Клеточные включения: строение и функции, медицинское и биологическое значение. Органоиды клетки

Цитоплазма - обязательная часть клетки, заключенная между плазматической мембраной и ядром и представляющая собой сложный гетерогенный структурный комплекс клетки, состоящий из:

© гиалоплазмы - основного вещества цитоплазмы;

© органоидов - постоянных компонентов цитоплазмы;

© включений - временных компонентов цитоплазмы.

Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60-90% всей массы цитоплазмы). Цитоплазма богата белками (10-20%, иногда до 70% и более сухой массы), которые составляют ее основу. Помимо белков, в состав цитоплазмы могут входить жиры и жироподобные вещества (2-3%), различные органические и неорганические соединения (по 1,5%). Цитоплазма имеет щелочную реакцию

Одна из характерных особенностей цитоплазмы - постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органелл клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Основное вещество цитоплазмы - гиалоплазма (основная плазма, матрикс цитоплазмы) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. Жидкая часть гиалоплазмы представляет собой истинный раствор ионов и малых молекул, в которой во взвешенном состоянии находятся крупные молекулы белков и РНК. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы:

© золь - более жидкая гиалоплазма;

© гель - более густая гиалоплазма.

Между ними возможны взаимопереходы: гель легко превращается в золь и наоборот.

Органоиды (органеллы ) - постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции. В зависимости от особенностей строения, различают:

¨ мембранные органоиды - имеющие мембранное строение, причем они могут быть:

¨ одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток);

¨ двумембранными (митохондрии, пластиды);

¨ немембранные органоиды - не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

Есть органоиды, свойственные всем клеткам, – митохондрии, клеточный центр, аппарат Гольджи, рибосомы, эндоплазматический ретикулум, лизосомы. Их называют органоидами общего значения . Имеются органоиды, характерные только для определенных типов клеток, специализированных к выполнению определенной функции (например, миофибриллы, обеспечивающие сокращение мышечного волокна). Их называют специальными органоидами .

Одномембранный органоид, представляющий собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полость ЭПР . Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой - с наружной оболочкой ядерной мембраны. Наибольшего развития ЭПР достигает в клетках с интенсивным обменом веществ. В среднем он составляет от 30 до 50 % всего объема клетки.

Различают три вида ЭПР:

© шероховатый , содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков;

© гладкий , мембраны которого рибосом не несут, по строению он ближе к трубчатому;

© промежуточный - частично гладкий, частично шероховатый; большая часть ЭПР клеток представлена именно этим видом.

Функции ЭПР:

© разделяет цитоплазму клетки на изолированные отсеки (компартменты ), обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих реакций;

© содержит мультиферментные системы, обеспечивающие поэтапное протекание биосинтетических процессов;

© осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР);

© обеспечивает синтез белка (шероховатый ЭПР);

© накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза;

© служит местом образования цистерн аппарата Гольджи (промежуточный ЭПР).

Пластинчатый комплекс, комплекс Гольджи (рис. 284). Одномембранный органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПР, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации. Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. У аппарата Гольджи выделяют две разные стороны:

© формирующуюся , связанную с ЭПР, поскольку именно оттуда поступают небольшие пузырьки, несущие в аппарат Гольджи белки и липиды;

© зрелую , образующую трубчатый ретикулум (сеть), от которого постоянно отпочковываются пузырьки, несущие белки и липиды в разные компартменты клетки или за ее пределы.

Наружная часть аппарата Гольджи постоянно расходуется в результате отшнуровывания пузырьков, а внутренняя - постепенно формируется за счет деятельности ЭПР.

Функции аппарата Гольджи:

© транспорт и химическая модификация поступающих в него веществ;

© синтез сложных углеводов из простых сахаров;

© образование лизосом.

Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие около 40 гидролитических ферментов (протеазы, липазы, нуклеазы, фосфотазы), активных в слабокислой среде (рис. 285). Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом , отсюда и название органоида.

Различают:

© первичные лизосомы - лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме;

© вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит перева-

ривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями):

¨ Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем . Путем экзоцитоза непереваренные частицы удаляются из клетки.

¨ Вторичная лизосома, переваривающая отдельные составные части клетки, называется автофагической вакуолью . Подлежащие уничтожение части клетки окружаются одинарной мембраной, обычно отделяющейся от гладкого ЭПР, а затем образовавшийся мембранный мешочек сливается с первичной лизосомой, в результате чего и происходит образование автофагической вакуоли.

Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом . Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).

Функции лизосом:

© участие во внутриклеточном переваривании питательных веществ;

© разрушение структур клетки и ее самой при старении;

© участие в процессах дифференцировки в ходе эмбрионального развития.

Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией (рис. 286). Они имеют палочковидную, нитевидную, шаровидную, спиральную, чашевидную и т.д. форму. Длина митохондрий 1,5-10 мкм, диаметр - 0,25-1,00 мкм.

Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.

Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания (гребни) или трубчатые выросты - кристы, обладающие строго специфичной проницаемостью и системами активного транспорта. Число крист может колебаться от нескольких де-

сятков до нескольких сотен и даже тысяч, в зависимости от функций клетки.

Они увеличивают поверхность внутренней мембраны, на которой размещаются мультиферментные системы, участвувующие в синтезе молекул АТФ.

Внутренняя мембрана содержит белки двух главных типов:

© белки дыхательной цепи;

© ферментный комплекс, называемый АТФ-синтетазой, отвечающий за синтез основного количества АТФ.

Наружная мембрана отделена от внутренней межмембранным пространством.

Внутреннее пространство митохондрий заполнено гомогенным веществом - матриксом . В матриксе содержатся кольцевые молекулы митохондриальной ДНК, специфические иРНК, тРНК и рибосомы (прокариотического типа), осуществляющие автономный биосинтез части белков, входящих в состав внутренней мембраны. Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления или отшнуровывания мелких фрагментов.

Функции митохондрий:

© кислородное расщепление углеводов, аминокислот, глицерина и жирных кислот с образованием АТФ;

© синтез митохондриальных белков.

Немембранные органоиды, встречающиеся в клетках всех организмов. Это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм (рис. 287). Рибосомы состоят из двух субъединиц неравного размера - большой и малой, на которые они

могут диссоциировать. В состав рибосом входят белки и рибосомальные РНК (рРНК). Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка.

Различают два основных типа рибосом: эукариотические (с константами седиментации целой рибосомы - 80S, малой субъединицы - 40S, большой - 60S) и прокариотические (соответст-

венно 70S, 30S, 50S). В состав рибосом эукариот входит 4 молекулы рРНК и около 100 молекул белка, прокариот - 3 молекулы рРНК и около 55 молекул белка.

В зависимости от локализации в клетке, различают

© свободные рибосомы - рибосомы, находящиеся в цитоплазме, синтезирующие белки для собственных нужд клетки;

© прикрепленные рибосомы - рибосомы, связанные большими субъединицами с наружной поверхностью мембран ЭПР, синтезирующие белки, которые поступают в комплекс Гольджи, а затем секретируются клеткой.

Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы ). В таких комплексах они связаны друг с другом одной молекулой иРНК.

Рибосомы эукариот образуются в ядрышке. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Одной из отличительных особенностей эукариотической клетки является наличие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме.

Цитоскелет образован микротрабекулярной системой, микротрубочками и микрофиламентами.

Цитоскелет определяет форму клетки, участвует в движениях клетки, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов и отдельных соединений. Микрофиламенты выполняют также функцию арматуры клетки.

Микротрабекулярная система представляет собой сеть из тонких фибрилл - трабекул (перекладин), в точках пересечения или соединения концов которых располагаются рибосомы.

Микротрабекулярная система - динамичная структура: при изменении условий она может распадаться и вновь собираться.

Функции микротрабекулярной решетки:

© служит опорой для клеточных органелл;

© осуществляет связь между отдельными частями клетки;

© направляет внутриклеточный транспорт.

Стенка микротрубочек в основном построена из спирально уложенных субъединиц белка тубулина. Считают, что роль матрицы (организатора микротрубочек) могут играть центриоли, базальные тельца жгутиков и ресничек, центромеры хромосом.

Функции микротрубочек:

© вместе с микротрабекулярной системой выполняют опорную функцию;

© придают клетке определенную форму;

© образуют веретено деления;

© обеспечивают расхождение хромосом к полюсам клетки;

© отвечают за перемещение клеточных органелл;

© принимают участие во внутриклеточном транспорте, секреции, формировании клеточной стенки;

© являются структурным компонентом ресничек, жгутиков, базальных телец и центриолей.

