Полезные бактерии в организме человека. Виды бактерий: вредные и полезные Много бактерий почему

Новое исследование раскрывает удивительный факт о многочисленных типах бактерий кишечника, которые могут вырабатывать электричество. Электрогенные бактерии - это бактерии, которые способны вырабатывать определенное количество электричества. Исследователи во главе с профессором Дэном Портным (Dan Portnoy) опубликовали свое открытие в журнале Nature.

Бактерии и электричество

До сих пор электрогенные бактерии были обнаружены в довольно специфических природных средах, таких как осадки различных водоемов. Эти среды обычно анаэробные - не содержат свободного кислорода. Впервые исследователи из Калифорнийского университета (University of California) в Беркли обнаружили, что сотни различных бактерий в кишечнике человека также являются электрогенными. К ним относятся многие виды бактерий, от патогенных, которые способны вызывать заболевания, до пробиотических, которые способствуют здоровью кишечника. Однако эти кишечные бактерии производят электричество, используя другой механизм.

Патогены, вырабатывающие электричество

Ученые идентифицировали электрогенерирующие бактерии, ими являются Listeria monocytogenes (общий виновник диареи), Clostridium perfringens (вызывает гангрену) и Enterococcus faecalis (патоген, приобретаемый во время пребывания в больнице). Однако, многие другие вырабатывающие электричество бактерии в кишечнике являются не патогенами. Некоторые из них являются пробиотиками.

«Тот факт, что так много бактерий, которые взаимодействуют с людьми, либо в качестве патогенов, либо являющиеся пробиотиками, либо участвующие в ферментации, являются электрогенными - было упущено раньше», - говорит автор исследования. «Это может многое рассказать нам о том, как эти бактерии заражают нас или помогают нам иметь здоровый кишечник».

Что нам даст это открытие?

Ученые ожидают, что их неожиданная находка также может быть полезна в будущих проектах, направленных на создание микробных топливных элементов, инновационной стратегии для производства возобновляемой энергии.

Исследователи объясняют, что бактерии вырабатывают электричество как часть их метаболизма - процесс, который они сравнивают с дыханием. Однако, в то время как организмы, такие как растения и животные, которые живут в богатых кислородом средах, используют кислород, чтобы помочь им в метаболизме, бактерии, которые проживают в анаэробных средах, должны использовать другие химические элементы. Так, бактерии, которые обитают на дне озер, обычно используют минералы, такие как железо или марганец, во время своего сложного метаболического процесса, тем самым вырабатывая электричество. Однако у электрогенных бактерий, обитающих в кишечнике, электрогенерирующий процесс проще, и они используют органическое соединение, известное как флавин, который является производным витамина B2.

«Похоже, что клеточная структура этих бактерий и богатая витаминами экологическая ниша, которую они занимают, значительно облегчает и делает более рентабельным перенос электронов из клетки», - объясняет автор первого исследования Сэм Лайт (Sam Light). Сколько вырабатывают энергии кишечные бактерии?

Исследователи провели дополнительные тесты, чтобы узнать, сколько электричества способны вырабатывать эти кишечные бактерии. Они обнаружили, что кишечные бактерии вырабатывают почти столько же электричества, сколько и другие электрогенные бактерии: до 100 000 электронов в секунду на клетку.

В частности, ученые с удивлением обнаружили, что лактобацилла, которая играет роль в ферментации и используется для приготовления сыра, йогурта и квашеной капусты, также обладает электрогенными свойствами.

Теперь ученые задаются вопросом, имеют ли эти свойства вообще отношение ко вкусу, который лактобацилла создает в пищевых продуктах, полученных путем ферментации.

«Это целая большая часть физиологии бактерий, о существовании которых люди не подозревали и которыми можно манипулировать», - заключает Лайт.

Бактерии – это группа простейших микроорганизмов, относящаяся к царству прокариот (не имеют ядра). В биологии насчитывают около 10,5 тысячи видов бактерий. Главные отличия между ними – это форма, строение и способ жизнедеятельности. Основные формы:

  • палочковидные (бациллы, клостридии, псевдомонады);
  • сферические (кокки);
  • спиралевидные (спириллы, вибрионы).

Принято считать, что микроорганизмы были первыми жителями на планете Земля. По роду жизнедеятельности представители царства прокариот распространены повсюду (в почве, воздухе, воде, живых организмах), они устойчивы к высоким и низким температурам. Единственными местами, где нет живых прокариотов, являются кратеры вулканов и местности, приближенные к эпицентру взрыва атомной бомбы.

