Урок "умножение и деление степеней". Правило умножение степеней с разными основаниями Как складываются степени с разными основаниями

Понятие степени в математике вводится еще в 7 классе на уроке алгебры. И в дальнейшем на протяжении всего курса изучения математики это понятие активно используется в различных своих видах. Степени - достаточно трудная тема, требующая запоминания значений и умения правильно и быстро сосчитать. Для более быстрой и качественной работы со степенями математики придумали свойства степени. Они помогают сократить большие вычисления, преобразовать огромный пример в одно число в какой-либо степени. Свойств не так уж и много, и все они легко запоминаются и применяются на практике. Поэтому в статье рассмотрены основные свойства степени, а также то, где они применяются.

Свойства степени

Мы рассмотрим 12 свойств степени, в том числе и свойства степеней с одинаковыми основаниями, и к каждому свойству приведем пример. Каждое из этих свойств поможет вам быстрее решать задания со степенями, а так же спасет вас от многочисленных вычислительных ошибок.

1-е свойство.

Про это свойство многие очень часто забывают, делают ошибки, представляя число в нулевой степени как ноль.

2-е свойство.

3-е свойство.

Нужно помнить, что это свойство можно применять только при произведении чисел, при сумме оно не работает! И нельзя забывать, что это, и следующее, свойства применяются только к степеням с одинаковыми основаниями.

4-е свойство.

Если в знаменателе число возведено в отрицательную степень, то при вычитании степень знаменателя берется в скобки для правильной замены знака при дальнейших вычислениях.

Свойство работает только при делении, при вычитании не применяется!

5-е свойство.

6-е свойство.

Это свойство можно применить и в обратную сторону. Единица деленная на число в какой-то степени есть это число в минусовой степени.

7-е свойство.

Это свойство нельзя применять к сумме и разности! При возведении в степень суммы или разности используются формулы сокращенного умножения, а не свойства степени.

8-е свойство.

9-е свойство.

Это свойство работает для любой дробной степени с числителем, равным единице, формула будет та же, только степень корня будет меняться в зависимости от знаменателя степени.

Также это свойство часто используют в обратном порядке. Корень любой степени из числа можно представить, как это число в степени единица деленная на степень корня. Это свойство очень полезно в случаях, если корень из числа не извлекается.

10-е свойство.

Это свойство работает не только с квадратным корнем и второй степенью. Если степень корня и степень, в которую возводят этот корень, совпадают, то ответом будет подкоренное выражение.

11-е свойство.

Это свойство нужно уметь вовремя увидеть при решении, чтобы избавить себя от огромных вычислений.

12-е свойство.

Каждое из этих свойств не раз встретится вам в заданиях, оно может быть дано в чистом виде, а может требовать некоторых преобразований и применения других формул. Поэтому для правильного решения мало знать только свойства, нужно практиковаться и подключать остальные математические знания.

Применение степеней и их свойств

Они активно применяются в алгебре и геометрии. Степени в математике имеют отдельное, важное место. С их помощью решаются показательные уравнения и неравенства, а так же степенями часто усложняют уравнения и примеры, относящиеся к другим разделам математики. Степени помогают избежать больших и долгих расчетов, степени легче сокращать и вычислять. Но для работы с большими степенями, либо со степенями больших чисел, нужно знать не только свойства степени, а грамотно работать и с основаниями, уметь их разложить, чтобы облегчить себе задачу. Для удобства следует знать еще и значение чисел, возведенных в степень. Это сократит ваше время при решении, исключив необходимость долгих вычислений.

Особую роль понятие степени играет в логарифмах. Так как логарифм, по сути своей, и есть степень числа.

Формулы сокращенного умножения - еще один пример использования степеней. В них нельзя применять свойства степеней, они раскладываются по особым правилам, но в каждой формуле сокращенного умножения неизменно присутствуют степени.

Так же степени активно используются в физике и информатике. Все переводы в систему СИ производятся с помощью степеней, а в дальнейшем при решении задач применяются свойства степени. В информатике активно используются степени двойки, для удобства счета и упрощения восприятия чисел. Дальнейшие расчеты по переводам единиц измерения или же расчеты задач, так же, как и в физике, происходят с использованием свойств степени.

Еще степени очень полезны в астрономии, там редко можно встретить применение свойств степени, но сами степени активно используются для сокращения записи различных величин и расстояний.

Степени применяют и в обычной жизни, при расчетах площадей, объемов, расстояний.

С помощью степеней записывают очень большие и очень маленькие величины в любых сферах науки.

Показательные уравнения и неравенства

Особое место свойства степени занимают именно в показательных уравнениях и неравенствах. Эти задания очень часто встречаются, как в школьном курсе, так и на экзаменах. Все они решаются за счет применения свойств степени. Неизвестное всегда находится в самой степени, поэтому зная все свойства, решить такое уравнение или неравенство не составит труда.

Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов! Получаем:

Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило.

Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках.

Но важно запомнить: меняются все знаки одновременно !

Вернемся к примеру:

И снова формула:

Целыми мы называем натуральные числа, противоположные им (то есть взятые со знаком « ») и число.

целое положительное число , а оно ничем не отличается от натурального, то все выглядит в точности как в предыдущем разделе.

А теперь давайте рассмотрим новые случаи. Начнем с показателя, равного.

Любое число в нулевой степени равно единице :

Как всегда, зададимся вопросом: почему это так?

Рассмотрим какую-нибудь степень с основанием. Возьмем, например, и домножим на:

Итак, мы умножили число на, и получили то же, что и было - . А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на. Значит.

Можем проделать то же самое уже с произвольным числом:

Повторим правило:

Любое число в нулевой степени равно единице.

Но из многих правил есть исключения. И здесь оно тоже есть - это число (в качестве основания).

С одной стороны, в любой степени должен равняться - сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, как и любое число в нулевой степени, должен равняться. Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа. Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

Отсюда уже несложно выразить искомое:

Теперь распространим полученное правило на произвольную степень:

Итак, сформулируем правило:

Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к. на делить нельзя).

Подведем итоги:

I. Выражение не определено в случае. Если, то.

II. Любое число в нулевой степени равно единице: .

III. Число, не равное нулю, в отрицательной степени обратно такому же числу в положительной степени: .

Задачи для самостоятельного решения:

Ну и, как обычно, примеры для самостоятельного решения:

Разбор задач для самостоятельного решения:

Знаю-знаю, числа страшные, но на ЕГЭ надо быть готовым ко всему! Реши эти примеры или разбери их решение, если не смог решить и ты научишься легко справляться с ними на экзамене!

Продолжим расширять круг чисел, «пригодных» в качестве показателя степени.

Теперь рассмотрим рациональные числа. Какие числа называются рациональными?

Ответ: все, которые можно представить в виде дроби, где и - целые числа, причем.

Чтобы понять, что такое «дробная степень» , рассмотрим дробь:

Возведем обе части уравнения в степень:

Теперь вспомним правило про «степень в степени» :

Какое число надо возвести в степень, чтобы получить?

Эта формулировка - определение корня -ой степени.

Напомню: корнем -ой степени числа () называется число, которое при возведении в степень равно.

То есть, корень -ой степени - это операция, обратная возведению в степень: .

Получается, что. Очевидно, этот частный случай можно расширить: .

Теперь добавляем числитель: что такое? Ответ легко получить с помощью правила «степень в степени»:

Но может ли основание быть любым числом? Ведь корень можно извлекать не из всех чисел.

Никакое!

Вспоминаем правило: любое число, возведенное в четную степень - число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!

А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение не имеет смысла.

А что насчет выражения?

Но тут возникает проблема.

Число можно представить в виде дргих, сократимых дробей, например, или.

И получается, что существует, но не существует, а ведь это просто две разные записи одного и того же числа.

Или другой пример: раз, то можно записать. Но стоит нам по-другому записать показатель, и снова получим неприятность: (то есть, получили совсем другой результат!).

Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем .

Итак, если:

Примеры:

Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:

5 примеров для тренировки

Разбор 5 примеров для тренировки

1. Не забываем об обычных свойствах степеней:

2. . Здесь вспоминаем, что забыли выучить таблицу степеней:

ведь - это или. Решение находится автоматически: .

Ну а теперь - самое сложное. Сейчас мы разберем степень с иррациональным показателем .

Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением

Ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа кроме рациональных).

При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.

Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя;

...число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число;

...степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число.

Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

КУДА МЫ УВЕРЕНЫ ТЫ ПОСТУПИШЬ! (если научишься решать такие примеры:))

Например:

Реши самостоятельно:

Разбор решений:

1. Начнем с уже обычного для нас правила возведения степени в степень:

Теперь посмотри на показатель. Ничего он тебе не напоминает? Вспоминаем формулу сокращенного умножения разность квадратов:

В данном случае,

Получается, что:

Ответ: .

2. Приводим дроби в показателях степеней к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например:

Ответ: 16

3. Ничего особенного, применяем обычные свойства степеней:

ПРОДВИНУТЫЙ УРОВЕНЬ

Определение степени

Степенью называется выражение вида: , где:

  • основание степени;
  • — показатель степени.

Степень с натуральным показателем {n = 1, 2, 3,...}

Возвести число в натуральную степень n — значит умножить число само на себя раз:

Степень с целым показателем {0, ±1, ±2,...}

Если показателем степени является целое положительное число:

Возведение в нулевую степень :

Выражение неопределенное, т.к., с одной стороны, в любой степени - это, а с другой - любое число в -ой степени - это.

Если показателем степени является целое отрицательное число:

(т.к. на делить нельзя).

Еще раз о нулях: выражение не определено в случае. Если, то.