Центриоль представляет собой цилиндр (длиной 0,3 мкм и диаметром 0,1 мкм), стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Часто центриоли объединены в пары, где они расположены под прямым углом друг к другу. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем .

Почти во всех животных клетках имеется пара центриолей, являющихся срединным элементом центросомы , или клеточного центра (рис. 288). Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них

возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу. Они формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками, являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам. В клетках высших растений клеточный центр центриолей не имеет.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли.

Это волосовидные образования толщиной около 0,25 мкм, построенные из микротрубочек, у эукариот они покрытыресничек лишь длиной.

Реснички и жгутики - органоиды движения клеток многих типов. Чаще всего реснички и жгутики встречаются у бактерий, некоторых простейших, зооспор и сперматозоидов. Жгутики бактерий имеют иное строение, чем жгутики эукариот.

Реснички и жгутики образованы девятью сдвоенными микротрубочками, образующими стенку цилиндра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека.

Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет.

Микрофиламенты представлены нитями диаметром 6 нм, состоящими из белка актина, близкого к актину мышц. Актин составляет 10-15% общего количества белка клетки. В большинстве животных клеток образуется густая сеть из актиновых филаментов и связанных с ними белков под самой плазматической мембраной. Эта сеть придает поверхностному слою клетки механическую прочность и позволяет клетке изменять свою форму и двигаться.

Помимо актина, в клетке обнаруживаются и нити миозина. Однако количество их значительно меньше. Благодаря взаимодействию актина и миозина происходит сокращение мышц.

Микрофиламенты связаны с движением всей клетки либо ее отдельных структур внутри нее. В некоторых случаях движение обеспечивается только актиновыми филаментами, в других - актином вместе с миозином.

Включения - временные компоненты цитоплазмы, то возникающие, то исчезающие. Как правило, они содержатся в клетках на определенных этапах жизненного цикла. Специфика включений зависит от специфики соответствующих клеток тканей и органов. Включения встречаются преимущественно в растительных клетках. Они могут возникать в гиалоплазме, различных органеллах, реже в клеточной стенке.

В функциональном отношении включения представляют собой:

© либо временно выведенные из обмена веществ клетки соединения (запасные вещества - крахмальные зерна, липидные капли и отложения белков);

© либо конечные продукты обмена (кристаллы некоторых веществ).

Это наиболее распространенные включения растительных клеток. Крахмал запасается у растений исключительно в виде крахмальных зерен.

Они образуются только в строме пластид живых клеток. В процессе фотосинтеза в зеленых листьях образуется ассимиляционный , или первичный крахмал. Ассимиляционный крахмал в листьях не накапливается и, быстро гидролизуясь до сахаров, оттекает в части растения, в которых происходит его накопление. Там он вновь превращается в крахмал, который называют вторичным. Вторичный крахмал образуется и непосредственно в клубнях, корневищах, семенах, то есть там, где он откладывается в запас. Тогда его называют запасным . Лейкопласты, накапливающие крахмал, называют амилопластами .

Особенно богаты крахмалом семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений.

Встречаются практически во всех растительных клетках. Наиболее богаты ими семена и плоды. Жирные масла в виде липидных капель - вторая по значению (после крахмала) форма запасных питательных веществ. Семена некоторых растений (подсолнечник, хлопчатник и т.д.) могут накапливать до 40% масла от массы сухого вещества.

Липидные капли, как правило, накапливаются непосредственно в гиалоплазме. Они представляют собой сферические тела обычно субмикроскопического размера.

Липидные капли могут накапливаться и в лейкопластах, которые называют элайопластами .

Белковые включения образуются в различных органеллах клетки в виде аморфных или кристаллических отложений разнообразной формы и строения. Наиболее часто кристаллы можно встретить в ядре - в нуклеоплазме, иногда в перинуклеарном пространстве, реже в гиалоплазме, строме пластид, в расширениях цистерн ЭПР, матриксе пероксисом и митохондриях. В вакуолях встречаются как кристаллические, так и аморфные белковые включения. В наибольшем количестве кристаллы белка встречаются в запасающих клетках сухих семян в виде так называемых алейроновых зерен или белковых телец .

Запасные белки синтезируются рибосомами во время развития семени и откладываются в вакуоли. При созревании семян, сопровождающемся их обезвоживанием, белковые вакуоли высыхают, и белок кристаллизуется. В результате этого в зрелом сухом семени белковые вакуоли превращаются в белковые тельца (алейроновые зерна).

Включения, образующиеся в вакуолях, как правило, клеток листьев или коры. Это либо одиночные кристаллы, либо группы кристаллов разнообразной формы.

Представляют собой конечные продукты жизнедеятельности клеток, образующиеся как приспособление для вывода из обмена веществ излишков кальция.

Кроме оксалата кальция, в клетках могут накапливаться кристаллы карбоната кальция и кремнезема.

Ядро

Наиболее важный компонент эукариотических клеток. Безъядерная клетка долго не существует. Ядро также не способно к самостоятельному существованию.

Большинство клеток имеет одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Число ядер может достигать нескольких десятков. Некоторые высокоспециализированные клетки утрачивают ядро (эритроциты млекопитающих и клетки ситовидных трубок у покрытосеменных растений).

Форма и размер ядер клеток разнообразны. Обычно ядро имеет диаметр от 3 до 10 мкм. Форма в большинстве случаев связана с формой

клетки, но часто отличается от нее. Как правило, имеет шаровидную или овальную форму, реже может быть сегментированным, веретеновидным.

Главными функциями ядра являются:

© хранение генетической информации и передача ее дочерним клеткам в процессе деления;

© контроль жизнедеятельности клетки путем регуляции синтеза различных белков.

В состав ядра входят (рис. 289):

© ядерная оболочка;

© кариоплазма (нуклеоплазма, ядерный сок);

© хроматин;

© ядрышки.

Ядро отграничено от остальной цитоплазмы ядерной оболочкой, состоящей из двух мембран типичного строения. Между мембранами имеется узкая щель, заполненная полужидким веществом, - перинуклеарное пространство . В некоторых местах обе мембраны сливаются друг с другом, образуя ядерные поры, через которые происходит обмен веществ между ядром и цитоплазмой. Из ядра в цитоплазму и обратно вещества могут попадать также вследствие отшнуровывания впячиваний и выростов ядерной оболочки.

Несмотря на активный обмен веществ, ядерная оболочка обеспечивает различия в химическом составе ядерного сока и цитоплазмы, что необходимо для нормального функционирования ядерных структур. Наружная ядерная мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя мембрана гладкая. Ядерная оболочка - часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма - внутреннее содержимое ядра. Представляет собой гелеобразный матрикс, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды, а также продукты жизнедеятельности ядрышка и хроматина.

Третья характерная для ядра клетки структура - ядрышко , представляющее собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и может колебаться от 1 до 5–7 и более (даже в одной и той же клетке). Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают, а после завершения деления возникают вновь. Ядрышко не является самостоятельной структурой ядра. Оно образуется в результате концентрации в определенном участке кариоплазмы участков хромосом, несущих информацию о структуре рРНК. Эти участки хромосом называют ядрышковыми организаторами . Они содержат многочисленные копии генов, кодирующих рРНК. Поскольку в ядрышке интенсивно идет процесс синтеза рРНК и формирование субъединиц рибосом, можно говорить, что ядрышко - это скопление рРНК и рибосом на разных этапах формирования.

Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин представляет собой молекулы ДНК, связанные с белками - гистонами. В зависимости от степени спирализации различают:

© эухроматин - деспирализованные (раскрученные) участки хроматина, имеющие вид тонких, неразличимых при световой микроскопии нитей, слабо окрашивающихся и генетически активных;

© гетерохроматин - спирализованные и уплотненные участки хроматина, имеющие вид глыбок или гранул, интенсивно окрашивающихся и генетически не активных.

Хроматин представляет собой форму существования генетического материала в неделящихся клетках и обеспечивает возможность удвоения и реализации заключенной в нем информации.

В процессе деления клеток ДНК спирализуется и хроматиновые структуры образуют хромосомы.