В экологии бактерии царства прокариот служат для фиксации азота и минерализации органических остатков в почве. Подробнее об этих функциях:

  • Фиксация азота – это жизненно важный процесс для экологии в целом. Ведь растения без азота (N 2) не выживут. Но в чистом виде он не усваивается, а лишь в соединениях с аммиаком (NHO 3) – бактерии способствуют этому связыванию.
  • Минерализация (гниение) – это процесс разложения органических останков до СО2 (диоксида углерода), Н 2 О (воды) и минеральных солей. Для протекания этого процесса требуется достаточное количество кислорода, так как, по сути, разложение можно приравнять к горению. Органические вещества, попав в почву, окисляются за счет функций бактерий и грибков.

В природе существует еще один биологический процесс – денитрификация. Это восстановление нитратов до молекул азота при одновременном окислении до СО 2 и Н 2 О органических составляющих. Главной функцией денитрифицирующего процесса является выделение NO 3 .

Для получения хорошего урожая аграрии всегда стараются удобрить почву перед новым посевом. Зачастую это делается с помощью смеси навоза и сена. Через некоторое время после внесения удобрения оно перегнивает и взрыхляет почву – так в нее попадают питательные вещества. Это результат работы бактериальных клеток, ведь процесс гниения – это тоже их функция.

Без специального приспособления, невооруженным взглядом, микроорганизмы просто так не увидишь в почве, но их там содержатся миллионы. Для примера, на одном гектаре поля в верхнем слое почвы находится до 450 кг микроорганизмов.

Выполняя свои основные функции, бактерии обеспечивают плодородие почвы и выделение углекислого газа, крайне необходимого для фотосинтеза растений.

Бактерии и человек

Жизнь человека, как и растений, невозможна без бактерий, ведь невидимые микроорганизмы заселяются в человеческий организм с первым глотком воздуха после рождения. Учеными доказано, что в организме взрослого человека насчитывается до 10000 различных видов бактерий, а в перерасчете на вес это достигает 3 кг.

Основное расположение прокариотов – в кишечнике, меньше их в мочеполовых путях и на коже. 98% «наших» бактерий имеют полезные функции, а 2% – вредоносны. Крепкий иммунитет человека обеспечивает баланс между ними. Но стоит иммунитету ослабнуть, как вредные бактериальные клетки начинают усиленно размножаться, вследствие чего проявляется болезнь.

Полезные прокариоты в организме

Иммунитет человека напрямую зависит от бактерий, заселенных в кишечник. Роль полезных бактерий велика, ведь они расщепляют непереваренные остатки еды, поддерживают водно-солевой обмен, помогают в выработке иммуноглобулина А, борются с патогенными бактериями и грибками.

Основные функции бактерий – это обеспечение сбалансированной микрофлоры кишечника, за счет которой и осуществляется нормальная работа иммунитета человека. Благодаря современным достижениям биологии стали известны такие полезные прокариоты, как бифидобактерии, лактобактерии, энтерококки, кишечная палочка и бактероиды. Они должны заселять кишечную среду на 99%, а на оставшийся 1% приходятся бактерии патогенной флоры (стафилококк, синегнойная палочка и другие).

  • Бифидобактерии вырабатывают ацетат и молочную кислоту. В результате они закисляют свою среду обитания, тем самым подавляя размножение патогенных прокариотов, которые создают процессы гниения и брожения. Помогают усвоению нужного количества витамина D, кальция и железа, имеют антиоксидантный эффект. Также бифидобактерии очень важны для новорожденных детей – они снижают риск появления пищевой аллергии.
  • Кишечная палочка вырабатывает колицин – это вещество, которое подавляет размножение вредоносных микробов. За счет функций кишечной палочки происходит синтез витаминов К, группы В, фолиевой и никотиновой кислоты.
  • Энтеробактерии необходимы для восстановления микрофлоры кишечника после пройденного курса приема антибиотиков.
  • Функции лактобактерий направлены на образование антимикробного вещества. Тем самым уменьшают рост условно-патогенных и гнилостных прокариотов.

Вредные бактерии

Вредные микробы попадают в организм через воздух, пищу, воду и контактным способом. Если иммунитет ослаблен, то они вызывают различные заболевания. К числу самых распространенных вредных прокариотов относятся:

  • Стрептококки групп А, В – населяют полость рта, кожу, носоглотку, половые органы, толстый кишечник. Снижают развитие полезных бактерий, соответственно, и иммунитет. Становятся главной причиной инфекционных болезней.
  • Пневмококки – являются причиной возникновения бронхита, пневмоний, синусита и отита, менингита.
  • Микробы гингивалис – в основном находятся в полости рта, вызывают заболевание периодонтит.
  • Стафилококк – распространяется во всем организме человека, при снижении иммунитета и влиянии других факторов проявляется в заболеваниях кожи, костей, суставов, мозга, толстого кишечника и внутренних органов.

