Мономеры днк. Нуклеиновые кислоты. Аденозинтрифосфорная кислота – АТФ

В данной статье содержится информация об элементах всех нуклеиновых кислот, а именно ее мономерах. Тут вы найдете данные об их строении, разнообразии существующих видов и т. д.

Нуклеиновая кислота - что это

Самым важным компонентом любой растительной, животной, бактериальной и даже вирусной клетки является нуклеиновая кислота, которая несет ответственность за передачу, воспроизведение и сохранение информации наследственного типа. Биополимерные соединения - нуклеиновые кислоты - создаются кодировкой нуклеотидов. Рибонуклеиновая к-та (РНК) и дезоксирибонуклеиновая к-та (ДНК) - кислоты, принадлежащие к нуклеиновым. Мономерами нуклеиновых кислот являются нуклеотиды 5 разновидностей, из них 3 подходят и для дизокси-, и для рибонуклеиновых кислот, а оставшиеся нуклеотиды отличны.

Разнообразие нуклеиновых кислот

ДНК и РНК являются представителями кислот нуклеинового класса, однако последняя рибонуклеиновая кислота, в соответствии с функциями, для которых она предназначена в клетке, может иметь различные названия, например: транспортная рибонуклеиновая к-та (тРНК) или информационная рибонуклеиновая к-та (иРНК). Однако этот пункт не влияет на особенности строения самой к-ты. Что представляет собой мономер нуклеиновых кислот? Ответом на этот вопрос будет перечисление элементов: рибозы и дезоксирибозы (виды сахаров), HPO3 кислоты, а точнее, ее остатков и в основаниях тимине (урациле) и аденине, гуанине и цитозине.

Мономеры

Мономерами нуклеиновых кислот являются три составные, как упоминалось ранее, - это моносахарид, обладатели гетероциклических свойств - азотистые основания и кислотный остаток HPO3. Составные виды мономеров нуклеиновых кислот - это пуринопроизводные вещества аденины (А) и гуанины (Г) и компоненты пиримидиновой природы: цитозины (Ц), тимины (Т) и урацил (У). Стоит также знать о существовании нетипичных оснований, представителями которых являются псевдоуридины и дигидроуридины.

Мономерами нуклеиновых кислот являются ответственные за жизненно важные функции вещества, присущие и прокариотическим организмам, и эукариотическим. Нуклеиновые кислоты классифицируют в соответствии с тем, каким моносахаридом представлена сама кислота. Рибозные к-ты представляются рибозой, а нуклеиновые к-ты, представленные дезоксирибозой, называют дезоксирибозными. Доминирующее отличие между цепями РНК и ДНК заключено в наличии либо тимина, либо урацила в цепи молекулы. ДНК несет в себе пиримидиновый тимин, а РНК - урацил. Эти два нуклеотида заменяются в данных кислотах и становятся комплементарными аденину.

Мономерами нуклеиновых кислот являются соединения, в основу которых заложена химическая связь - 3.5-фосфодиэфирная, которая образует линейные структуры, а целью ее является связывание пентозы в нуклеотиде. Данная конструкция нуклеиновых кислот позволяет на одном цепочном конце образовать свободную 3-OH группу и на противоположном окончании цепи расположиться группе 5-OH.

РНК и ДНК являются универсальными и уникальными для всех организмов. Это обусловлено их способностью к передаче и сохранению разнообразной информации, несущей в себе генетическую наследственность. Практически каждый живой организм несет в себе одновременно обе кислоты, базирующиеся как на моносахариде рибозе, так и на дезоксирибозе, и только вирусы - представители неклеточной жизненной формы - содержат в себе только одну форму нуклеиновой кислоты.

ДНК – полимерная молекула, состоящая из тысячи и даже миллионов мономеров – дезоксирибонуклеотидов (нуклеотид). ДНК содержится преимущественно в ядре клеток, а также небольшое количество в митохондриях и хлоропластах.

РНК – полимер, мономером которого является рибонуклеотид. РНК находится в ядре и цитоплазме. РНК представляет собой однонитевую молекулу, построенную таким же образом как и одна из цепей ДНК. Три основания совершенно одинаковы ДНК: А, Г, Ц, однако вместо Т, присутствующего в ДНК, в состав РНК входит У. В РНК вместо углевода дезоксирибозы – рибоза.
^ 13: нуклеиновые кислоты: строение и функции. Химическая структура мономеров нуклеиновых кислот (нуклеотиды и нуклеозиды, пурины и пиримидины).