Хромосомами называются постоянные компоненты ядра клетки, имеющие особую организацию, функциональную и морфологическую специфичность, способные к самовоспроизведению и сохранению свойств на протяжении всего онтогенеза. Хромосомы - плотные, интенсивно окрашивающиеся структуры (отсюда и их название). Впервые они были обнаружены Флемингом (1882) и Страсбургером (1884). Термин “хромосома” предложил Вальдейер в 1888 г.

Функции хромосом:

© хранение наследственной информации;

© использование наследственной информации для создания и поддержания клеточной организации;

© регуляция считывания наследственной информации;

© самоудвоение генетического материала;

© передача генетического материала от материнской клетки к дочерним.

Главными химическими компонентами хромосом являются ДНК (40%) и белки (60%). Основным компонентом хромосом является ДНК, так как в ее молекулах закодирована наследственная информация, белки же выполняют структурную и регуляторную функции.

Различают две основные формы хромосом, приуроченные к определенным фазам и периодам митотического цикла:

© митотическая , свойственная периоду митоза и представляющая собой интенсивно окрашенное, плотное тельце;

© интерфазная , соответствующая хроматину ядер интерфазных клеток и представляющая собой более или менее рыхло расположенные нитчатые образования и глыбки.

Реорганизация хромосом происходит в процессе спирализации (конденсации) или деспирализации (деконденсации). В неделящихся клетках хромосомы находятся в деконденсированном состоянии, так как только в этом случае может считываться заложенная в них информация. Во время деления клетки спирализацией достигается плотная упаковка наследственного материала, что важно для перемещения хромосом во время митоза. Общая длина ДНК клетки человека - 2 метра, совокупная же длина всех хромосом клетки - всего лишь 150 мкм.

Все сведения о хромосомах получены при изучении метафазных хромосом. Каждая метафазная хромосома состоит из двух хроматид , являющихся дочерними хромосомами (рис. 290). В процессе митоза они разойдутся в дочерние клетки и станут самостоятельными хромосомами. Хроматиды - сильно спирализованные идентичные молекулы ДНК, образо-

вавшиеся в результате репликации. Они соединяются между собой в области первичной перетяжки (центромеры ), к которой прикрепляются нити веретена деления. Фрагменты, на которые первичная перетяжка делит хромосому, называются плечами , а концы хромосомы - теломерами . Теломеры предохраняют концы хромосом от слипания, способствуя тем самым сохранению целостности хромосом. В зависимости от места положения центромеры различают (рис. 291):

© метацентрические хромосомы - равноплечие, то есть плечи приблизительно одинаковой длины;

© субметацентрические хромосомы - умеренно неравноплечие, то есть одно плечо короче другого;

© акроцентрические хромосомы - резко неравноплечие, то есть одно плечо практически отсутствует.

Некоторые хромосомы имеют вторичные перетяжки , возникающие в участках неполной конденсации хроматина. Они являются ядрышковыми организаторами . Иногда вторичная перетяжка очень длинная и отделяет от основного тела хромосомы небольшой участок - спутник . Такие хромосомы называют спутничными .

Хромосомы обладают индивидуальными особенностями: длиной, положением центромеры, формой.

Каждый вид живых организмов имеет в своих клетках определенное и постоянное число хромосом. Хромосомы ядра одной клетки всегда парные. Каждая пара образована хромосомами, имеющими одинаковый размер, форму, положение первичной и вторичной перетяжек. Такие хромосомы называют гомологичными . У человека 23 пары гомологичных хромосом. Совокупность количественных (число и размеры) и качественных (форма) признаков хромосомного набора соматической клетки называется кариотипом . Число хромосом в кариотипе всегда четное, так как соматические клетки имеют две одинаковые по форме и размеру хромосомы: одну - отцовскую, другую - материнскую. Хромосомный набор всегда видоспецифичен, то есть, характерен только для данного вида организмов. Если в ядрах клеток хромосомы образуют гомологичные пары, то такой набор хромосом называют диплоидным (двойным) и обозначают - 2n. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают 2с. Диплоидный набор хромосом характерен для соматических клеток. В ядрах половых клеток каждая хромосома представлена в единственном числе. Такой набор хромосом называют гаплоидным (одинарным) и обозначают - n. У человека диплоидный набор содержит 46 хромосом, а гаплоидный - 23.

Вместе с мембранными и немембранными органеллами в цитоплазме находятся клеточные включения, которые являются непостоянными элементами клетки. Они появляются и исчезают на протяжении ее жизненного цикла.

Что относится к клеточным включениям, какова их роль в клетке?

По сути включения - это продукты метаболизма, способные накапливаться в виде гранул, зерен или капель с разной химической структурой. Редко могут встречаться в ядре.

Формируются они в основном в пластинчатом комплексе и в эндоплазматическом ретикулуме. Часть - результат неполного переваривания (гемосидерин).

Процесс расщепления и удаления зависит от происхождения. Секреторные включения выводятся через протоки, углеводные и липидные - расщепляются под действием ферментов, меланин разрушается клетками Лангерганса.

Классификация клеточных включений:

  • Трофические (крахмал, гликоген, липиды);
  • секреторные (включения поджелудочной железы, эндокринных органов);
  • экскреторные (гранулы мочевой кислоты);
  • пигментные (меланин, билирубин);
  • случайные (медикаменты, кремний);
  • минеральные (соли кальция).

Строение и функции

Жировые включения часто накапливаются в цитоплазме, как небольшие капли. Они характерны для одноклеточных, к примеру, инфузорий. У высших животных липидные капли находятся в жировой ткани. Чрезмерное накопление жировых включений приводит к патологическим изменениям в органах, к примеру, вызывает жировую дистрофию печени.

Полисахаридные имеют гранулярное строение различной формы и размеров. Наибольшие их скопления располагаются в клетках поперечнополосатой мускулатуры и печеночной ткани.


Включения белка встречаются не часто, главным образом являются питательным веществом в яйцеклетках (при микроскопическом исследовании можно увидеть разного рода пластинки, палочки).

Пигмент липофусцин - это включения желтого или коричневого цвета, которые скапливаются в клетках в процессе жизнедеятельности. Пигмент гемоглобин входит в состав эритроцитов крови. Родопсин — делает палочки сетчатки глаза чувствительными к свету.

Строение и функции клеточных включений
Группа Характеристика
Трофические Сюда относят белки, жиры и углеводы. В клетках животных, особенно в печени и мышечных волокнах, находится гликоген. При нагрузках и потреблении большого количества энергии он используется в первую очередь. У растений накапливается крахмал, как основной источник питания.
Экскреторные Это продукты метаболизма клетки, которые не были из нее удалены. Сюда также относят чужеродных агентов, проникших во внутриклеточное пространство. Такие включения поглощаются и перерабатываются лизосомами.
Секреторные Их синтез идет в специальных клетках, а после они выводятся наружу через протоки или с током лимфы и крови. К секреторной группе относятся гормоны.
Пигментные Иногда представлены продуктами обмена: гранулы липофусцина или скопления гемосидерина. Находятся в меланоцитах, клетках имеющих окрас. Выполняют защитную функцию, предотвращая действие солнечных лучей. У простейших видов меланоциты находятся во многих органах, что придает животным различную окраску. У человека основная масса пигментных клеток находится в эпидермисе, часть в радужке глаза.
Случайные Встречаются в клетках, способных к фагоцитозу. Захваченные бактерии, которые плохо перевариваются, остаются в цитоплазме в виде гранул.
Минеральные Сюда относятся соли Ca, которые откладываются при снижении активной деятельности органа. Нарушение метаболизма иона приводит также к накоплению солей в матриксе митохондрий.

Биологическое и медицинское значение клеточных включений

Избыточное скопление включений может привести к развитию серьезных патологий, которые принято называть болезнями накопления. Формирование заболевания связано со снижением активности лизосомальных ферментов и чрезмерным поступлением каких-либо веществ (жировое перерождение печени, гликогенозмышечной ткани).

Например, развитие наследственной болезни Помпе обусловлено дефицитом фермента кислая мальтаза , как следствие в клетках накаливается гликоген, что ведет к дистрофии нервной и мышечной ткани.

Скапливаться в цитоплазме могут свойственные для клетки вещества, а также чужеродные, которые в норме не встречаются (амилоидоз почек). Во время старения организма во всех клетках накапливается липофусцин, который служит маркером функциональной неполноценности клеток.

Чем отличаются органоиды от клеточных включений?

Органоиды - это постоянные структурные элементы клетки, необходимые для стабильной работы и жизнедеятельности.