Примеры:

Степень с рациональным показателем

  • — натуральное число;
  • — целое число;

Примеры:

Свойства степеней

Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.

Посмотрим: что такое и?

По определению:

Итак, в правой части этого выражения получается такое произведение:

Но по определению это степень числа с показателем, то есть:

Что и требовалось доказать.

Пример : Упростите выражение.

Решение : .

Пример : Упростите выражение.

Решение : Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

Еще одно важное замечание: это правило - только для произведения степеней !

Ни в коем случае нелья написать, что.

Так же, как и с предыдущим свойством, обратимся к определению степени:

Перегруппируем это произведение так:

Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -я степень числа:

По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: !

Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать? Но это неверно, ведь.

Степень с отрицательным основанием.

До этого момента мы обсуждали только то, каким должен быть показатель степени. Но каким должно быть основание? В степенях с натуральным показателем основание может быть любым числом .

И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже. Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

Например, положительным или отрицательным будет число? А? ?

С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на (), получится - .

И так до бесконечности: при каждом следующем умножении знак будет меняться. Можно сформулировать такие простые правила:

  1. четную степень, - число положительное .
  2. Отрицательное число, возведенное в нечетную степень, - число отрицательное .
  3. Положительное число в любой степени - число положительное.
  4. Ноль в любой степени равен нулю.

Определи самостоятельно, какой знак будут иметь следующие выражения:

1. 2. 3.
4. 5. 6.

Справился? Вот ответы:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным. Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

Пример 6) уже не так прост. Тут нужно узнать, что меньше: или? Если вспомнить, что, становится ясно, что, а значит, основание меньше нуля. То есть, применяем правило 2: результат будет отрицательным.

И снова используем определение степени:

Все как обычно - записываем определение степеней и, делим их друг на друга, разбиваем на пары и получаем:

Прежде чем разобрать последнее правило, решим несколько примеров.

Вычисли значения выражений:

Решения :

Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов!

Получаем:

Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило 3. Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

Если домножить его на, ничего не поменяется, верно? Но теперь получается следующее:

Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках. Но важно запомнить: меняются все знаки одновременно! Нельзя заменить на, изменив только один неугодный нам минус!

Вернемся к примеру:

И снова формула:

Итак, теперь последнее правило:

Как будем доказывать? Конечно, как обычно: раскроем понятие степени и упростим:

Ну а теперь раскроем скобки. Сколько всего получится букв? раз по множителей - что это напоминает? Это не что иное, как определение операции умножения : всего там оказалось множителей. То есть, это, по определению, степень числа с показателем:

Пример:

Степень с иррациональным показателем

В дополнение к информации о степенях для среднего уровня, разберем степень с иррациональным показателем. Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением - ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа, кроме рациональных).

При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах. Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя; число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число; степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.

Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)

Например:

Реши самостоятельно:

1) 2) 3)

Ответы:

  1. Вспоминаем формулу разность квадратов. Ответ: .
  2. Приводим дроби к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например: .
  3. Ничего особенного, применяем обычные свойства степеней:

КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ

Степенью называется выражение вида: , где:

Степень с целым показателем

степень, показатель которой — натуральное число (т.е. целое и положительное).

Степень с рациональным показателем

степень, показатель которой — отрицательные и дробные числа.

Степень с иррациональным показателем

степень, показатель которой — бесконечная десятичная дробь или корень.

Свойства степеней

Особенности степеней.

  • Отрицательное число, возведенное в четную степень, - число положительное .
  • Отрицательное число, возведенное в нечетную степень, - число отрицательное .
  • Положительное число в любой степени - число положительное.
  • Ноль в любой степени равен.
  • Любое число в нулевой степени равно.

ТЕПЕРЬ ТЕБЕ СЛОВО...

Как тебе статья? Напиши внизу в комментариях понравилась или нет.

Расскажи о своем опыте использования свойств степеней.

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях.

И удачи на экзаменах!

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

Содержание урока

Что такое степень?

Степенью называют произведение из нескольких одинаковых множителей. Например:

2 × 2 × 2

Значение данного выражения равно 8

2 × 2 × 2 = 8

Левую часть этого равенстваможно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:

2 3 = 8

Это выражение читается так: «два в третьей степени равно восемь» или «третья степень числа 2 равна 8».

Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.

Например, если дано выражение 5 3 , то следует иметь ввиду, что это выражение равносильно записи 5 × 5 × 5 .

Число, которое повторяется называют основанием степени . В выражении 5 3 основанием степени является число 5 .

А число, которое надписано над числом 5 называют показателем степени . В выражении 5 3 показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза

Саму операцию перемножения одинаковых множителей называют возведением в степень .

Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень :

Видим, что число 2 в четвёртой степени есть число 16.

Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем . Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.

Вообще, определение степени с натуральным показателем выглядит следующим образом:

Степень числа a с натуральным показателем n — это выражение вида a n , которое равно произведению n множителей, каждый из которых равен a

Примеры:

Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.

Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25

Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2

Получилась ошибка, поскольку число 5 во второй степени не равно 10.

Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:

Например, число 5 в первой степени есть само число 5

Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.

Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1

А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:

А выражение 0 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 0 0 может иметь смысл.

Для тренировки решим несколько примеров на возведение чисел в степени.

Пример 1. Возвести число 3 во вторую степень.

Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3

3 2 = 3 × 3 = 9

Пример 2. Возвести число 2 в четвертую степень.

Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2

2 4 =2 × 2 × 2 × 2 = 16

Пример 3. Возвести число 2 в третью степень.

Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2

2 3 =2 × 2 × 2 = 8

Возведение в степень числа 10

Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.

Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2

10 2

Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени

10 2 = 100

Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10

10 2 = 10 × 10 = 100

Пример 2 . Возведём число 10 в третью степень.

В данном случае после единицы будут стоять три нуля:

10 3 = 1000

Пример 3 . Возведем число 10 в четвёртую степень.

В данном случае после единицы будут стоять четыре нуля:

10 4 = 10000

Пример 4 . Возведем число 10 в первую степень.

В данном случае после единицы будет стоять один нуль:

10 1 = 10

Представление чисел 10, 100, 1000 в виде степени с основанием 10

Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.

Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 10 1

10 = 10 1

Пример 2 . Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 10 2

100 = 10 2

Пример 3 . Представим число 1 000 в виде степени с основанием 10.

1 000 = 10 3

Пример 4 . Представим число 10 000 в виде степени с основанием 10.

10 000 = 10 4

Возведение в степень отрицательного числа

При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.

Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)

(−2) 2 = (−2) × (−2) = 4

Если бы мы не заключили в скобки число −2 , то получилось бы что мы вычисляем выражение −2 2 , которое не равно 4 . Выражение −2² будет равно −4 . Чтобы понять почему, коснёмся некоторых моментов.

Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения .

Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.

В случае с выражением −2 2 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.

Поэтому выражение −2 2 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2

Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4

−2 2 = −4

Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2) 2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.

Пример 2 . Возвести число −2 в третью степень.

Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)

(−2) 3 = (−2) × (−2) × (−2) = −8

Пример 3 . Возвести число −2 в четвёртую степень.

Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)

(−2) 4 = (−2) × (−2) × (−2) × (−2) = 16

Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.

Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3

В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным .

Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным .

Пример 7. Возвести число −5 в третью степень.

Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:

(−5) 3 = (−5) × (−5) × (−5) = −125

Пример 8. Возвести число −4 в четвёртую степень.

Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:

(−4) 4 = (−4) × (−4) × (−4) × (−4) = 256

Нахождение значений выражений

При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.

Пример 1 . Найти значение выражения 2 + 5 2

Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2

2 + 5 2 = 2 + 25 = 27

Пример 10 . Найти значение выражения −6 2 × (−12)

Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:

−6 2 × (−12) = −36 × (−12)

Завершаем пример, умножив −36 на (−12)

−6 2 × (−12) = −36 × (−12) = 432

Пример 11 . Найти значение выражения −3 × 2 2

Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3

−3 × 2 2 = −3 × 4 = −12

Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.

Пример 12 . Найти значение выражения (3 2 + 1 × 3) − 15 + 5

Сначала выполняем действия в скобках. Внутри скобок применяем ранее изученные правила, а именно сначала возводим во вторую степень число 3, затем выполняем умножение 1 × 3 , затем складываем результаты возведения в степень числа 3 и умножения 1 × 3 . Далее выполняется вычитание и сложение в порядке их следования. Расставим такой порядок выполнения действия над исходным выражением:

(3 2 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2

Пример 13 . Найти значение выражения 2 × 5 3 + 5 × 2 3

Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:

2 × 5 3 + 5 × 2 3 = 2 × 125 + 5 × 8 = 250 + 40 = 290

Тождественные преобразования степеней

Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.

Допустим, потребовалось вычислить выражение (2 3) 2 . В данном примере два в третьей степени возводится во вторую степень. Иными словами, степень возводится в другую степень.

(2 3) 2 это произведение двух степеней, каждая из которых равна 2 3

При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2

Получили произведение 2 × 2 × 2 × 2 × 2 × 2 , которое равно 64. Значит значение выражения (2 3) 2 или равно 64

Этот пример можно значительно упростить. Для этого показатели выражения (2 3) 2 можно перемножить и записать это произведение над основанием 2

Получили 2 6 . Два в шестой степени это произведение шести множителей, каждый из которых равен 2. Это произведение равно 64

Данное свойство работает по причине того, что 2 3 это произведение 2 × 2 × 2 , которое в свою очередь повторяется два раза. Тогда получается, что основание 2 повторяется шесть раз. Отсюда можно записать, что 2 × 2 × 2 × 2 × 2 × 2 это 2 6

Вообще, для любого основания a с показателями m и n , выполняется следующее равенство:

(a n ) m = a n × m

Это тождественное преобразование называют возведением степени в степень . Его можно прочитать так: «При возведении степени в степень основание оставляют без изменений, а показатели перемножают» .