Нуклеиновые кислоты – это линейные полимеры, мономерами которых являются нуклеотиды. Нуклеотид образован нуклеозидной группой, фосфатом и пентозой. Полимеры – это макромолекулы, которые состоят из большого числа повторяющихся структурных единиц – мономеров. Мономерами ДНК являются дезоксирибонуклеотиды, мономерами РНК – рибонуклеотиды.

^ Строение и номенклатура нуклеотидов. В состав нуклеотида входят три компонента: фосфат – сахар – основание.

углеводный компонент нуклеотида представлен рибозой или 2’-дезоксирибозой, имеющих D-конфигурацию.

^ Азотистые основания – это гетероциклические органические соединения, содержащие атомы азота. В составе ДНК встречаются 4 типа оснований - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т), в состав РНК входят А, Г, Ц и У (урацил). Аденин и гуанин являются производными пурина, цитозин, тимин и урацил – это производные пиримидина.

Номенклатура . Соединение, состоящее из основания и углевода, называется нуклеозидом. Азотистые основания соединяются с 1’ углеродным атомом пентозы β-гликозидной связью.

^ Первичная структура полимера определяется последовательностью мономеров в цепи. Нуклеотиды соединяются друг с другом 3’,5’-фосфодиэфирной связью, образуя полинуклеотидные цепи из сотен тысяч и миллионов нуклеотидов. Короткие цепочки из десяти – пятнадцати нуклеотидов называются олигонуклеотидами. Фосфат связывает 3’-ОН группу одного нуклеотида с 5’-OH группой другого нуклеотида.

^ Генетические функции нуклеиновых кислот: 1- хранение генетической информации. 2 - реализация генетической информации (синтез полипептида). 3 - передача наследственной информации дочерним клеткам при делении клеток и последующим поколениям при размножении.
^ 14: первичная структура ДНК (строение и номенклатура нуклеотидов, образование полинуклеотидной цепи, направление цепи, связь между нуклеотидами).

ДНК- генетический материал всех клеточных форм жизни, а также ряда вирусов. ДНК выполняет все функции нуклеиновых кислот. ДНК характеризуется рядом особенностей: 1 – способность к репликации. 2 – способность к репарации. 3 – способность к рекомбинации.

Локализация ДНК в клетке: прокариоты – цитоплазма (нуклеоид, плазмиды). Эукариоты – ядро (хромасомы), органойды (митохондрии, пластиды, клеточный центр).

^ ПЕРВИЧНАЯ структура ДНК – это линейный полимер – цепь последовательно расположенных нуклеотидов (дезоксирибонуклеотида), соединенных 3’,5’ фосфодиэфирными связями.

В состав дезоксирибонуклеотида входитвходит одно из азотистых оснований (А, Г, Т или Ц), пентоза – дезоксирибоза и остаток фосфата. Таким образом дезоксирибонуклеотиды различаются только азотистыми основаниями.

Нуклеотиды соединяются друг с другом 3’,5’-фосфодиэфирной связью, образуя полинуклеотидные цепи. Короткие цепочки из десяти – пятнадцати нуклеотидов называются олигонуклеотидами. Фосфат связывает 3’-ОН группу одного нуклеотида с 5’-OH группой другого нуклеотида.

Формирование первичной структуры обеспечивается двумя типами связей: гликозидными между азотистым основанием и углеводом, и фосфодиэфирными между нуклеотидами.
^ 15: Модель ДНК Уотсона и Крика. Параметры и структура двойной спирали ДНК (принцип комплементарности, водородные связи и стэкинг взаимодействия).

Вторичная структура ДНК . Молекула ДНК в клетках прокариот и эукариот присутствует только в виде двойной спирали, т.е. состоит из двух полинуклеотидных цепей. Эти цепи комплементарны, антипараллельны и закручены в спираль вокруг общей оси. На один виток спирали приходится 10 пар оснований, диаметр спирали составляет 2 нм. Сахарофосфатный остов расположен снаружи (заряжен отрицательно), азотистые основания находятся внутри спирали и располагаются стопкой друг над другом. Эта модель строения ДНК была предложена Дж. Уотсоном и Ф. Криком в 1953 году.

^ Правила Чаргаффа. В 1953 Чаргафф установил следующие закономерности:


  1. количество пуриновых оснований (A+Г) в молекуле ДНК всегда равно количеству пиримидиновых оснований (Т+Ц).