Включения - это компоненты клетки, которые могут появляться и исчезать на протяжении ее жизни.

Органоиды и включения

Немембранные органоиды:

МИТОХОНДРИИ

(митос – нить; хондр - зерно)

Открыты в конце прошлого столетия. С помощью электронного микроскопа выяснена их структура.

Покрыта двумя мембранами, между которыми находится межмембранное пространство. Наружная мембрана пористая. На внутренней мембране находятся кристы, на которых расположены АТФ-сомы (особые структуры – частицы с ферментами) где происходит синтез АТФ. Внутри находится матрикс, где обнаруживаются нити ДНК, гранулы рибосом, и-РНК, т-РНК и электронноплотные частицы, где располагаются катионы Ca и Mg.

В матриксе находятся ферменты, расщепляющие продукты гликолиза (анаэробные окисления) до СО 2 и Н. Ионы водорода поступают в АТФ-сомы и соединяются с кислородом, образуя воду. Освобожденная при этом энергия используется в реакции фосфорилирования с образованием АТФ. АТФ способна распадаться до АДФ и фосфорного остатка, а также энергия, которая используется для осуществления синтетических процессов.

Таким образом, митохондрии связаны с выработкой энергии путем синтеза АТФ, поэтому они считаются энергетическими станциями клеток. Наличие ДНК и рибосом свидетельствует об автономном синтезе некоторых белков. Продолжительность жизни митохондрий в нейронах от 6 до 30 дней. Новообразование митохондрий происходит за счет почкования и образования перетяжек с последующим разделением на две. Количество митохондрий - от 1000 до 3000, а в яйцеклетках до 300.000 (убыль их пополняется за счет деления и почкования).

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

Представляет собой систему уплощенных цистерн, трубочек и везикул, создающих в совокупности мембранную сеть цитоплазмы клеток. Если к наружной поверхности прикреплены рибосомы, то сеть гранулярная (шероховатая), без рибосом – агранулярная. Основная функция эндоплазматической сети – накопление, изоляция и транспорт образуемых веществ. В гранулярной сети происходит синтез белков, в агранулярной – синтез и расщепление гликогена, синтез стероидных гормонов (липидов), обезвреживание токсинов, концерогенных веществ и др. В мышечных волокнах и клетках гладкой мышечной ткани эндоплазматическая сеть является депо Са. Образуемые в сети вещества поступают в комплекс Гольджи.

КОМПЛЕКС ГОЛЬДЖИ

Был открыт в 1898 году. Ученые пришли к выводу, что этот органоид избирательно концентрирует вещества, синтезируемые в клетке. Комплекс Гольджи состоит из уплощенных цистерн или мешочков; транспортных пузырьков, приносящих из эндоплазматической сети белковый секрет; вакуолей, конденсирующих секрет, которые отделяются от мешочков и цистерн. Секрет в вакуолях уплотняется, и они превращаются в секреторные гранулы, которые затем выводятся из клетки.

Формируется комплекс Гольджи снизу на формирующей поверхности из фрагментов (транспортных пузырьков) эндоплазматической сети, находящейся под ним. Фрагменты отделяются, соединяются и формируют мешочки или цистерны. В цистернах комплекса Гольджи происходит также синтез гликопротеидов, т.е. модификации белков, путем соединения полисахаридов с белками и формирование лизосом. Участвует в формировании мембран, начатое в эндоплазматической сети.

ЛИЗОСОМЫ

Были открыты в 1955 году. Имеют вид пузырьков, ограниченных мембраной. Обнаружили их по наличию гидролитических ферментов (кислой фосфатазы). Основная их функция – расщепление попавших извне веществ, а также органелл и включений в ходе обновления или при снижении функциональной активности (а также и всей клетки в условиях инволюции органа – например, инволюции матки после родов). Таким образом, лизосомы – это пищеварительная система клетки.

Различают 4 формы лизосом:

1. Первичные - запасающая гранула.

2. Вторичные (фаголизосомы), в которых происходит активация ферментов и лизис веществ.

3. Аутофагосомы - гидролиз внутриклеточных структур.

4. Остаточные тельца, содержимое которых выводится из клетки путем экзоцитоза.

Переваренные вещества поступают (диффундируют) в гиалоплазму и включаются в обменные процессы.

ПЕРОКСИСОМЫ

Это сферические структуры диаметром 0,3-1,5 мкм. Их матрикс может быть аморфным, зернистым и кристаллическим. Они происходят из эндоплазматической сети и напоминают лизосомы, только менее электронноплотны. В них содержится фермент каталаза, разрушающий перекиси, образующиеся при расщеплении липидов, которые токсичны для клетки, нарушая функции мембран.

Немембранные органоиды:

РИБОСОМЫ

Это структуры, которые связаны с синтезом белка. Они образуются в ядрышке и состоят из рибосомного белка, поступающего из цитоплазмы, и рибосомной РНК, синтезируемой в ядрышке. В структуре рибосом различают большую и малую субъединицы, связанные ионами Мg. Рибосомы либо свободно располагаются в цитоплазме либо в виде небольших скоплений (полисом), либо связаны с эндоплазматической сетью.

Свободные рибосомы и полисомы встречаются в молодых клетках и синтезируют белок для роста самой клетки, а рибосомы на эндоплазматической сети синтезируют белок «на экспорт». Для синтеза белка необходимо: 1) аминокислоты (их 20); 2) Инф-РНК (образуется в ядре, на ней существуют тринуклеотиды, которые формируют код; 3) транспортная РНК и 4) ряд ферментов.

ЦИТОСКЕЛЕТ

Долгое время ученые не знали, что поддерживает порядок в клетке и не позволяет сбиться в кучу ее содержимому, что заставляет цитоплазму перемещаться, менять форму, пока не был изобретен электронный микроскоп. Стало ясно, что пространство между ядром и внутренней поверхностью плазмолеммы имеет упорядоченную структуру. Во-первых, оно перегорожено и разбито на отсеки с помощью внутренних мембран и во-вторых, внутриклеточное пространство заполнено различными филаментами – нитевидными белковыми волокнами, составляющими скелет. По диаметру эти волокна разделили на микротрубочки , микрофибриллы и промежуточные филаменты . Оказалось, что микротрубочки – это полые цилиндры, состоящие из белка тубулина; микрофибриллы – длинные фибриллярные структуры, состоящие из белков актина и миозина; а промежуточные – из разных белков (в эпителии – кератин и др.) Микротрубочки и микрофибриллы обеспечивают двигательные процессы в клетке и участвуют в опорной функции. Промежуточные филаменты выполняют только опорную функцию.

В последнее время ученые обнаружили 4-ый компонент цитоскелета – тонкие филаменты, которые обеспечивают связь основных компонентов цитоскелета. Они пронизывают всю цитоплазму, формируя решетки и, возможно, участвуют в передаче сигналов от поверхности клетки к ядру.



Микротрубочки принимают участие в образовании центриолей , представленных в виде двух цилиндров, перпендикулярных друг другу. Цилиндры состоят из 9 триплетов микротрубочек (9 x 3)+0. С центриолями связаны сателлиты, являющиеся центрами сборки веретена деления. Вокруг центриолей радиально расположены тонкие фибриллы, образующие центросферу. Все вместе называются клеточным центром.

При подготовке к делению происходит удвоение центриолей. Две центриоли расходятся, и около каждой формируется по одной новой дочерней. Пары расходятся по полюсам. При этом старая сеть микротрубочек исчезает и сменяется митотическим веретеном, которое также состоит из микротрубочек, но из одинарных неудвоенных (9 x1)+0. Всем этим занимается клеточный центр.

Микротрубочки принимают участие в формировании ресничек и жгутиков . Формула ресничек и аксонемы хвоста сперматозоидов (9 x 2)+2, а базального тельца у основания ресничек (9 x 3)+0. В ресничках и жгутиках кроме тубулина находится денеин. Если нет его или двух центральных трубочек, то реснички и жгутики не двигаются. С этим может быть связано мужское бесплодие и хронический бронхит.

Промежуточные филаменты чаще всего располагаются в тех местах ткани, которые испытывают механическую нагрузку. Благодаря своей прочности они продолжают служить и после гибели клетки (волосы).