После перемножения показателей, получится другая степень, значение которой можно найти.

Пример 2 . Найти значение выражения (3 2) 2

В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:

Получили 3 4 . А число 3 в четвёртой степени есть 81

Рассмотрим остальные преобразования.

Умножение степеней

Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.

Например, умножим 2 2 на 3 3 .

2 2 это число 4 , а 3 3 это число 27 . Перемножаем числа 4 и 27 , получаем 108

2 2 × 3 3 = 4 × 27 = 108

В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.

Например, умножим 2 2 на 2 3

В данном примере основания у степеней одинаковые. В этом случае можно записать одно основание 2 и в качестве показателя записать сумму показателей степеней 2 2 и 2 3 . Иными словами, о снование оставить без изменений, а показатели исходных степеней сложить. Выглядеть это будет так:

Получили 2 5 . Число 2 в пятой степени есть 32

Данное свойство работает по причине того, что 2 2 это произведение 2 × 2 , а 2 3 это произведение 2 × 2 × 2 . Тогда получается произведение из пяти одинаковых множителей, каждый из которых равен 2 . Это произведение представимо в виде 2 5

Вообще, для любого a и показателей m и n выполняется следующее равенство:

Это тождественное преобразование носит название основного свойства степени . Его можно прочитать так: «П ри перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают» .

Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.

Например, найдем значение выражения 2 1 × 2 2 × 2 3 . Основание 2

В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.

Пример 1 . Представить в виде степени выражение 5 8 × 25

В данной задаче нужно сделать так, чтобы вместо выражения 5 8 × 25 получилась одна степень.

Число 25 можно представить в виде 5 2 . Тогда получим следующее выражение:

В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:

Запишем решение покороче:

Пример 2 . Представить в виде степени выражение 2 9 × 32

Число 32 можно представить в виде 2 5 . Тогда получим выражение 2 9 × 2 5 . Далее можно применить основание свойство степени — основание 2 оставить без изменений, а показатели 9 и 5 сложить. В результате получится следующее решение:

Пример 3 . Вычислите произведение 3 × 3 , используя основное свойство степени.

Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?

Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 3 1 и 3 1

3 1 × 3 1

Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:

3 1 × 3 1 = 3 2 = 9

Пример 4 . Вычислите произведение 2 × 2 × 3 2 × 3 3 , используя основное свойство степени.

Произведение 2 × 2 заменим на 2 1 × 2 1 , затем на 2 1 + 1 , а затем на 2 2 . Произведение 3 2 × 3 3 заменим на 3 2 + 3 , а затем на 3 5

Пример 5 . Выполнить умножение x × x

Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:

Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.

Решение данного примера желательно записать так:

Пример 6 . Выполнить умножение x 2 × x

Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Пример 7 . Выполнить умножение y 3 y 2 y

Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Пример 8 . Выполнить умножение aa 3 a 2 a 5

Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Пример 9 . Представить степень 3 8 в виде произведения степеней с одинаковыми основаниями.

В данной задаче нужно составить произведение степеней, основания которых будут равны 3 , и сумма показателей которых будет равна 8 . Можно использовать любые показатели. Представим степень 3 8 в виде произведения степеней 3 5 и 3 3

В данном примере мы опять же опирались на основное свойство степени. Ведь выражение 3 5 × 3 3 можно записать как 3 5 + 3 , откуда 3 8 .

Конечно можно было представить степень 3 8 в виде произведения других степеней. Например, в виде 3 7 × 3 1 , поскольку это произведение тоже равно 3 8

Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.

Пример 10 . Представить степень x 12 в виде различных произведений степеней с основаниями x .

Воспользуемся основным свойство степени. Представим x 12 в виде произведений с основаниями x , и сумма показателей которых равна 12

Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:

Возведение в степень произведения

Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.

Например, возведём во вторую степень произведение 2 × 3 . Возьмём в скобки данное произведение и в качестве показателя укажем 2

Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:

Принцип работы данного правила основан на определении степени, которое было дано в самом начале.

Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:

2 × 3 × 2 × 3

От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:

2 × 2 × 3 × 3

Повторяющиеся множители можно заменить на короткие записи — основания с показателями. Произведение 2 × 2 можно заменить на 2 2 , а произведение 3 × 3 можно заменить на 3 2 . Тогда выражение 2 × 2 × 3 × 3 обращается в выражение 2 2 × 3 2 .

