободно падает на Землю - по замкнутой круговой траектории.