ВКЛЮЧЕНИЯ

Непостоянные структуры цитоплазмы. Они могут быть липидами, углеводами, белками, витаминами и использоваться клетками как источники энергии и питательных веществ. Могут выделяться из клетки и использоваться организмом (секреторные включения). Включения представляют собой капельки жира, гликогена, ферменты, пигментные включения.

ЯДРО

Является обязательным компонентом полноценной клетки. Оно обеспечивает двефункции :

1. Хранение и передачу генетической информации.

2. Реализацию информации с обеспечением синтеза белка.

Наследственная информация хранится в виде неизменных структур ДНК. В ядре происходит воспроизведение или редупликация молекул ДНK (удвоение), что дает возможность двум дочерним клеткам при митозе получить одинаковые объемы генетической информации.

На молекулах ДНК происходит транскрипция разных РНК-информационных, транспортных и рибосомных.

В ядре происходит образование субъедениц рибосом путем соединения рибосомных РНК с рибосомными белками, синтезируемыми в цитоплазме и перенесенными в ядро. Клетки без ядра не способны синтезировать белок (например, эритроциты). Нарушение любой функции ядра приводит к гибели клетки.

Форма ядер в большинстве округлая, но есть палочковидная и сегментированная. В ядре различают ядерную оболочку, кариоплазму (ядерный матрикс), хроматин и ядрышко. Ядерная оболочка – кариолемма состоит из двух липопротеидных мембран, между которыми находится перинуклеарное пространство.

В оболочке имеются ядерные поры (поровый комплекс), диаметром 80-90 нм. В области поры мембраны сливаются. Внутри поры имеется три ряда гранул (белковых глобул) по 8 штук. В центре тоже есть гранула и с каждой из 24 гранул она соединена тонкими нитями (фибриллами), образуя сеточку. Через нее проходят микромолекулы из ядра и в ядро. Число пор может варьировать в зависимости от активности ядра.

На внешней ядерной мембране, обращенной к цитоплазме клетки, размещены полирибосомы, и она может переходить в мембраны эндоплазматической сети.

Внутренняя мембрана имеет связь с плотной пластинкой, которая представляет густую сеть белковых фибрилл, соединяющихся с фибриллами кариоплазмы. Пластинка и фибриллярная система выполняют опорную функцию. Плотная пластинка при помощи специальных белков связана с участками хромосом и обеспечивает порядок их расположения в период интерфазы.

Таким образом, ядерная оболочка является барьером, отделяющим содержимое ядра от цитоплазмы, ограничивая свободный доступ в ядро крупных агрегатов и регулируя транспорт микромолекул между ядром и цитоплазмой, а также фиксирует хромосомы в ядре.

Кариоплазма - бесструктурное вещество, содержит различные белки (нуклеопротеиды, гликопротеиды, ферменты и соединения, участвующие в процессе синтеза нуклеиновых кислот, белков и других веществ). Под большим увеличением видны рибонуклепротеидные гранулы. Выявлены продукты белкового обмена, гликолитические ферменты и другие.

Хроматин – плотное, хорошо окрашивающееся вещество. Он представлен совокупностью хромосом. Хромосомы постоянно присутствуют, но видны лишь во время митоза, так как сильно спирализуются и утолщаются. В интерфазном ядре они деспирализуются и не видны. Сохранившиеся конденсированные участки называются гетерохроматином, а деконденсированные – эухроматином, в котором идет активная работа по синтезу веществ. Много эухроматин обычно в молодых клетках.

Хроматин состоит из ДНК (30-40 %), белков (60-70 %) и небольшого количества РНК (т.е. дезоксирибонуклеопротеид). Молекула ДНК представляет собой двойную спираль, с различными азотистыми основаниями Белки представлены гистонами и негистонами. Гистоны (основные) выполняют структурную функцию, обеспечивая укладку ДНК. Негистоны образуют матрикс в интерфазном ядре и регулируют синтез нуклеиновых кислот.

Ядрышко – тельце округлой формы внутри ядра. Это место образования рибосомных РНК и формирования рибосом. Ядрышковыми организаторами являются участки хромосомы (или ДНК), которые содержат гены, кодирующие синтез рибосомных РНК. Эти участки прилегают к поверхности ядрышка в виде конденсированного хроматина, где синтезируется предшественник РНК. В зоне ядрышка предшественник одевается белком, образуя субъеденицы рибосомы. Выходя в цитоплазму, они заканчивают свое формирование и участвуют в процессе синтеза белка.

В составе ядрышка различают: ядрышковый хроматин, фибриллярные (филаменты РНК) и гранулярные (гранулы РНК-формирующиеся рибосомы) структуры, состоящие из нуклеопротеидов. Фибриллярные и гранулярные компоненты образуют ядрышковую нить (нуклеолонему).

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из основного вещества, или гиалоплазмы, и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящийся в постоянном движении. Способность к движению, или течению цитоплазмы, называют циклозом. Матрикс является активной средой, в которой протекают многие химические и физиологические процессы и которая объединяет все компоненты клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами.

Органоиды – это постоянные и обязательные компоненты большинства клеток, имеющие специфическую структуру и выполняющие жизненно важные функции. Органоиды бывают общего назначения и специального назначения.

Органоиды общего значения присутствуют во всех клетках и в зависимости от особенностей строения делятся на немембранные, одномембранные и двумембранные.

Органоиды специального значения присутствуют только в клетках определенных тканей; например, миофибриллы в мышечных тканях, нейрофибриллы в нервной ткани.

Немембранные органоиды.

К этой группе относятся рибосомы, микротрубочки и микрофиламенты, а также клеточный центр.

РИБОСОМЫ.

Рибосомы - очень мелкие органеллы, присутствуют во всех типах клеток. Имеют округлую форму, состоят из примерно равных по массе количеств рРНК и белка и представлены двумя субъединицами: большой и малой. Между субъединицами находится пространство, куда присоединяется иРНК.

В клетках рибосомы локализуются свободно в цитоплазме, на мембранах ЭПС, в матриксе митохондрий, на наружной мембране ядра, у растений в пластидах.

Функция рибосом – сборка белковых молекул.

На время активного синтеза белка образуются полирибосомы. Полирибосомы - комплекс рибосом (от 5 до 70 рибосом). Между отдельными рибосомами имеется связь, которая осуществляется при помощи молекул и-РНК.

Рис. 5. Строение рибосомы (схема)

1- малая субъединица; 2 – и-РНК; 3 – большая субъединица 4-рРНК

МИКРОТРУБОЧКИ И МИКРОФИЛАМЕНТЫ

Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков. Микротрубочки имеют вид длинных полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламентыпредставляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обусловливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала. Помимо свободных микротрубочек, пронизывающих цитоплазму, в клетках имеются определенным образом организованные микротрубочки, формирующие центриоли клеточного центра, базальные тельца, реснички и жгутики.

КЛЕТОЧНЫЙ ЦЕНТР

Клеточный центр, или центросома – обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована 9 триплетами микротрубочек. В центре микротрубочек нет. Поэтому систему микротрубочек центриоли можно описать формулой (9×3)+0.

В период подготовки клетки к делению происходит удвоение - дупликация центриолей: материнская и дочерняя расходятся к полюсам клетки, намечая направление будущего деления, около каждой образуется по новой центриоли из микротрубочек цитоплазмы. Основными функциями клеточного центра являются:

1) участие в процессах деления клетки, расхождение центриолей обусловливает ориентировку веретена деления и движение хромосом;

2) с этим органоидом связано строение и функция ресничек и жгутиков (базальные тельца); таким образом, центриоли связаны с процессами движения в клетке.

Одномембранные органоиды

К ним относятся эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы.

5.2.1 Эндоплазматическая сеть (ретикулум) (ЭПС) .

Представляет собой сеть во внутренних слоях цитоплазмы (эндоплазме) - эндоплазматическую сеть, представляющую собой сложную систему канальцев , трубочек и цистерн , ограниченных мембранами.

Различают ЭПС (ЭПР):

Гладкий (агранулярный) (не содержит на мембранах рибосом) Шероховатый (гранулярный) (на мембранах - рибосомы)
1. Синтез гликогена и липидов (сальные железы, печень). 2. Накопление продуктов синтеза. 3. Транспорт секрета. 1. Синтез белка (клетки белковых желез). 2. Участие в секреторных процессах, транспорт секрета. 3. Накопление продуктов синтеза.
4. Обеспечивает связь с органоидами клетки. 5. Обеспечивает транспорт секретов к органо-идам клетки. 6. Обеспечивает связь ядра с клеточными органоидами и цитоплазматической мембраной. 7. Обеспечивает циркуляцию различных ве-ществ по цитоплазме. 8. Участие в пиноцитозе (транспорт различных веществ, поступивших в клетку извне).