Микроорганизмы в толстом кишечнике

Микрофлора толстого кишечника меняется в зависимости от потребляемой человеком пищи, поэтому микробы могут вытеснять друг друга. С гнилостными бактериями можно бороться за счет молочнокислых микроорганизмов.

Вредная пища нарушает функции «хороших» микроорганизмов в кишечнике

Человек живет с бактериями с самого рождения – очень крепка взаимосвязь микро- и макроорганизма. Поэтому для хорошего здоровья необходимо четко соблюдать баланс между полезными и вредными бактериями. Это сделать легко, придерживаясь личной гигиены и правильного питания.

БАКТЕРИИ
обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место - зону, называемую нуклеоидом. Организмы с таким строением клеток называются прокариотами ("доядерными") в отличие от всех остальных - эукариот ("истинно ядерных"), ДНК которых находится в окруженном оболочкой ядре. Бактерии, ранее считавшиеся микроскопическими растениями, сейчас выделены в самостоятельное царство Monera - одно из пяти в нынешней системе классификации наряду с растениями, животными, грибами и протистами.

Ископаемые свидетельства. Вероятно, бактерии - древнейшая известная группа организмов. Слоистые каменные структуры - строматолиты, - датируемые в ряде случаев началом археозоя (архея), т.е. возникшие 3,5 млрд. лет назад, - результат жизнедеятельности бактерий, обычно фотосинтезирующих, т.н. сине-зеленых водорослей. Подобные структуры (пропитанные карбонатами бактериальные пленки) образуются и сейчас, главным образом у побережья Австралии, Багамских островов, в Калифорнийском и Персидском заливах, однако они относительно редки и не достигают крупных размеров, потому что ими питаются растительноядные организмы, например брюхоногие моллюски. В наши дни строматолиты растут в основном там, где эти животные отсутствуют из-за высокой солености воды или по другим причинам, однако до появления в ходе эволюции растительноядных форм они могли достигать огромных размеров, составляя существенный элемент океанического мелководья, сравнимый с современными коралловыми рифами. В некоторых древних горных породах обнаружены крохотные обугленные сферы, которые также считаются остатками бактерий. Первые ядерные, т.е. эукариотические, клетки произошли от бактерий примерно 1,4 млрд. лет назад.
Экология. Бактерий много в почве, на дне озер и океанов - повсюду, где накапливается органическое вещество. Они живут в холоде, когда столбик термометра чуть превышает нулевую отметку, и в горячих кислотных источниках с температурой выше 90° С. Некоторые бактерии переносят очень высокую соленость среды; в частности, это единственные организмы, обнаруженные в Мертвом море. В атмосфере они присутствуют в каплях воды, и их обилие там обычно коррелирует с запыленностью воздуха. Так, в городах дождевая вода содержит гораздо больше бактерий, чем в сельской местности. В холодном воздухе высокогорий и полярных областей их мало, тем не менее они встречаются даже в нижнем слое стратосферы на высоте 8 км. Густо заселен бактериями (обычно безвредными) пищеварительный тракт животных. Эксперименты показали, что для жизнедеятельности большинства видов они не обязательны, хотя и могут синтезировать некоторые витамины. Однако у жвачных (коров, антилоп, овец) и многих термитов они участвуют в переваривании растительной пищи. Кроме того, иммунная система животного, выращенного в стерильных условиях, не развивается нормально из-за отсутствия стимуляции бактериями. Нормальная бактериальная "флора" кишечника важна также для подавления попадающих туда вредных микроорганизмов.

СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ


Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5-2,0 мкм, а длина - 1,0-8,0 мкм. Разглядеть некоторые формы едва позволяет разрешающая способность стандартных световых микроскопов (примерно 0,3 мкм), но известны и виды длиной более 10 мкм и шириной, также выходящей за указанные рамки, а ряд очень тонких бактерий может превышать в длину 50 мкм. На поверхности, соответствующей поставленной карандашом точке, уместится четверть миллиона средних по величине представителей этого царства.
Строение. По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну - спириллы. Прокариоты отличаются от эукариот главным образом отсутствием оформленного ядра и наличием в типичном случае всего одной хромосомы - очень длинной кольцевой молекулы ДНК, прикрепленной в одной точке к клеточной мембране. У прокариот нет и окруженных мембранами внутриклеточных органелл, называемых митохондриями и хлоропластами. У эукариот митохондрии вырабатывают энергию в процессе дыхания, а в хлоропластах идет фотосинтез (см. также КЛЕТКА). У прокариот вся клетка целиком (и в первую очередь - клеточная мембрана) берет на себя функцию митохондрии, а у фотосинтезирующих форм - заодно и хлоропласта. Как и у эукариот, внутри бактерии находятся мелкие нуклеопротеиновые структуры - рибосомы, необходимые для синтеза белка, но они не связаны с какими-либо мембранами. За очень немногими исключениями, бактерии не способны синтезировать стеролы - важные компоненты мембран эукариотической клетки. Снаружи от клеточной мембраны большинство бактерий одето клеточной стенкой, несколько напоминающей целлюлозную стенку растительных клеток, но состоящей из других полимеров (в их состав входят не только углеводы, но и аминокислоты и специфические для бактерий вещества). Эта оболочка не дает бактериальной клетке лопнуть, когда в нее за счет осмоса поступает вода. Поверх клеточной стенки часто находится защитная слизистая капсула. Многие бактерии снабжены жгутиками, с помощью которых они активно плавают. Жгутики бактерий устроены проще и несколько иначе, чем аналогичные структуры эукариот.