  2. количество аденина равно количеству тимина [А=Т, А/Т= 1]; количество гуанина равно количеству цитозина [Г=Ц, Г/Ц=1];

  3. соотношение количества гуанина и цитозина в ДНК к количеству аденина и тимина является постоянным для каждого вида живых организмов: [(Г+Ц)/(А+Т)=К, где К - коэффициент специфичности].

Правила Чаргаффа, как правило, выполняются на двойной спирали ДНК за счет комплементарности аденина тимину, а гуанина - цитозину. В некоторых случаях содержание гуанина выше, чем цитозина, за счет метилирования некоторых цитозиновых остатков в ДНК.

^ Принцип комплементарности . Азотистые основания в молекуле ДНК могут образовывать канонические пары: А – Т, Г – Ц. это значит, что водородные связи и молекуле ДНК образуются только между комплеменатрными основаниями: между аденином и тимином образуется две, между гуанином и цитозином – три водородные связи.

^ Цепи ДНК антипараллельны . Каждая цепь ДНК имеет два конца – 5’- конец и 3’- конец. На 5’- конце полинуклеотидной цепи 5-ОН группа дезоксирибозы не связана с другим нуклеотидом, на другом конце цепи 3-ОН группа тоже не связана с другим нуклеотидом. Правило антипараллельности означает, что две цепи в молекуле ДНК имеют противоположную направленность. За направление цепи по соглашению принято направление 5’ → 3’ .

^ Правила написания последовательности ДНК : в виде последовательности букв, обозначающих основания: 5’ – GATCCA - 3’, или в виде стрелок с противоположной ориентацией.

Нуклеиновые кислоты – это высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов. Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Различают два класса нуклеиновых кислот:

Дезоксирибонуклеиновая кислота (ДНК). Сахар - дезоксирибоза, азотистые основания: пуриновые - гуанин (G), аденин (A), пиримидиновые тимин (T) и цитозин (C). ДНК часто состоит из двух полинуклеотидных цепей, направленных антипараллельно. Модель пространственного строения молекулы ДНК в виде двойной спирали предложена в 1953 г. Дж. Уотсоном и Ф. Криком.

Рибонуклеиновая кислота (РНК). Сахар - рибоза, азотистые основания: пуриновые - гуанин (G), аденин (A), пиримидиновые урацил (U) и цитозин (C). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями.

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль. Диаметр двойной спирали ДНК - 2 нм, расстояние между соседними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы), 3) фосфорной кислоты.

Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом). Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина - всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой. Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

РНК - полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК. Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ:

1) азотистого основания,

2) пятиуглеродного моносахарида (пентозы),

3) фосфорной кислоты.

Азотистые основания РНК также относятся к классам пиримидинов и пуринов. Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой. Выделяют три вида РНК:

1) информационная (матричная) РНК - иРНК (мРНК),

2) транспортная РНК - тРНК,

3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Значение нуклеиновых кислот: хранение, перенос и передача по наследству информации о структуре белковых молекул. Стабильность НК - важнейшее условие нормальной жизнедеятельности клеток и целых организмов.

Таким образом, нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.



Часть В

Часть А

ПРИМЕРЫ ЗАДАНИЙ

А1. Мономерами ДНК и РНК являются

1) азотистые основания 3) аминокислоты

2) фосфатные группы 4) нуклеотиды

А2. Функция информационной РНК:

1) удвоение информации

2) снятие информации с ДНК

3) транспорт аминокислот на рибосомы

4) хранение информации

А3. Укажите вторую цепь ДНК, комплементарную первой: АТТ – ГЦЦ – ТТГ

1) УАА – ТГГ – ААЦ 3) УЦЦ – ГЦЦ – АЦГ

2) ТАА – ЦГГ – ААЦ 4) ТАА – УГГ – УУЦ

А4. Подтверждением гипотезы, предполагающей, что ДНК является генетическим материалом клетки, служит:

1) количество нуклеотидов в молекуле

2) индивидуальность ДНК

3) соотношение азотистых оснований (А = Т, Г= Ц)

4) соотношение ДНК в гаметах и соматических клетках (1:2)

А5. Молекула ДНК способна передавать информацию благодаря:

1) последовательности нуклеотидов

2) количеству нуклеотидов

3) способности к самоудвоению

4) спирализации молекулы

А6. В каком случае правильно указан состав одного из нуклеотидов РНК

1) тимин – рибоза – фосфат

2) урацил – дезоксирибоза – фосфат

3) урацил – рибоза – фосфат

4) аденин – дезоксирибоза – фосфат

В1. Выберите признаки молекулы ДНК

1) Одноцепочная молекула

2) Нуклеотиды – АТУЦ

3) Нуклеотиды – АТГЦ

4) Углевод – рибоза

5) Углевод – дезоксирибоза

6) Способна к репликации

В2. Выберите функции, характерные для молекул РНК эукариотических клеток

1) распределение наследственной информации

2) передача наследственной информации к месту синтеза белков

3) транспорт аминокислот к месту синтеза белков

4) инициирование репликации ДНК

5) формирование структуры рибосом

6) хранение наследственной информации

С1. Установление структуры ДНК позволило решить ряд проблем. Какие, по вашему мнению, это были проблемы и как они решились в результате этого открытия?

С2. Сравните нуклеиновые кислоты по составу и свойствам.

2.4. Строение про– и эукариотной клеток. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

Основные термины и понятия, проверяемые в экзаменационной работе: аппарат Голъджи, вакуоль, клеточная мембрана, клеточная теория, лейкопласты, митохондрии, органоиды клетки, пластиды, прокариоты, рибосомы, хлоропласты, хромопласты, хромосомы, эукариоты, ядро.

Любая клетка представляет собой систему. Это означает, что все ее компоненты взаимосвязаны, взаимозависимы и взаимодействуют друг с другом. Это также означает, что нарушение деятельности одного из элементов данной системы ведет к изменениям и нарушениям работы всей системы. Совокупность клеток образует ткани, различные ткани образуют органы, а органы, взаимодействуя и выполняя общую функцию, образуют системы органов. Эту цепочку можно продолжить дальше, и вы можете сделать это самостоятельно. Главное, что нужно понять, – любая система обладает определенной структурой, уровнем сложности и основана на взаимодействии элементов, которые ее составляют. Ниже даются справочные таблицы, в которых сравнивается строение и функции прокариотических и эукариотических клеток, а также разбирается их строение и функции. Внимательно проанализируйте эти таблицы, ибо в экзаменационных работах достаточно часто задаются вопросы, требующие знания этого материала.

Особенно ДНК, достаточно хорошо известны в науке. Объясняется это тем, что они являются веществами клетки, от которых зависит хранение и передача её наследственной информации. ДНК, открытое еще в 1868 году Ф. Мишером, представляет собой молекулы с ярко выраженными кислотными свойствами. Ученый выделил её из ядер лейкоцитов - клеток иммунной системы. В течение последующих 50 лет исследования нуклеиновых кислот проводились эпизодически, так как большинство ученых биохимиков считали главными органическими веществами, отвечающими в том числе и за наследственные признаки, белки.

С момента расшифровки проведенной Уотсоном и Криком в 1953 году, начинаются серьёзные исследования, выяснившие что, дезоксирибонуклеиновая кислота - это полимер, а мономерами ДНК служат нуклеотиды. Их виды и строение будут изучены нами в данной работе.

Нуклеотиды как структурные единицы наследственной информации

Одно из фундаментальных свойств живой материи - это сохранение и передача информации о строении и функциях как клетки, так и всего организма в целом. Эту роль выполняет а мономеры ДНК - нуклеотиды представляют собой своеобразные «кирпичики», из которых и построена уникальная конструкция вещества наследственности. Рассмотрим, какими же признаками руководствовалась живая природа, создавая суперспираль нуклеиновой кислоты.

Как образуются нуклеотиды

Чтобы ответить на этот вопрос, нам понадобятся некоторые знания из области химии органических соединений. В частности, мы напомним, что в природе существует группа азотсодержащих гетероциклических гликозидов, соединенных с моносахаридами - пентозами (дезоксирибозой или рибозой). Они называются нуклеозидами. Например, аденозин и другие виды нуклеозидов присутствуют в цитозоле клетки. Они вступают в реакцию этерификации с молекулами ортофосфорной кислоты. Продуктами этого процесса и будут нуклеотиды. Каждый мономер ДНК, а их четыре вида, имеет название, например, гуаниновый, тиминовый и цитозиновый нуклеотид.

Пуриновые мономеры ДНК

В биохимии принята классификация, разделяющая мономеры ДНК и их строение на две группы: так, пуриновыми являются адениновый и гуаниновый нуклеотиды. Они содержат в своем составе производные пурина - органического вещества, имеющего формулу C 5 H 4 N 4 . Мономер ДНК - гуаниновый нуклеотид, также содержит пуриновое азотистое основание, соединенное с дезоксирибозой N-гликозидной связью, находящейся в бетоконфигурации.