Пусть ab исходное произведение. Чтобы возвести данное произведение в степень n , нужно по отдельности возвести множители a и b в указанную степень n

Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:

Пример 2 . Найти значение выражения (2 × 3 × 4) 2

В данном примере нужно возвести во вторую степень произведение 2 × 3 × 4 . Чтобы сделать это, нужно возвести во вторую степень каждый множитель этого произведения и перемножить полученные результаты:

Пример 3 . Возвести в третью степень произведение a × b × c

Заключим в скобки данное произведение, и в качестве показателя укажем число 3

Пример 4 . Возвести в третью степень произведение 3xyz

Заключим в скобки данное произведение, и в качестве показателя укажем 3

(3xyz ) 3

Возведём в третью степень каждый множитель данного произведения:

(3xyz ) 3 = 3 3 x 3 y 3 z 3

Число 3 в третьей степени равно числу 27 . Остальное оставим без изменений:

(3xyz ) 3 = 3 3 x 3 y 3 z 3 = 27x 3 y 3 z 3

В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.

Например, вычислим значение выражения 5 2 × 3 2 . Возведем каждое число во вторую степень и перемножим полученные результаты:

5 2 × 3 2 = 25 × 9 = 225

Но можно не вычислять по отдельности каждую степень. Вместо этого, данное произведение степеней можно заменить на произведение с одним показателем (5 × 3) 2 . Далее вычислить значение в скобках и возвести полученный результат во вторую степень:

5 2 × 3 2 = (5 × 3) 2 = (15) 2 = 225

В данном случае опять же было использовано правило возведения в степень произведения. Ведь, если (a × b ) n = a n × b n , то a n × b n = (a × b) n . То есть левая и правая часть равенства поменялись местами.

Возведение степени в степень

Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.

При возведении степени в степень основание оставляют без изменений, а показатели перемножают:

(a n ) m = a n × m

К примеру, выражение (2 3) 2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:

(2 3) 2 = 2 3 × 2 = 2 6

(2 3) 2 = 2 3 × 2 = 2 6 = 64

Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.

Вернёмся к выражению (2 3) 2 . Выражение в скобках 2 3 представляет собой произведение из трёх одинаковых множителей, каждый из которых равен 2. Тогда в выражении (2 3) 2 степень, находящуюся внутри скобок можно заменить на произведение 2 × 2 × 2 .

(2 × 2 × 2) 2

А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2

Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6

Как и раньше получили 2 6 . Значение этой степени равно 64

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6 = 64

В степень также может возводиться произведение, сомножители которого тоже являются степенями.

Например, найдём значение выражения (2 2 × 3 2) 3 . Здесь показатели каждого множителя нужно умножить на общий показатель 3 . Далее найти значение каждой степени и вычислить произведение:

(2 2 × 3 2) 3 = 2 2×3 × 3 2×3 = 2 6 × 3 6 = 64 × 729 = 46656

Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.

Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:

Но ранее было сказано, что если число дано без показателя, то показатель надо считать равным единице. Получается, что множители произведения 2 × 4 изначально имеют показатели равные 1. Значит в третью степень возводилось выражение 2 1 × 4 1 . А это есть возведение степени в степень.

Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:

Пример 2 . Найти значение выражения (3 3) 2

Основание оставляем без изменений, а показатели перемножаем:

Получили 3 6 . Число 3 в шестой степени есть число 729

Пример 3 xy

Пример 4 . Выполнить возведение в степень в выражении (abc )⁵

Возведём в пятую степень каждый множитель произведения:

Пример 5 ax ) 3

Возведём в третью степень каждый множитель произведения:

Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.

Пример 6 . Выполнить возведение в степень в выражении (10xy ) 2

Пример 7 . Выполнить возведение в степень в выражении (−5x ) 3

Пример 8 . Выполнить возведение в степень в выражении (−3y ) 4

Пример 9 . Выполнить возведение в степень в выражении (−2abx )⁴

Пример 10 . Упростите выражение x 5 × (x 2) 3

Степень x 5 пока оставим без изменений, а в выражении (x 2) 3 выполним возведение степени в степени:

x 5 × (x 2) 3 = x 5 × x 2 × 3 = x 5 × x 6

Теперь выполним умножение x 5 × x 6 . Для этого воспользуемся основным свойством степени — основание x оставим без изменений, а показатели сложим:

x 5 × (x 2) 3 = x 5 × x 2× 3 = x 5 × x 6 = x 5 + 6 = x 11

Пример 9 . Найти значение выражения 4 3 × 2 2 , используя основное свойство степени.

Основное свойство степени можно использовать в случае, если основания исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.

Посмотрим внимательно на степень 4 3 . Основание у этой степени есть число 4, которое можно представить в виде 2 2 . Тогда исходное выражение примет вид (2 2) 3 × 2 2 . Выполнив возведение степени в степень в выражении (2 2) 3 , мы получим 2 6 . Тогда исходное выражение примет вид 2 6 × 2 2 , вычислить которое можно, используя основное свойство степени.

Запишем решение данного примера:

Деление степеней

Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.

Например, разделим 4 3 на 2 2 .

Вычислим 4 3 , получим 64 . Вычислим 2 2 , получим 4. Теперь разделим 64 на 4, получим 16

Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.