Наибольшее развитие ЭПС характерно для секреторных клеток. Слабо ЭПС развита в сперматозоидах.

Образование ЭПС происходит при делении клеток из разрастаний наружной цитоплазматической мембраны и ядерной оболочки, передается из клетки в клетку при клеточном делении.

КОМПЛЕКС ГОЛЬДЖИ

Комплекс Гольджи открыт в 1898 г. Гольджи.

Форма комплекса может быть в виде сети вокруг ядра, в виде шапочки или пояса вокруг ядра, в виде отдельных элементов - округлых, серповидных телец, называемых диктиосомами.

Комплекс Гольджи состоит из трех элементов, способных переходить один в другой и взаимосвязанных друг с другом:

1) система плоских цистерн, расположенных пачками по пять-восемь, в виде стопки монет и плотно прилегающих друг к другу;

2) система трубочек, отходящих от цистерн, анастомозирующих друг с другом и образующих сеть;

3) крупные и мелкие пузырьки, замыкающие концевые отделы трубочек.

Наиболее хорошо этот органоид развит в железистых клетках, например, в лейкоцитах и овоцитах, а также в других клетках, вырабатывающих белковые продукты, полисахариды и липиды.

Слабое развитие комплекса Гольджи наблюдается в недифференцированных и опухолевых клетках.

Состав: фосфолипиды, белки, ферменты для синтеза полисахаридов и липидов.

1) участие в секреторной деятельности клетки;

2) накопление готовых или почти готовых продуктов;

3) транспортировка продуктов секрета по клетке по системе трубочек и пузырьков;

4) конденсация секреторных гранул (осмотическое удаление воды);

5) обособление и накопление ядовитых для клеток веществ, поступивших извне (токсинов, анестезирующих веществ), которые затем удаляются из клетки;

6) образование зерен желтка в овоцитах;

7) образование перегородок клеток (в растительных клетках).

Комплекс Гольджи при делении клеток передается из материнской в дочерние.

ЛИЗОСОМЫ

Выполняют функцию внутриклеточного переваривания макромолекул пищи и чужеродных компонентов, поступающих в клетку при фаго- и пиноцитозе, обеспечивая клетку дополнительным сырьём для химических и энергетических процессов. Для осуществления этих функций лизосомы содержат около 40 гидролитических ферментов – гидролаз, разрушающих белки, нуклеиновые кислоты, липиды, углеводы при кислом рН (протеиназы, нуклеазы, фосфатазы, липазы). Различают первичные лизосомы, вторичные лизосомы (фаголизосомы и аутофагосомы) и остаточные тельца. Первичные лизосомы – это отшнуровавшиеся от полостей аппарата Гольджи микропузырьки, окруженные одиночной мембраной и содержащие набор ферментов. После слияния первичных лизосом с каким-нибудь субстратом, подлежащим расщеплению, образуются различные вторичные лизосомы. Примером вторичных лизосом являются пищеварительные вакуоли простейших. Такие лизосомы называются фаголизосомы, или гетерофагосомы. Если слияние происходит с измененными органеллами самой клетки, то образуются аутофагосомы. Лизосомы, в полостях которых накапливаются непереваренные продукты, носят название телолизосомы или остаточные тельца.

ЭПС, аппарат Гольджи и лизосомы представляют собой функционально связанные внутриклеточные структуры, отграниченные от цитоплазмы одинарной мембраной. Они составляют единую канальцево-вакуолярную систему клетки.

Пероксисомы

Имеют овальную форму. В центральной части матрикса находятся кристалло подобные структуры. В матриксе содержатся ферменты окисления аминокислот, при работе которых образуется перекись водорода. Также присутствует фермент каталаза, которая разрушает перекись.(Характерны для клеток печени и почек)

Двумембранные органоиды

Митохондрии

По форме митохондрии могут быть овальные, палочковидные, нитевидные, сильноразветвленные. Формы митохондрий могут меняться из одной в другую при изменении рН, осмотического давления, температуры. Форма может быть разной и в разных клетках, и в разных участках одной клетки.

Снаружи митохондрии ограничены гладкой наружной мембраной. Внутренняя мембрана образует многочисленные выросты – кристы. Внутреннее содержимое митохондрий называется матрикс. Митохондрии являются полуавтономными органоидами, поскольку в них содержится собственный аппарат биосинтеза белка (кольцевая ДНК, РНК, рибосомы, аминокислоты, ферменты).

Матрикс - вещество более плотное, чем цитоплазма, гомогенное.

Крист много в клетках печени, расположены они плотно друг относительно друга; в мышцах - меньше.

Рис.7. Строение митохондрии (схема)

1- гладкая наружная мембрана; 2 - внутренняя мембрана; 3 – кристы; 4 –матрикс (и в нем кольцевая молекула ДНК, много рибосом, ферменты).

Размер митохондрий варьирует от 0,2 до 20 микрон.

Количество митохондрий разное в разных типах клеток: от 5-7 до 2500, зависит от функциональной активности клеток. Большое количество митохондрий в клетках печени, работающих мышцах (больше - в молодых, чем в старых).

Расположение митохондрий может быть равномерным по всей цитоплазме, как например, в клетках эпителия, нервных клетках, клетках простейших, или неравномерным, например, в участке наиболее активной клеточной активности. В секреторных клетках это участки, где вырабатывается секрет, в клетках сердечной мышцы и гаметах (окружают ядро). Обнаружена структурная связь митохондрий с клеточным ядром в периоды, предшествующие клеточному делению. Считается, что в этот период активно протекают процессы обмена веществ и энергии и осуществляется он по структурам, напоминающим трубочки.

Химический состав: белки - 70 %, липиды - 25 %, нуклеиновые кислоты (ДНК, РНК - незначительно), витамины А, В 12 , В 6 , К, Е, ферменты.

Митохондрии являются наиболее чувствительными органоидами к воздействию различных факторов: наркотики, повышение температуры, яды приводят к набуханию, увеличению объема митохондрий, у них разжижается матрикс, уменьшается число крист и появляются складки на наружной мембране. Эти процессы приводят к нарушению клеточного дыхания и могут стать необратимыми при частых и чрезвычайных воздействиях.

В митохондриях осуществляется синтез АТФ в результате процессов окисления органических субстратов и фосфорилирования АДФ и синтез стероидных гормонов

В процессе эволюции разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функций. Это требовало наличия в них особых органоидов, которые называют специализированными.

Такие органоиды присутствуют только в клетках определенных тканей, например, миофибриллы - в мышечных, нейрофибриллы - в нервных, тоно-фибриллы, реснички и жгутики - в эпителиальных.

ВКЛЮЧЕНИЯ

В отличие от органоидов, включения являются временными струк-турами, появляющимися в клетке в определенные периоды жизнедеятель-ности клетки. Основное место локализации включений - цитоплазма, но иногда и ядро.

Включения являются продуктами клеточного метаболизма, могут иметь вид гранул, зерен, капель, вакуолей и кристаллов; используются или самой клеткой по мере надобности, или служат для всего макроорганизма.

Включения классифицируются по химическому составу:

жировые: углеводные: белковые: пигментные:
1) в любой клетке в виде капелек жи-ра; 2) белый жир - специализированная жировая ткань взрослых; 3) бурый жир - специализированная жировая ткань эм-брионов; 4) в результате пато- логических про-цессов - жировая дистрофия клеток (печень, сердце); 5) у растений - в се-менах содержится до 70 % включе-ний; 1) гликоген - в клет-ках скелетных мышц, печени, нейронах; 2) в клетках эндопа-разитов (анаэроб-ный тип дыха-ния); 3) крахмал - в клет-ках растений; 1) в яйцеклетках, клетках печени, простейших; 1) липофусцин - пигмент старения; 2) липохромы - в корковом вещест-венапдпочеников и желтом теле яичника; 3) ретинин - зри-тельный пурпур глаза; 4) меланин - в пиг-ментных клетках; 5) гемоглобин - ды-хательный - в эри-троцитах;
секреторные: могут быть белками, жирами, углеводами, или смешанными и находятся в клетках соответствующих желез: 1) сальная железа; 2) железы внутренней секреции; 3) железы пищеварительной системы; 4) молочные железы; 5) слизь в бокаловидных клетках; 6) эфирные масла растений.

КЛЕТОЧНОЕ ЯДРО

Клеточное ядро участвует в дифференцировке клеток по форме, по количеству, по расположению и по размеру. Форма ядра зачастую связана с формой клетки, но может быть и совершенно неправильной. В шаровидных, кубических и многогранных клетках ядро обычно имеет сферическую форму; в цилиндрических, призматических и веретенообразных - форму эллипса (гладкий миоцит).

Рис 8. Гладкий миоцит

Примером неправильной формы ядра могут служить ядра лейкоцитов (сегментированные – сегментоядерный нейтрофильный лейкоцит). Моноциты крови имеют ядро бобовидной формы.


Рис. 9 . Моноцит крови Рис. 10 Сегментоядерный

нейтрофильный лейкоцит

Большинство клеток имеет по одному ядру. Но существуют двуядерные клетки: клетки печени гепатоциты и хрящей хондроциты, и многоядерные: остеокласты костной ткани и мегакариоциты красного костного мозга - до 100 ядер. Особенно многочисленны ядра в симпластах и синцитиях (поперечно-полосатые мышечные волокна и ретикулярная ткань), но эти образования не являются собственно клетками.

Рис.11 . Гепатоцит Рис. 12 .Мегакариацит

Расположение ядер индивидуально для каждого типа клеток. Обычно в недифференцированных клетках ядро располагается в геометрическом центре клетки. По мере созревания, накопления запасных питательных веществ и органоидов, ядро смещается к периферии. Есть клетки, у которых ядро занимает резко эксцентричное положение. Наиболее ярким примером этого являются клетки белого жира адипоциты, в которых почти весь объем цитоплазмы занимает капля жира. В любом случае, как бы ни располагалось ядро в клетке, оно почти всегда окружено зоной недифференцированной цитоплазмы.

Рис. 13Адипоциты

Размер ядра зависит от типа клетки и обычно прямо пропорционален объему цитоплазмы. Соотношение между объемом ядра и цитоплазмы принято выражать так называемым ядерно-плазматическим (Я-Ц) соотношением Гертвига: при увеличении объема цитоплазмы увеличивается также объем ядра. Момент наступления клеточного деления, по-видимому, определяется изменением Я-Ц-соотношения и связано с тем, что только определенный объем ядра способен контролировать определенный объем цитоплазмы. Обычно более крупные ядра обнаруживаются в молодых, опухолевых клетках, клетках, готовящихся к делению. Вместе с тем, объем ядра - признак, характерный для каждой ткани. Существуют ткани, клетки которых имеют мелкое относительно объема цитоплазмы ядро, это так называемые клетки цитоплазматического типа. К ним относятся большинство клеток организма, например, все виды эпителиев.

Другие - имеют крупное ядро, занимающее практически всю клетку и тонкий ободок цитоплазмы - клетки ядерного типа, таковыми являются лимфоциты крови.

Рис.16 Строение ядра (схема)

1- рибосомы на наружной мембране; 2 - ядерные поры; 3 - наружная мембрана; 4 - внутренняя мембрана; 5 - ядерная оболочка; (кариолемма, нуклеолемма); 6 - щелевидное перинуклеарное пространство; 7 - ядрышко;

8 - ядерный сок (кариоплазма, нуклеоплазма); 9 - гетерохроматин;

10 – эухроматин.

Ядерная оболочка образована двумя элементарными биологическими мембранами, между которыми находится щелевидное перинуклеарное пространство. Ядерная оболочка служит отграничению внутриядерного пространства от цитоплазмы клетки. Она не сплошная и имеет мельчайшие отверстия - поры. Ядерная пора образуется за счет слияния ядерных мембран и представляет собой сложноорганизованную глобулярно-фибриллярную структуру, заполняющую перфорацию в ядерной оболочке. Это так называемый комплекс ядерной поры . По границе отверстия располагается три ряда гранул (по восемь - в каждом). Первый ряд прилежит к внутриядерному пространству, второй - к цитоплазме, а третий - располагается между ними. От гранул отходят фибриллярные отростки, которые соединяются в центре припомощи гранулы и создают перегородку, диафрагму поперек поры. Число пор непостоянно и зависит от метаболической активности клетки.

Ядерный сок - неокрашенная масса, которая заполняет все внутреннее пространство ядра между его компонентами и представляет собой коллоидную систему и обладает тургором.

Ядрышки - одной или несколько стероидных телец, часто довольно большого размера (в нейроцитах и овоцитах). Ядрышки - нуклеолы - самая плотная структура ядра, хорошо окрашиваются основными красителями, так как богаты РНК. Он неоднородны по своему строению, имеют тонкозернистую или мелковолокнистую структуру. Служат местом образования рибосом .

Хроматин - зоны плотного вещества, которые хорошо воспринимают красители, характерны для неделящейся клетки. Хроматин имеет другое агрегатное состояние - во время клеточного деления превращается путем конденсации и спирализации в хромосомы . Каждая хромосома имеет центромеру - место прикрепления к нитям веретена деления при митозе центромера делит хромосому на два плеча.

Кроме центромеры (первичной перетяжки) у хромосомы может быть вторичная перетяжка и отделенный ею спутник . Снаружи каждая хромосома покрыта пелликулой , под которой находится белковый матрикс . В матриксе располагаются хроматиды . Хроматиды состоят из хромонем , а те - из элементарных нитей . Совокупность хромосом каждого организма составляют хромосомный набор .

Рис17 . Строение хромосомы (схема)

1 - центромера (первичная перетяжка); 2- плечи; 3 – вторичная перетяжка; 4-спутник; 5 – пелликула; 6 – белковый матрикс; 7 - хроматин

ВОСПРОИЗВЕДЕНИЕ КЛЕТОК.

Все живые организмы состоят из клеток. В процессе жизнедеятельности часть клеток организма изнашивается, стареет и погибает. Единственным способом образования клеток является деление предшествующих. Деление клеток – жизненно важный процесс для всех организмов.

Жизненный (клеточный) цикл.

Жизнь клетки от момента её возникновения в результате деления материнской летки до её собственного деления или смерти называется жизненным (клеточным) циклом . Обязательным компонентом клеточного цикла является митотический цикл , включающий период подготовки клетки к делению и само деление. Подготовка клетки к делению, или интерфаза, составляет значительную часть времени митотического цикла и состоит из периодов:

1. Пресинтетический (постмитотический) G1 – наступает сразу после деления клетки. В клетках идут процессы биосинтеза, образуются новые органоиды. Молодая клетка растет. Этот период самый вариабельный по продолжительности.

2. Синтетический S – главный в митотическом цикле. Происходит репликация ДНК. Каждая хромосома становится двунитчатой, то есть состоит из двух хроматид – идентичных молекул ДНК. Кроме того, клетка продолжает синтезировать РНК, белки. В делящихся клетках млекопитающих он длится около 6 – 10 часов.

3. Постсинтетический (премитотический) G2 – относительно короток, в клетках млекопитающих он составляет порядка 2 – 5 часов. В это время количество центриолей и митохондрий удваивается, идут активные метаболические процессы, накапливаются белки и энергия для предстоящего деления. Клетка приступает к делению.

7.2 ДЕЛЕНИЕ КЛЕТКИ .

Описано три способа деления эукариотических клеток:

1) амитоз (прямое деление),

2) митоз (непрямое деление).

3) мейоз (редукционное деление).

7.2.1 Амитоз - клеточное деление без спирализации хромосом, возник ранее митоза. Этим способом размножаются прокариоты, высокоспециализиро-ванные и деградирующие клетки. При этом ядерная мембрана и ядрышки не исчезают, хромосомы остаются спирализованными.

Типы амитоза:

1) перешнуровка (характерна для бактерий)

2) фрагментация (мегакариобласт, мегакариоцит)

3)почкование (от мегакариоцита отпочковываются тромбоциты)

По распределению генетического материала

К делению без митотического аппарата приводит облучение, дистрофия ткани, действие различных агентов, нарушающих вступление клеток в митоз.

Митоз

Характеризуется разрушением ядерной оболочки и ядрышек, спирализацией хромосом. В митозе различают профазу , метафазу , анафазу и телофазу .

Рис.18 . Схема митоза

I. Профаза:

1) Форма клетки становится округлой, ее содержимое - более вязким, хромосомы приобретают вид длинных тонких нитей, скрученных внутри ядра. Каждая хромосома состоит из двух хроматид.