Пиримидиновые нуклеотиды

Азотистые основания, называемые цитидином и тимидином, являются производными органического вещества пиримидина. Его формула C 4 H 4 N 2 . Молекула представляет собой шестичленный плоский гетероцикл, содержащий два атома нитрогена. Известно, что вместо тиминового нуклеотида в молекулах таких как рРНК, тРНК, иРНК, содержится урациловый мономер. В процессе транскрипции, во время списывания информации с гена ДНК на молекулу иРНК, тиминовый нуклеотид замещается на адениновый, а адениновый нуклеотид - на урациловый в синтезируемой цепи иРНК. То есть справедливой будет следующая запись: А - У, Т - А.

Правило Чаргаффа

В предыдущем разделе мы уже частично коснулись принципов соответствия мономеров в цепях ДНК и в комплексе ген-иРНК. Известный биохимик Э. Чаргафф установил совершенно уникальное свойство молекул дезоксирибонуклеиновой кислоты, а именно, что количество адениновых нуклеотидов в ней всегда равно тиминовым, а гуаниновых - цитозиновым. Главной теоретической базой принципов Чаргаффа послужили исследования Уотсона и Крика, установившие, какие мономеры образуют молекулу ДНК и какую пространственную организацию они имеют. Еще одна закономерность, выведенная Чаргаффом и названная принципом комплементарности, указывает на химическое родство пуриновых и пиримидиновых оснований и их способность при взаимодействии между собой образовывать водородные связи. Это значит, что расположение мономеров в обеих цепях ДНК строго детерминировано: так, напротив А первой цепи ДНК может находиться только Т другой и между ними возникают две водородные связи. Напротив гуанинового нуклеотида может располагаться только цитозиновый. В этом случае между азотистыми основаниями образуются три водородные связи.

Роль нуклеотидов в генетическом коде

Для осуществления реакции биосинтеза белка, происходящей в рибосомах, существует механизм перевода информации об аминокислотном составе пептида из последовательности нуклеотидов иРНК в последовательность аминокислот. Оказалось, что три рядом расположенных мономера несут в себе информацию об одной из 20 возможных аминокислот. Это явление получило название В решении задач по молекулярной биологии его применяют для определения как аминокислотного состава пептида, так и для выяснения вопроса: какие мономеры образуют молекулу ДНК, иными словами, каков состав соответствующего гена. Например, триплет (кодон) ААА в гене кодирует аминокислоту фенилаланин в молекуле белка, а в генетическом коде ей будет соответствовать триплет UUU в цепи иРНК.

Взаимодействие нуклеотидов в процессе редупликации ДНК

Как было выяснено ранее, структурные единицы, мономеры ДНК - это нуклеотиды. Их определенная последовательность в цепях является матрицей для процесса синтеза дочерней молекулы дезоксирибонуклеиновой кислоты. Это явление происходит в S-стадии интерфазы клетки. Последовательность нуклеотидов новой молекулы ДНК собирается на материнских цепях под действием фермента ДНК-полимеразы с учетом (А - Т, Д - С). Репликация относится к реакциям матричного синтеза. Это значит, что мономеры ДНК и их строение в материнских цепях служат основой, то есть матрицей для её дочерней копии.

Может ли изменяться строение нуклеотида

К слову скажем, что дезоксирибонуклеиновая кислота - это очень консервативная структура клеточного ядра. Этому есть логическое объяснение: хранящаяся в хроматине ядра, должна быть неизменной и копироваться без искажений. Ну а клеточный геном постоянно находится «под прицелом» факторов внешней среды. Например, таких агрессивных химических соединений, как алкоголь, лекарственное средство, радиоактивное излучение. Все они являются так называемыми мутагенами, под воздействием которых любой мономер ДНК может изменить свое химическое строение. Такое искажение в биохимии называют точковой мутацией. Частота возникновения их в геноме клетки достаточно высока. Мутации исправляются хорошо отлаженной работой клеточной репарационной системы, включающей в себя набор ферментов.

Одни из них, например рестриктазы, «вырезают» поврежденные нуклеотиды, полимеразы обеспечивают синтез нормальных мономеров, лигазы «сшивают» восстановленные участки гена. Если же вышеописанный механизм по какой-то причине в клетке не срабатывает и дефектный мономер ДНК остается в её молекуле, мутация подхватывается процессами матричного синтеза и фенотипически проявляется в виде белков с нарушенными свойствами, неспособных выполнять необходимые функции, присущие им в клеточном обмене веществ. Это является серьёзным негативным фактором, снижающим жизнеспособность клетки и сокращающим продолжительность её жизни.