Например, найдем значение выражения 2 3: 2 2

Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Значит, значение выражения 2 3: 2 2 равно 2 .

Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.

Вернемся к предыдущему примеру 2 3: 2 2 . Здесь делимое это 2 3 , а делитель 2 2 .

Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.

В нашем случае, разделить 2 3 на 2 2 означает найти такую степень, которая при умножении на делитель 2 2 даст в результате 2 3 . А какую степень можно умножить на 2 2 , чтобы получить 2 3 ? Очевидно, что только степень 2 1 . Из основного свойства степени имеем:

Убедиться, что значение выражения 2 3: 2 2 равно 2 1 можно непосредственно вычислив само выражение 2 3: 2 2 . Для этого сначала найдём значение степени 2 3 , получим 8 . Затем найдём значение степени 2 2 , получим 4 . Разделим 8 на 4, получим 2 или 2 1 , поскольку 2 = 2 1 .

2 3: 2 2 = 8: 4 = 2

Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:

Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получится единица.

Например, найдём значение выражения 2 2: 2 2 . Вычислим значение каждой степени и выполним деление получившихся чисел:

При решении примера 2 2: 2 2 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 2 2 и 2 2 равна нулю:

Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 2 2: 2 2 обычным методом, не используя правило деления степеней, получится единица.

Пример 2 . Найти значение выражения 4 12: 4 10

4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

4 12: 4 10 = 4 12 − 10 = 4 2 = 16

Пример 3 . Представить частное x 3: x в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:

Пример 4 . Представить частное x 3: x 2 в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x

Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:

Числитель и знаменатель дроби разрешается записывать в развёрнутом виде, а именно в виде произведений одинаковых множителей. Степень x 3 можно записать как x × x × x , а степень x 2 как x × x . Тогда конструкцию x 3 − 2 можно будет пропустить и воспользоваться сокращением дроби. В числителе и в знаменателе можно будет сократить по два множителя x . В результате останется один множитель x

Или ещё короче:

Также, полезно уметь быстро сокращать дроби, состоящие из степеней. Например, дробь можно сократить на x 2 . Чтобы сократить дробь на x 2 нужно числитель и знаменатель дроби разделить на x 2

Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:

Или ещё короче:

Пример 5 . Выполнить деление x 12 : x 3

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Запишем решение при помощи сокращения дроби. Деление степеней x 12 : x 3 запишем в виде . Далее сократим данную дробь на x 3 .

Пример 6 . Найти значение выражения

В числителе выполним умножение степеней с одинаковыми основаниями:

Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Завершаем пример, вычислив степень 7 2

Пример 7 . Найти значение выражения

Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (2 3) 4

Теперь выполним в числителе умножение степеней с одинаковыми основаниями.

В предыдущей статье мы рассказали, что из себя представляют одночлены. В этом материале разберем, как решать примеры и задачи, в которых они применяются. Здесь будут рассмотрены такие действия, как вычитание, сложение, умножение, деление одночленов и возведение их в степень с натуральным показателем. Мы покажем, как определяются такие операции, обозначим основные правила их выполнения и то, что должно получится в результате. Все теоретические положения, как обычно, будут проиллюстрированы примерами задач с описаниями решений.

Удобнее всего работать со стандартной записью одночленов, поэтому все выражения, которые будут использованы в статье, мы приводим в стандартном виде. Если изначально они заданы иначе, рекомендуется сначала привести их к общепринятой форме.

Правила сложения и вычитания одночленов

Наиболее простые действия, которые можно проводить с одночленами – это вычитание и сложение. В общем случае результатом этих действий будет являться многочлен (одночлен возможен в некоторых частных случаях).

Когда мы складываем или вычитаем одночлены, сначала записываем в общепринятой форме соответствующую сумму и разность, после чего упрощаем получившееся выражение. Если есть подобные слагаемые, их нужно привести, скобки – раскрыть. Поясним на примере.

Пример 1

Условие: выполните сложение одночленов − 3 · x и 2 , 72 · x 3 · y 5 · z .

Решение

Запишем сумму исходных выражений. Добавим скобки и поставим между ними плюс. У нас получится следующее:

(− 3 · x) + (2 , 72 · x 3 · y 5 · z)

Когда мы выполним раскрытие скобок, получится - 3 · x + 2 , 72 · x 3 · y 5 · z . Это многочлен, записанный в стандартной форме, который и будет результатом сложения данных одночленов.

Ответ: (− 3 · x) + (2 , 72 · x 3 · y 5 · z) = − 3 · x + 2 , 72 · x 3 · y 5 · z .

Если у нас задано три, четыре и больше слагаемых, мы осуществляем это действие точно так же.

Пример 2

Условие: проведите в правильном порядке указанные действия с многочленами

3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

Решение

Начнем с раскрытия скобок.