"ТИПИЧНАЯ" БАКТЕРИАЛЬНАЯ КЛЕТКА и ее основные структуры.


Сенсорные функции и поведение. Многие бактерии обладают химическими рецепторами, которые регистрируют изменения кислотности среды и концентрацию различных веществ, например сахаров, аминокислот, кислорода и диоксида углерода. Для каждого вещества существует свой тип таких "вкусовых" рецепторов, и утрата какого-то из них в результате мутации приводит к частичной "вкусовой слепоте". Многие подвижные бактерии реагируют также на колебания температуры, а фотосинтезирующие виды - на изменения освещенности. Некоторые бактерии воспринимают направление силовых линий магнитного поля, в том числе магнитного поля Земли, с помощью присутствующих в их клетках частичек магнетита (магнитного железняка - Fe3O4). В воде бактерии используют эту свою способность для того, чтобы плыть вдоль силовых линий в поисках благоприятной среды. Условные рефлексы у бактерий неизвестны, но определенного рода примитивная память у них есть. Плавая, они сравнивают воспринимаемую интенсивность стимула с ее прежним значением, т.е. определяют, стала она больше или меньше, и, исходя из этого, сохраняют направление движения или изменяют его.
Размножение и генетика. Бактерии размножаются бесполым путем: ДНК в их клетке реплицируется (удваивается), клетка делится надвое, и каждая дочерняя клетка получает по одной копии родительской ДНК. Бактериальная ДНК может передаваться и между неделящимися клетками. При этом их слияния (как у эукариот) не происходит, число особей не увеличивается, и обычно в другую клетку переносится лишь небольшая часть генома (полного набора генов), в отличие от "настоящего" полового процесса, при котором потомок получает по полному комплекту генов от каждого родителя. Такой перенос ДНК может осуществляться тремя путями. При трансформации бактерия поглощает из окружающей среды "голую" ДНК, попавшую туда при разрушении других бактерий или сознательно "подсунутую" экспериментатором. Процесс называется трансформацией, поскольку на ранних стадиях его изучения основное внимание уделялось превращению (трансформации) таким путем безвредных организмов в вирулентные. Фрагменты ДНК могут также переноситься от бактерии к бактерии особыми вирусами - бактериофагами. Это называется трансдукцией. Известен также процесс, напоминающий оплодотворение и называемый конъюгацией: бактерии соединяются друг с другом временными трубчатыми выростами (копуляционными фимбриями), через которые ДНК переходит из "мужской" клетки в "женскую". Иногда в бактерии присутствуют очень мелкие добавочные хромосомы - плазмиды, которые также могут переноситься от особи к особи. Если при этом плазмиды содержат гены, обусловливающие резистентность к антибиотикам, говорят об инфекционной резистентности. Она важна с медицинской точки зрения, поскольку может распространяться между различными видами и даже родами бактерий, в результате чего вся бактериальная флора, скажем кишечника, становится устойчивой к действию определенных лекарственных препаратов.

МЕТАБОЛИЗМ


Отчасти в силу мелких размеров бактерий интенсивность их метаболизма гораздо выше, чем у эукариот. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью. Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии - секунды. Однако в естественной среде, например в почве, большинство бактерий находится "на голодном пайке", поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней.
Питание. Бактерии бывают автотрофами и гетеротрофами. Автотрофы ("сами себя питающие") не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид (CO2). Включая CO2 и другие неорганические вещества, в частности аммиак (NH3), нитраты (NO-3) и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты. Гетеротрофы ("питающиеся другим") используют в качестве основного источника углерода (некоторым видам нужен и CO2) органические (углеродсодержащие) вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком.
Главные источники энергии. Если для образования (синтеза) клеточных компонентов используется в основном световая энергия (фотоны), то процесс называется фотосинтезом, а способные к нему виды - фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения - органические или неорганические - служат для них главным источником углерода. Фотоавтотрофные цианобактерии (сине-зеленые водоросли), как и зеленые растения, за счет световой энергии расщепляют молекулы воды (H2O). При этом выделяется свободный кислород (1/2O2) и образуется водород (2H+), который, можно сказать, превращает диоксид углерода (CO2) в углеводы. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода (H2S). В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется. Такой фотосинтез называется аноксигенным. Фотогетеротрофные бактерии, например пурпурные несерные, используют световую энергию для получения водорода из органических веществ, в частности изопропанола, но его источником у них может служить и газообразный H2. Если основной источник энергии в клетке - окисление химических веществ, бактерии называются хемогетеротрофами или хемоавтотрофами в зависимости от того, какие молекулы служат главным источником углерода - органические или неорганические. У первых органика дает как энергию, так и углерод. Хемоавтотрофы получают энергию при окислении неорганических веществ, например водорода (до воды: 2H4 + O2 в 2H2O), железа (Fe2+ в Fe3+) или серы (2S + 3O2 + 2H2O в 2SO42- + 4H+), а углерод - из СO2. Эти организмы называют также хемолитотрофами, подчеркивая тем самым, что они "питаются" горными породами.
Дыхание. Клеточное дыхание - процесс высвобождения химической энергии, запасенной в "пищевых" молекулах, для ее дальнейшего использования в жизненно необходимых реакциях. Дыхание может быть аэробным и анаэробным. В первом случае для него необходим кислород. Он нужен для работы т.н. электронотранспортной системы: электроны переходят от одной молекулы к другой (при этом выделяется энергия) и в конечном итоге присоединяются к кислороду вместе с ионами водорода - образуется вода. Анаэробным организмам кислород не нужен, а для некоторых видов этой группы он даже ядовит. Высвобождающиеся в ходе дыхания электроны присоединяются к другим неорганическим акцепторам, например нитрату, сульфату или карбонату, или (при одной из форм такого дыхания - брожении) к определенной органической молекуле, в частности к глюкозе. См. также МЕТАБОЛИЗМ.

КЛАССИФИКАЦИЯ


У большинства организмов видом принято считать репродуктивно изолированную группу особей. В широком смысле это означает, что представители данного вида могут давать плодовитое потомство, спариваясь только с себе подобными, но не с особями других видов. Таким образом, гены конкретного вида, как правило, не выходят за его пределы. Однако у бактерий может происходить обмен генами между особями не только разных видов, но и разных родов, поэтому правомерно ли применять здесь привычные концепции эволюционного происхождения и родства, не вполне ясно. В связи с этой и другими трудностями общепринятой классификации бактерий пока не существует. Ниже приведен один из широко используемых ее вариантов.
ЦАРСТВО MONERA

Тип Gracilicutes (тонкостенные грамотрицательные бактерии)


Класс Scotobacteria (нефотосинтезирующие формы, например миксобактерии) Класс Anoxyphotobacteria (не выделяющие кислорода фотосинтезирующие формы, например пурпурные серные бактерии) Класс Oxyphotobacteria (выделяющие кислород фотосинтезирующие формы, например цианобактерии)


Тип Firmicutes (толстостенные грамположительные бактерии)


Класс Firmibacteria (формы с жесткой клеткой, например клостридии)
Класс Thallobacteria (разветвленные формы, например актиномицеты)


Тип Tenericutes (грамотрицательные бактерии без клеточной стенки)


Класс Mollicutes (формы с мягкой клеткой, например микоплазмы)


Тип Mendosicutes (бактерии с неполноценной клеточной стенкой)


Класс Archaebacteria (древние формы, например метанобразующие)


Домены. Недавние биохимические исследования показали, что все прокариоты четко разделяются на две категории: маленькую группу архебактерий (Archaebacteria - "древние бактерии") и всех остальных, называемых эубактериями (Eubacteria - "истинные бактерии"). Считается, что архебактерии по сравнению с эубактериями примитивнее и ближе к общему предку прокариот и эукариот. От прочих бактерий они отличаются несколькими существенными признаками, включая состав молекул рибосомной РНК (pРНК), участвующей в синтезе белка, химическую структуру липидов (жироподобных веществ) и присутствие в клеточной стенке вместо белково-углеводного полимера муреина некоторых других веществ. В приведенной выше системе классификации архебактерии считаются лишь одним из типов того же царства, которое объединяет и всех эубактерий. Однако, по мнению некоторых биологов, различия между архебактериями и эубактериями настолько глубоки, что правильнее рассматривать архебактерии в составе Monera как особое подцарство. В последнее время появилось еще более радикальное предложение. Молекулярный анализ выявил между двумя этими группами прокариот столь существенные различия в структуре генов, что присутствие их в рамках одного царства организмов некоторые считают нелогичным. В связи с этим предложено создать таксономическую категорию (таксон) еще более высокого ранга, назвав ее доменом, и разделить все живое на три домена - Eucarya (эукариоты), Archaea (архебактерии) и Bacteria (нынешние эубактерии).

ЭКОЛОГИЯ


Две важнейшие экологические функции бактерий - фиксация азота и минерализация органических остатков.
Азотфиксация. Связывание молекулярного азота (N2) с образованием аммиака (NH3) называется азотфиксацией, а окисление последнего до нитрита (NO-2) и нитрата (NO-3) - нитрификацией. Это жизненно важные для биосферы процессы, поскольку растениям необходим азот, но усваивать они могут лишь его связанные формы. В настоящее время примерно 90% (ок. 90 млн. т) годового количества такого "фиксированного" азота дают бактерии. Остальное количество производится химическими комбинатами или возникает при разрядах молний. Азот воздуха, составляющий ок. 80% атмосферы, связывается в основном грамотрицательным родом ризобиум (Rhizobium) и цианобактериями. Виды ризобиума вступают в симбиоз примерно с 14 000 видов бобовых растений (семейство Leguminosae), к которым относятся, например, клевер, люцерна, соя и горох. Эти бактерии живут в т.н. клубеньках - вздутиях, образующихся на корнях в их присутствии. Из растения бактерии получают органические вещества (питание), а взамен снабжают хозяина связанным азотом. За год таким способом фиксируется до 225 кг азота на гектар. В симбиоз с другими азотфиксирующими бактериями вступают и небобовые растения, например ольха. Цианобактерии фотосинтезируют, как зеленые растения, с выделением кислорода. Многие из них способны также фиксировать атмосферный азот, потребляемый затем растениями и в конечном итоге животными. Эти прокариоты служат важным источником связанного азота почвы в целом и рисовых чеков на Востоке в частности, а также главным его поставщиком для океанских экосистем.
Минерализация. Так называется разложение органических остатков до диоксида углерода (CO2), воды (H2O) и минеральных солей. С химической точки зрения, этот процесс эквивалентен горению, поэтому он требует большого количества кислорода. В верхнем слое почвы содержится от 100 000 до 1 млрд. бактерий на 1 г, т.е. примерно 2 т на гектар. Обычно все органические остатки, попав в землю, быстро окисляются бактериями и грибами. Более устойчиво к разложению буроватое органическое вещество, называемое гуминовой кислотой и образующееся в основном из содержащегося в древесине лигнина. Оно накапливается в почве и улучшает ее свойства.

БАКТЕРИИ И ПРОМЫШЛЕННОСТЬ


Учитывая разнообразие катализируемых бактериями химических реакций, неудивительно, что они широко используются в производстве, в ряде случаев с глубокой древности. Славу таких микроскопических помощников человека прокариоты делят с грибами, в первую очередь - дрожжами, которые обеспечивают большую часть процессов спиртового брожения, например при изготовлении вина и пива. Сейчас, когда стало возможным вводить в бактерии полезные гены, заставляя их синтезировать ценные вещества, например инсулин, промышленное применение этих живых лабораторий получило новый мощный стимул. См. также ГЕННАЯ ИНЖЕНЕРИЯ.
Пищевая промышленность. В настоящее время бактерии применяются этой отраслью в основном для производства сыров, других кисломолочных продуктов и уксуса. Главные химические реакции здесь - образование кислот. Так, при получении уксуса бактерии рода Acetobacter окисляют этиловый спирт, содержащийся в сидре или других жидкостях, до уксусной кислоты. Аналогичные процессы происходят при квашении капусты: анаэробные бактерии сбраживают содержащиеся в листьях этого растения сахара до молочной кислоты, а также уксусной кислоты и различных спиртов.
Выщелачивание руд. Бактерии применяются для выщелачивания бедных руд, т.е. переведения из них в раствор солей ценных металлов, в первую очередь меди (Cu) и урана (U). Пример - переработка халькопирита, или медного колчедана (CuFeS2). Кучи этой руды периодически поливают водой, в которой присутствуют хемолитотрофные бактерии рода Thiobacillus. В процессе своей жизнедеятельности они окисляют серу (S), образуя растворимые сульфаты меди и железа: CuFeS2 + 4O2 в CuSO4 + FeSO4. Такие технологии значительно упрощают получение из руд ценных металлов; в принципе, они эквивалентны процессам, протекающим в природе при выветривании горных пород.
Переработка отходов. Бактерии служат также для превращения отходов, например сточных вод, в менее опасные или даже полезные продукты. Сточные воды - одна из острых проблем современного человечества. Их полная минерализация требует огромных количеств кислорода, и в обычных водоемах, куда принято сбрасывать эти отходы, его для их "обезвреживания" уже не хватает. Решение заключается в дополнительной аэрации стоков в специальных бассейнах (аэротенках): в результате бактериям-минерализаторам хватает кислорода для полного разложения органики, и одним из конечных продуктов процесса в наиболее благоприятных случаях становится питьевая вода. Остающийся по ходу дела нерастворимый осадок можно подвергнуть анаэробному брожению. Чтобы такие водоочистные установки отнимали как можно меньше места и денег, необходимо хорошее знание бактериологии.
Другие пути использования. К другим важным областям промышленного применения бактерий относится, например, мочка льна, т.е. отделение его прядильных волокон от других частей растения, а также производство антибиотиков, в частности стрептомицина (бактериями рода Streptomyces).

БОРЬБА С БАКТЕРИЯМИ В ПРОМЫШЛЕННОСТИ


Бактерии приносят не только пользу; борьба с их массовым размножением, например в пищевых продуктах или в водных системах целлюлозно-бумажных предприятий, превратилась в целое направление деятельности. Пища портится под действием бактерий, грибов и собственных вызывающих автолиз ("самопереваривание") ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов. Одна из наиболее распространенных технологий - пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61-63° С в течение 30 мин или при 72-73° С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки. Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до -25° С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания - высушивания) в среде, содержащей белок, например в сыворотке крови. К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т.е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

БАКТЕРИИ И БОЛЕЗНИ

ИЗУЧЕНИЕ БАКТЕРИЙ


Многие бактерии нетрудно выращивать в т.н. культуральной среде, в состав которой могут входить мясной бульон, частично переваренный белок, соли, декстроза, цельная кровь, ее сыворотка и другие компоненты. Концентрация бактерий в таких условиях обычно достигает примерно миллиарда на кубический сантиметр, в результате чего среда становится мутной. Для изучения бактерий необходимо уметь получать их чистые культуры, или клоны, представляющие собой потомство одной-единственной клетки. Это нужно, например, для определения того, какой вид бактерии инфицировал больного и к какому антибиотику данный вид чувствителен. Микробиологические образцы, например, взятые из горла или ран мазки, пробы крови, воды или других материалов, сильно разводят и наносят на поверхность полутвердой среды: на ней из отдельных клеток развиваются округлые колонии. Отверждающим культуральную среду агентом обычно служит агар - полисахарид, получаемый из некоторых морских водорослей и почти ни одним видом бактерий не перевариваемый. Агаровые среды используют в виде "косячков", т.е. наклонных поверхностей, образующихся в стоящих под большим углом пробирках при застывании расплавленной культуральной среды, или в виде тонких слоев в стеклянных чашках Петри - плоских круглых сосудах, закрываемых такой же по форме, но чуть большей по диаметру крышкой. Обычно через сутки бактериальная клетка успевает размножиться настолько, что образует легко заметную невооруженным глазом колонию. Ее можно перенести на другую среду для дальнейшего изучения. Все культуральные среды должны быть перед началом выращивания бактерий стерильными, а в дальнейшем следует принимать меры против поселения на них нежелательных микроорганизмов. Чтобы рассмотреть выращенные таким способом бактерии, прокаливают на пламени тонкую проволочную петлю, прикасаются ею сначала к колонии или мазку, а затем - к капле воды, нанесенной на предметное стекло. Равномерно распределив взятый материал в этой воде, стекло высушивают и два-три раза быстро проводят над пламенем горелки (сторона с бактериями должна быть обращена вверх): в результате микроорганизмы, не повреждаясь, прочно прикрепляются к субстрату. На поверхность препарата капают краситель, затем стекло промывают в воде и вновь сушат. Теперь можно рассматривать образец под микроскопом. Чистые культуры бактерий идентифицируют главным образом по их биохимическим признакам, т.е. определяют, образуют ли они из определенных сахаров газ или кислоты, способны ли переваривать белок (разжижать желатину), нуждаются ли для роста в кислороде и т.д. Проверяют также, окрашиваются ли они специфическими красителями. Чувствительность к тем или иным лекарственным препаратам, например антибиотикам, можно выяснить, поместив на засеянную бактериями поверхность маленькие диски из фильтровальной бумаги, пропитанные данными веществами. Если какое-либо химическое соединение убивает бактерии, вокруг соответствующего диска образуется свободная от них зона.

Энциклопедия Кольера. - Открытое общество . 2000 .

Проверка домашнего задания 33 с с с. 148 Каждая бактерия делится на две в течение 1 минуты. В начальный момент имеется одна бактерия. Составьте блок-схему алгоритма вычисления количества бактерий через 10 минут. Исполните алгоритм, фиксируя каждый его шаг в таблице значений переменных. алг деление бактерии нач f:= 1 нц для i от 1 до 10 f:= f * 2 кц вывод f кон начало конец f:= 1 f:= f * 2 i = 1, 10 f список данных i, f - цел


Проверка домашнего задания 33 с с с. 148 начало конец f:= 1 f:= f * 2 i = 1, 10 f список данных i, f - цел Шаги алгоритма if Вывод


КОНСТРУИРОВАНИЕ АЛГОРИТМОВ ОСНОВЫ АЛГОРИТМИЗАЦИИ Урок 31 По данной теме урок 10 Классная работа






Последовательное построение алгоритма Упрощение команд постановки задачи Задача разбивается на более простые части Решение каждой части задачи формулируется в отдельной команде (предписании) Предписания, выходящие за пределы возможностей исполнителя, представляют в виде более простых команд Не могу решить поставленную задачу!?


Разработка алгоритма методом последовательного уточнения для исполнителя Робот Робот находится в некоторой клетке горизонтального коридора. Ни одна из клеток коридора не закрашена. Робот должен закрасить все клетки этого коридора и вернуться в исходное положение.
















Алгоритм вычисления степени y = a x, где x - целое число, a 0. 1 при x = 0 a x при x >0, y = при x 0, y = при x 0, y = при x 0, y = при x 0, y = при x
Блок-схема решения задачи: Начало y да нет st (a, x, y) a, x x = 0 y:= 1 Конец x > 0 st (1/a, x, y) да нет 0 st (1/a, x, y) да нет"> 0 st (1/a, x, y) да нет"> 0 st (1/a, x, y) да нет" title="Блок-схема решения задачи: Начало y да нет st (a, x, y) a, x x = 0 y:= 1 Конец x > 0 st (1/a, x, y) да нет"> title="Блок-схема решения задачи: Начало y да нет st (a, x, y) a, x x = 0 y:= 1 Конец x > 0 st (1/a, x, y) да нет">


Формальные параметры используются при описании алгоритма. Фактические параметры - те величины, для которых будет исполнен вспомогательный алгоритм. Типы, количество и порядок следования формальных и фактических параметров должны совпадать. Формальные и фактические параметры




Пример. Алгоритм вычисления степени с натуральным показателем n для любого вещественного числа а, представленный в виде рекурсивного алгоритма Рекурсивный алгоритм Начало a, n st (a, n-1,y) y:=a*y y Конец Алгоритм, в котором прямо или косвенно содержится ссылка на него же как на вспомогательный алгоритм, называют рекурсивным.


Снежинка Коха Пример. Рассмотрим алгоритм построения геометрической фигуры, которая называется снежинкой Коха. Шаг процедуры построения состоит в замене средней трети каждого из имеющихся отрезков двумя новыми той же длины. С каждым шагом фигура становится всё причудливее. Граница снежинки Коха - положение кривой после выполнения бесконечного числа шагов. Начальное положение Первый шаг Второй шаг Третий шаг
Самое главное Метод последовательного построения алгоритма: исходная задача разбивается на несколько частей, каждая из которых проще всей задачи, и решение каждой части формулируется в отдельной команде; если получаются команды, выходящие за пределы возможностей исполнителя, то они представляются в виде совокупности ещё более простых предписаний; процесс продолжается до тех пор, пока все предписания не будут понятны исполнителю. Вспомогательный алгоритм - алгоритм, целиком используемый в составе другого алгоритма. Алгоритм, в котором прямо или косвенно содержится ссылка на него же как на вспомогательный алгоритм, называют рекурсивным.


Вопросы и задания Почему при решении сложной задачи затруднительно сразу конкретизировать все необходимые действия? В чём заключается метод последовательного уточнения при построении алгоритма? Какая связь между методом последовательного построения алгоритма и такими процессами, как написание сочинения или подготовка к многодневному туристическому походу? Известен рост каждого из N учеников 9А класса и М учеников 9Б класса. Опишите укрупнёнными блоками алгоритм сравнения среднего роста учеников этих классов. В ряду из десяти клеток правее Робота некоторые клетки закрашены. Последняя закрашенная клетка может примыкать к стене. Составьте алгоритм, который закрашивает клетки выше и ниже каждой закрашенной клетки. Проверьте работу алгоритма в следующих случаях: * * Для чего нужны вспомогательные алгоритмы? Опишите процесс выполнения команды вызова вспомогательного алгоритма в основном алгоритме. Сталкивались ли вы с идеей формальных и фактических параметров при изучении математики и физики? Приведите пример. Какие алгоритмы называют рекурсивными? Приведите пример рекурсии из жизни. Составьте алгоритмы, под управлением которых Робот закрасит указанные клетки. *** а бв


Опорный конспект Метод последовательного построения алгоритма - один из основных методов конструирования алгоритмов. Упрощение команд постановки задачи Задачу разбивают на более простые Решение каждой части задачи формулируют в отдельной команде Предписания, выходящие за пределы возможностей исполнителя, представляют в виде более простых команд Вспомогательный алгоритм - алгоритм, целиком используемый в составе другого алгоритма.