2) Хроматиды постепенно укорачиваются и приближаются к ядерной оболочке, что является признаком начала разрушения кариолеммы.

3) Развивается веретено: центриоли расходятся к полюсам и удваиваются, между ними формируются нити веретена деления.

4) Происходит разрушение ядерной оболочки, в центре клетки образуется зона жидкой цитоплазмы, куда устремляются хромосомы.


Поздняя метафаза

Хромосомы выстраиваются в экваториальной плоскости, образуя метафизарную пластинку . К центромерам хромосом прикрепляются нити веретена деления.

Различают два типа нитей веретена деления: одни из них связаны с хромосомами и называются хромосомными , а другие - тянутся от полюса к полюсу и называются непрерывными .

Материнская

IV. Телофаза.

Завершается миграция двух дочерних групп хромосом к противоположным полюсам клетки.Происходят реконструкция ядер и деконденсация хромосом, они деспирализуются, восстанавливается кариолемма, появляются ядрышки. Деление ядра завершается.

Начинается цитокинез (цитотомия) - процесс перешнуровки и разделения цитоплазмы с образованием перетяжки. Наблюдается «вскипание» клеточной поверхности из-за ее интенсивного роста. Цитоплазма теряет свою вязкость, центриоли утрачивают активность, органоиды разделяются приблизительно пополам между дочерними клетками.

Рис.24 Цитокинез

Типы митоза:


1) Любая ткань является саморегулирующейся системой, в связи с этим количество клеток, погибших в ткани, уравновешивается числом их образовавшихся.

2) Существуют суточные ритмы митотической активности. Наибольшая митотическая активность совпадает с периодами покоя ткани, а усиление функции ткани приводит к торможению митозов (у ночных животных - в ранне-утреннее время, а у животных, ведущих дневной образ жизни, - в ночные часы).

3) Тормозящее влияние на митотическую активность оказывают гормоны стресса: адреналин и норадреналин, а стимулирующее - гормон роста. Изменение митотической активности происходит за счет изменения длительности интерфазы. В каждой клетке изначально заложена способность к делению, но при некоторых условиях эта способность заторможена . Торможение может быть разной степени, вплоть до необратимой.

Продолжительность жизни клеток можно рассматривать как период от одного деления до другого. В стабильных клеточных популяциях, в которых практически не происходит размножения клеток, продолжительность их жизни максимальная (печень, нервная система).

Эндорепродукция - все случаи, когда происходит редупликация хромосом или репликация ДНК, деления клетки не происходит. Это приводит к полиплодии, увеличению объёма ядра и клетки. Может возникнуть при нарушениях митотического аппарата, наблюдается как в норме, так и при патологии. Характерна для клеток печени, мочевыводящих путей.

Эндомитоз протекает при неразрушающейся ядерной оболочке. Редупликация хромосом происходит как при обычном делении, в результате образуются гигантские хромосомы. Наблюдаются все характерные для митоза фигуры, но они происходят внутри ядра. Различают эндопрофазу ,эндометафазу ,эндоанафазу ,эндотелофазу . Поскольку оболочка ядра сохраняется, в результате получается полиплоидная клетка. Значение эндомитоза состоит в том, что в ходе его не прекращается основная деятельность клетки.

Цитоплазма (cytoplasma) представляет собой сложную коллоидную систему, состоящую из гиалоплазмы, мембранных и немембранных органелл и включений.

Гиалоплазма (от греч. hyaline - прозрачный) представляет собой сложную коллоидую систему состоящую из различных биополимеров (белки, нуклеиновые кислоты, полисахариды), которая способна переходить из золеобразного (жидкого) состояния в гель и обратно.

¨Гиалоплазма состоит из воды, органических и неорганических соединений, растворенных в ней и цитоматрикса, представленного трабекулярной сеткой волокон белковой природы, толщиной 2-3 нм.

¨Функция гиалоплазмы заключается в том, что эта среда объединяет все клеточные структуры и обеспечивает химическое взаимодействие их друг с другом.

Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоянный поток ионов к плазматической мембране и от нее, к митохондриям, ядру и вакуолям. Гиалоплазма составляет около 50% от всего объема цитоплазмы.

Органеллы и включения. Органеллы - постоянные и обязательные для всех клеток микроструктуры, обеспечивающие выполнение жизненно важных функций клеток.

В зависимости от размеров органеллы разделяются на:

1) микроскопические - видимые под световым микроскопом;

    субмикроскопические - различимые при помощи электронного микроскопа.

По наличии мембраны в составе органелл различают:

1) мембранные;

    немембранные.

В зависимости от назначения все органеллы делятся на:

Мембранные органеллы

Митохондрии

Митохондрии - микроскопические мембранные органеллы общего назначения.

¨Размеры - толщина 0,5мкм, длина от 1 до 10мкм.

¨Форма - овальная, вытянутая, неправильная.

¨Строение - митохондрия ограничена двумя мембранами толщиной около 7нм:

1) Наружной гладкой митохондриальной мембраной (membrana mitochondrialis externa), которая отграничивает митохондрию от гиалоплазмы. Она имеет равные контуры, замкнута таким образом, что представляет мешок.

    Внутренней митохондриальной мембраной (memrana mitochondrialis interna), которая образует выросты, складки (кристы) внутрь митохондрии и ограничивает внутреннее содержание митохондрии - матрикс. Внутренняя часть митохондрии заполнена электронно-плотным веществом, которое носит название матрикс.

Матрикс имеет тонкозернистое строение и содержит тонкие нити толщиной 2-3 нм и гранулы размером около 15-20 нм. Нити представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы.

¨Функции митохондрий

1. Синтез и накопление энергии в виде АТФ, происходит в результате процессов окисления органических субстратов и фосфорилирования АТФ. Эти реакции протекают при участии ферментов цикла трикарбоновых кислот, локализованных в матриксе. Мембраны крист имеют системы дальнейшего транспорта электронов и сопряженного с ним окислительного фосфорилирования (фосфорилирование АДФ в АТФ).

2. Синтез белка. Митохондрии в своем матриксе имеют автономную систему синтеза белка. Это единственные органеллы, которые имеют молекулы собственной ДНК, свободной от гистоновых белков. В матриксе митохондрий также происходит образование рибосом, которые синтезируют ряд белков, некодируемых ядром и используемых для по строения собственных ферментных систем.

3. Регуляция водного обмена.

Лизосомы

Лизосомы (lisosomae) - субмикроскопические мембранные органеллы общего назначения.

¨Размеры - 0,2-0,4 мкм

¨Форма - овальная, мелкая, шаровидная.

¨Строение - лизосомы имеют в своем составе протеолитические ферменты (известно более 60), которые способны расщеплять различные биополимеры. Ферменты располагаются замкнутом мембранном мешочке, который предупреждает их попадание в гиалоплазму.

Среди лизосом различают четыре типа:

    Первичные лизосомы;

    Вторичные (гетерофагосомы, фаголизосомы);

    Аутофагосомы

    Остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки размером 0,2-0,5 мкм, заполненные неструктурированным веществом, содержащим гидролитические ферменты в неактивном состоянии (маркерный - кислая фосфотаза).

Вторичные лизосомы (гетерофагосомы) или внутриклеточные пищеварительные вакуоли, которые формируются при слиянии первичных лизосом с фагоцитарными вакуолями. Ферменты первичной лизосомы начинают контактировать с биополимерами, и расщепляют их до мономеров. Последние транспортируются через мембрану в гиалоплазму, где происходит их реутилизация, то есть включение в различные обменные процессы.

Аутофагосомы (аутолизосомы) – постоянно встречаются в клетках простейших, растений и животных. По совей морфологии их относят к вторичным лизосомам, но с тем различием, что в составе этих вакуолей встречаются фрагменты или даже целые цитоплазматические структуры, такие, как митохондрии, пластиды, рибосомы, гранулы гликогена.

Остаточные тельца (телолизосома, corpusculum residuale) - представляют собой окруженные биологической мембраной нерасщепленные остатки, содержат небольшое количество гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах происходит вторичная структуризация не переваренных липидов и последние образуют слоистые структуры. Там же наблюдается отложение пигментных веществ - пигмент старения, содержащий липофусцин.

¨Функция - переваривание биогенных макромолекул, модификация продуктов синтезируемых клеткой с помощью гидролаз.