3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

Мы видим, что полученное выражение можно упростить путем приведения подобных слагаемых:

3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = = (3 · a 2 + a 2 - 7 · a 2) + 4 · a · c - 2 2 3 · a · c + 4 9 = = - 3 · a 2 + 1 1 3 · a · c + 4 9

У нас получился многочлен, который и будет результатом данного действия.

Ответ: 3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = - 3 · a 2 + 1 1 3 · a · c + 4 9

В принципе, мы можем выполнить сложение и вычитание двух одночленов с некоторыми ограничениями так, чтобы получить в итоге одночлен. Для этого нужно соблюсти некоторые условия, касающиеся слагаемых и вычитаемых одночленов. О том, как это делается, мы расскажем в отдельной статье.

Правила умножения одночленов

Действие умножения не налагает никаких ограничений на множители. Умножаемые одночлены не должны соответствовать никаким дополнительным условиям, чтобы в результате получится одночлен.

Чтобы выполнить умножение одночленов, нужно выполнить следующие шаги:

  1. Правильно записать произведение.
  2. Раскрыть скобки в полученном выражении.
  3. Сгруппировать по возможности множители с одинаковыми переменными и числовые множители отдельно.
  4. Выполнить необходимые действия с числами и применить к оставшимся множителям свойство умножения степеней с одинаковыми основаниями.

Посмотрим, как это делается на практике.

Пример 3

Условие: выполните умножение одночленов 2 · x 4 · y · z и - 7 16 · t 2 · x 2 · z 11 .

Решение

Начнем с составления произведения.

Раскрываем в нем скобки и получаем следующее:

2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11

2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11

Все, что нам осталось сделать – это умножить числа в первых скобках и применить свойство степеней для вторых. В итоге получим следующее:

2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11 = - 7 8 · t 2 · x 4 + 2 · y · z 3 + 11 = = - 7 8 · t 2 · x 6 · y · z 14

Ответ: 2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11 = - 7 8 · t 2 · x 6 · y · z 14 .

Если у нас в условии стоят три многочлена и больше, мы умножаем их по точно такому же алгоритму. Более подробно вопрос умножения одночленов мы рассмотрим в рамках отдельного материала.

Правила возведения одночлена в степень

Мы знаем, что степенью с натуральным показателем называют произведение некоторого числа одинаковых множителей. На их количество указывает число в показателе. Согласно этому определению, возведение одночлена в степень равнозначно умножению указанного числа одинаковых одночленов. Посмотрим, как это делается.

Пример 4

Условие: выполните возведение одночлена − 2 · a · b 4 в степень 3 .

Решение

Мы можем заменить возведение в степень на умножение 3 -х одночленов − 2 · a · b 4 . Запишем и получим нужный ответ:

(− 2 · a · b 4) 3 = (− 2 · a · b 4) · (− 2 · a · b 4) · (− 2 · a · b 4) = = ((− 2) · (− 2) · (− 2)) · (a · a · a) · (b 4 · b 4 · b 4) = − 8 · a 3 · b 12

Ответ: (− 2 · a · b 4) 3 = − 8 · a 3 · b 12 .

А как быть в том случае, когда степень имеет большой показатель? Записывать большое количество множителей неудобно. Тогда для решения такой задачи нам надо применить свойства степени, а именно свойство степени произведения и свойство степени в степени.

Решим задачу, которую мы привели выше, указанным способом.

Пример 5

Условие: выполните возведение − 2 · a · b 4 в третью степень.

Решение

Зная свойство степени в степени, мы можем перейти к выражению следующего вида:

(− 2 · a · b 4) 3 = (− 2) 3 · a 3 · (b 4) 3 .

После этого мы возводим в степень - 2 и применяем свойство степени в степени:

(− 2) 3 · (a) 3 · (b 4) 3 = − 8 · a 3 · b 4 · 3 = − 8 · a 3 · b 12 .

Ответ: − 2 · a · b 4 = − 8 · a 3 · b 12 .

Возведению одночлена в степень мы также посвятили отдельную статью.

Правила деления одночленов

Последнее действие с одночленами, которое мы разберем в данном материале, – деление одночлена на одночлен. В результате мы должны получить рациональную (алгебраическую) дробь (в некоторых случаях возможно получение одночлена). Сразу уточним, что деление на нулевой одночлен не определяется, поскольку не определяется деление на 0.

Для выполнения деления нам нужно записать указанные одночлены в форме дроби и сократить ее, если есть такая возможность.

Пример 6

Условие: выполните деление одночлена − 9 · x 4 · y 3 · z 7 на − 6 · p 3 · t 5 · x 2 · y 2 .

Решение

Начнем с записи одночленов в форме дроби.

9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2

Эту дробь можно сократить. После выполнения этого действия получим:

3 · x 2 · y · z 7 2 · p 3 · t 5

Ответ: - 9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2 = 3 · x 2 · y · z 7 2 · p 3 · t 5 .

Условия, при которых в результате деления одночленов мы получим одночлен, приводятся в отдельной статье.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter