X y z arithmetic progression. The sum of the first n-terms of an arithmetic progression. Members of the progression and the recurrent formula

Someone treats the word "progression" with caution, as a very complex term from the sections of higher mathematics. Meanwhile, the simplest arithmetic progression- the work of the taxi counter (where they still remain). And to understand the essence (and in mathematics there is nothing more important than “to understand the essence”) of an arithmetic sequence is not so difficult, having analyzed a few elementary concepts.

Mathematical number sequence

It is customary to call a numerical sequence a series of numbers, each of which has its own number.

and 1 is the first member of the sequence;

and 2 is the second member of the sequence;

and 7 is the seventh member of the sequence;

and n is the nth member of the sequence;

However, not any arbitrary set of figures and numbers interests us. We will focus our attention on a numerical sequence in which the value of the nth member is related to its ordinal number by a dependence that can be clearly formulated mathematically. In other words: the numerical value of the nth number is some function of n.

a - value of a member of the numerical sequence;

n is its serial number;

f(n) is a function where the ordinal in the numeric sequence n is the argument.

Definition

An arithmetic progression is usually called a numerical sequence in which each subsequent term is greater (less) than the previous one by the same number. The formula for the nth member of an arithmetic sequence is as follows:

a n - the value of the current member of the arithmetic progression;

a n+1 - the formula of the next number;

d - difference (a certain number).

It is easy to determine that if the difference is positive (d>0), then each subsequent member of the series under consideration will be greater than the previous one, and such an arithmetic progression will be increasing.

In the graph below, it is easy to see why numerical sequence called "increasing".

In cases where the difference is negative (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

The value of the specified member

Sometimes it is necessary to determine the value of some arbitrary term a n of an arithmetic progression. You can do this by calculating successively the values ​​of all members of the arithmetic progression, from the first to the desired one. However, this way is not always acceptable if, for example, it is necessary to find the value of the five thousandth or eight millionth term. The traditional calculation will take a long time. However, a specific arithmetic progression can be investigated using certain formulas. There is also a formula for the nth term: the value of any member of an arithmetic progression can be determined as the sum of the first member of the progression with the difference of the progression, multiplied by the number of the desired member, minus one.

The formula is universal for increasing and decreasing progression.

An example of calculating the value of a given member

Let's solve the following problem of finding the value of the n-th member of an arithmetic progression.

Condition: there is an arithmetic progression with parameters:

The first member of the sequence is 3;

The difference in the number series is 1.2.

Task: it is necessary to find the value of 214 terms

Solution: to determine the value of a given member, we use the formula:

a(n) = a1 + d(n-1)

Substituting the data from the problem statement into the expression, we have:

a(214) = a1 + d(n-1)

a(214) = 3 + 1.2 (214-1) = 258.6

Answer: The 214th member of the sequence is equal to 258.6.

The advantages of this calculation method are obvious - the entire solution takes no more than 2 lines.

Sum of a given number of members

Very often, in a given arithmetic series, it is required to determine the sum of the values ​​of some of its segments. It also doesn't need to calculate the values ​​of each term and then sum them up. This method is applicable if the number of terms whose sum must be found is small. In other cases, it is more convenient to use the following formula.

The sum of the members of an arithmetic progression from 1 to n is equal to the sum of the first and nth members, multiplied by the member number n and divided by two. If in the formula the value of the nth member is replaced by the expression from the previous paragraph of the article, we get:

Calculation example

For example, let's solve a problem with the following conditions:

The first term of the sequence is zero;

The difference is 0.5.

In the problem, it is required to determine the sum of the terms of the series from 56 to 101.

Solution. Let's use the formula for determining the sum of the progression:

s(n) = (2∙a1 + d∙(n-1))∙n/2

First, we determine the sum of the values ​​of 101 members of the progression by substituting the given conditions of our problem into the formula:

s 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2 525

Obviously, in order to find out the sum of the terms of the progression from the 56th to the 101st, it is necessary to subtract S 55 from S 101.

s 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

So the sum of the arithmetic progression for this example is:

s 101 - s 55 \u003d 2,525 - 742.5 \u003d 1,782.5

Example of practical application of arithmetic progression

At the end of the article, let's return to the example of the arithmetic sequence given in the first paragraph - a taximeter (taxi car meter). Let's consider such an example.

Getting into a taxi (which includes 3 km) costs 50 rubles. Each subsequent kilometer is paid at the rate of 22 rubles / km. Travel distance 30 km. Calculate the cost of the trip.

1. Let's discard the first 3 km, the price of which is included in the landing cost.

30 - 3 = 27 km.

2. Further calculation is nothing more than parsing an arithmetic number series.

The member number is the number of kilometers traveled (minus the first three).

The value of the member is the sum.

The first term in this problem will be equal to a 1 = 50 rubles.

Progression difference d = 22 p.

the number of interest to us is the value of the (27 + 1)th member of the arithmetic progression - the meter reading at the end of the 27th kilometer is 27.999 ... = 28 km.

a 28 \u003d 50 + 22 ∙ (28 - 1) \u003d 644

Calculations of calendar data for an arbitrarily long period are based on formulas describing certain numerical sequences. In astronomy, the length of the orbit is geometrically dependent on the distance of a celestial body from the star. In addition, various numerical series are successfully used in statistics and other applied branches of mathematics.

Another kind of number sequence is geometric

A geometric progression is characterized by a higher rate of change than an arithmetic one. It is no coincidence that in politics, sociology, medicine, often, in order to show the high speed of the spread of a particular phenomenon, for example, a disease during an epidemic, they say that the process develops exponentially.

The N-th member of the geometric number series differs from the previous one in that it is multiplied by some constant number - the denominator, for example, the first member is 1, the denominator is 2, respectively, then:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - the value of the current member of the geometric progression;

b n+1 - the formula of the next member of the geometric progression;

q is the denominator of a geometric progression (constant number).

If the graph of an arithmetic progression is a straight line, then the geometric one draws a slightly different picture:

As in the case of arithmetic, a geometric progression has a formula for the value of an arbitrary member. Any nth term of a geometric progression is equal to the product of the first term and the denominator of the progression to the power of n reduced by one:

Example. We have a geometric progression with the first term equal to 3 and the denominator of the progression equal to 1.5. Find the 5th term of the progression

b 5 \u003d b 1 ∙ q (5-1) \u003d 3 ∙ 1.5 4 \u003d 15.1875

The sum of a given number of members is also calculated using a special formula. The sum of the first n members of a geometric progression is equal to the difference between the product of the nth member of the progression and its denominator and the first member of the progression, divided by the denominator reduced by one:

If b n is replaced using the formula discussed above, the value of the sum of the first n members of the considered number series will take the form:

Example. The geometric progression starts with the first term equal to 1. The denominator is set equal to 3. Let's find the sum of the first eight terms.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

What is the essence of the formula?

This formula allows you to find any BY HIS NUMBER" n" .

Of course, you need to know the first term a 1 and progression difference d, well, without these parameters, you can’t write down a specific progression.

It is not enough to memorize (or cheat) this formula. It is necessary to assimilate its essence and apply the formula in various problems. Yes, and do not forget at the right time, yes ...) How not forget- I do not know. But how to remember If needed, I'll give you a hint. For those who master the lesson to the end.)

So, let's deal with the formula of the n-th member of an arithmetic progression.

What is a formula in general - we imagine.) What is an arithmetic progression, a member number, a progression difference - is clearly stated in the previous lesson. Take a look if you haven't read it. Everything is simple there. It remains to figure out what nth member.

The progression in general can be written as a series of numbers:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1- denotes the first term of an arithmetic progression, a 3- third member a 4- fourth, and so on. If we are interested in the fifth term, let's say we are working with a 5, if one hundred and twentieth - from a 120.

How to define in general any member of an arithmetic progression, s any number? Very simple! Like this:

a n

That's what it is n-th member of an arithmetic progression. Under the letter n all the numbers of members are hidden at once: 1, 2, 3, 4, and so on.

And what does such a record give us? Just think, instead of a number, they wrote down a letter ...

This notation gives us a powerful tool for working with arithmetic progressions. Using the notation a n, we can quickly find any member any arithmetic progression. And a bunch of tasks to solve in progression. You will see further.

In the formula of the nth member of an arithmetic progression:

a n = a 1 + (n-1)d

a 1- the first member of the arithmetic progression;

n- member number.

The formula links the key parameters of any progression: a n ; a 1 ; d and n. Around these parameters, all the puzzles revolve in progression.

The nth term formula can also be used to write a specific progression. For example, in the problem it can be said that the progression is given by the condition:

a n = 5 + (n-1) 2.

Such a problem can even confuse ... There is no series, no difference ... But, comparing the condition with the formula, it is easy to figure out that in this progression a 1 \u003d 5, and d \u003d 2.

And it can be even angrier!) If we take the same condition: a n = 5 + (n-1) 2, yes, open the brackets and give similar ones? We get a new formula:

an = 3 + 2n.

it Only not general, but for a specific progression. This is where the pitfall lies. Some people think that the first term is a three. Although in reality the first member is a five ... A little lower we will work with such a modified formula.

In tasks for progression, there is another notation - a n+1. This is, you guessed it, the "n plus the first" term of the progression. Its meaning is simple and harmless.) This is a member of the progression, the number of which is greater than the number n by one. For example, if in some problem we take for a n fifth term, then a n+1 will be the sixth member. Etc.

Most often the designation a n+1 occurs in recursive formulas. Do not be afraid of this terrible word!) This is just a way of expressing a term of an arithmetic progression through the previous one. Suppose we are given an arithmetic progression in this form, using the recurrent formula:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

The fourth - through the third, the fifth - through the fourth, and so on. And how to count immediately, say the twentieth term, a 20? But no way!) While the 19th term is not known, the 20th cannot be counted. This is the fundamental difference between the recursive formula and the formula of the nth term. Recursive works only through previous term, and the formula of the nth term - through the first and allows straightaway find any member by its number. Not counting the whole series of numbers in order.

In an arithmetic progression, a recursive formula can easily be turned into a regular one. Count a pair of consecutive terms, calculate the difference d, find, if necessary, the first term a 1, write the formula in the usual form, and work with it. In the GIA, such tasks are often found.

Application of the formula of the n-th member of an arithmetic progression.

First, let's look at the direct application of the formula. At the end of the previous lesson there was a problem:

Given an arithmetic progression (a n). Find a 121 if a 1 =3 and d=1/6.

This problem can be solved without any formulas, simply based on the meaning of the arithmetic progression. Add, yes add ... An hour or two.)

And according to the formula, the solution will take less than a minute. You can time it.) We decide.

The conditions provide all the data for using the formula: a 1 \u003d 3, d \u003d 1/6. It remains to be seen what n. No problem! We need to find a 121. Here we write:

Please pay attention! Instead of an index n a specific number appeared: 121. Which is quite logical.) We are interested in the member of the arithmetic progression number one hundred twenty one. This will be our n. It is this meaning n= 121 we will substitute further into the formula, in brackets. Substitute all the numbers in the formula and calculate:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

That's all there is to it. Just as quickly one could find the five hundred and tenth member, and the thousand and third, any. We put instead n the desired number in the index of the letter " a" and in brackets, and we consider.

Let me remind you the essence: this formula allows you to find any term of an arithmetic progression BY HIS NUMBER" n" .

Let's solve the problem smarter. Let's say we have the following problem:

Find the first term of the arithmetic progression (a n) if a 17 =-2; d=-0.5.

If you have any difficulties, I will suggest the first step. Write down the formula for the nth term of an arithmetic progression! Yes Yes. Hand write, right in your notebook:

a n = a 1 + (n-1)d

And now, looking at the letters of the formula, we understand what data we have and what is missing? Available d=-0.5, there is a seventeenth member ... Everything? If you think that's all, then you can't solve the problem, yes ...

We also have a number n! In the condition a 17 =-2 hidden two options. This is both the value of the seventeenth member (-2) and its number (17). Those. n=17. This "little thing" often slips past the head, and without it, (without the "little thing", not the head!) The problem cannot be solved. Although ... and without a head too.)

Now we can just stupidly substitute our data into the formula:

a 17 \u003d a 1 + (17-1) (-0.5)

Oh yes, a 17 we know it's -2. Okay, let's put it in:

-2 \u003d a 1 + (17-1) (-0.5)

That, in essence, is all. It remains to express the first term of the arithmetic progression from the formula, and calculate. You get the answer: a 1 = 6.

Such a technique - writing a formula and simply substituting known data - helps a lot in simple tasks. Well, you must, of course, be able to express a variable from a formula, but what to do!? Without this skill, mathematics can not be studied at all ...

Another popular problem:

Find the difference of the arithmetic progression (a n) if a 1 =2; a 15 =12.

What are we doing? You will be surprised, we write the formula!)

a n = a 1 + (n-1)d

Consider what we know: a 1 =2; a 15 =12; and (special highlight!) n=15. Feel free to substitute in the formula:

12=2 + (15-1)d

Let's do the arithmetic.)

12=2 + 14d

d=10/14 = 5/7

This is the correct answer.

So, tasks a n , a 1 and d decided. It remains to learn how to find the number:

The number 99 is a member of an arithmetic progression (a n), where a 1 =12; d=3. Find the number of this member.

We substitute the known quantities into the formula of the nth term:

a n = 12 + (n-1) 3

At first glance, there are two unknown quantities here: a n and n. But a n is some member of the progression with the number n... And this member of the progression we know! It's 99. We don't know his number. n, so this number also needs to be found. Substitute the progression term 99 into the formula:

99 = 12 + (n-1) 3

We express from the formula n, we think. We get the answer: n=30.

And now a problem on the same topic, but more creative):

Determine if the number 117 will be a member of an arithmetic progression (a n):

-3,6; -2,4; -1,2 ...

Let's write the formula again. What, there are no options? Hm... Why do we need eyes?) Do we see the first member of the progression? We see. This is -3.6. You can safely write: a 1 \u003d -3.6. Difference d can be determined from the series? It's easy if you know what the difference of an arithmetic progression is:

d = -2.4 - (-3.6) = 1.2

Yes, we did the simplest thing. It remains to deal with an unknown number n and an incomprehensible number 117. In the previous problem, at least it was known that it was the term of the progression that was given. But here we don’t even know that ... How to be!? Well, how to be, how to be... Turn on your creative abilities!)

We suppose that 117 is, after all, a member of our progression. With an unknown number n. And, just like in the previous problem, let's try to find this number. Those. we write the formula (yes-yes!)) and substitute our numbers:

117 = -3.6 + (n-1) 1.2

Again we express from the formulan, we count and get:

Oops! The number turned out fractional! One hundred and one and a half. And fractional numbers in progressions can not be. What conclusion do we draw? Yes! Number 117 is not member of our progression. It is somewhere between the 101st and 102nd member. If the number turned out to be natural, i.e. positive integer, then the number would be a member of the progression with the found number. And in our case, the answer to the problem will be: no.

Task based on a real version of the GIA:

The arithmetic progression is given by the condition:

a n \u003d -4 + 6.8n

Find the first and tenth terms of the progression.

Here the progression is set in an unusual way. Some kind of formula ... It happens.) However, this formula (as I wrote above) - also the formula of the n-th member of an arithmetic progression! She also allows find any member of the progression by its number.

We are looking for the first member. The one who thinks. that the first term is minus four, is fatally mistaken!) Because the formula in the problem is modified. The first term of an arithmetic progression in it hidden. Nothing, we'll find it now.)

Just as in the previous tasks, we substitute n=1 into this formula:

a 1 \u003d -4 + 6.8 1 \u003d 2.8

Here! The first term is 2.8, not -4!

Similarly, we are looking for the tenth term:

a 10 \u003d -4 + 6.8 10 \u003d 64

That's all there is to it.

And now, for those who have read up to these lines, the promised bonus.)

Suppose, in a difficult combat situation of the GIA or the Unified State Exam, you forgot the useful formula of the n-th member of an arithmetic progression. Something comes to mind, but somehow uncertainly ... Whether n there, or n+1, or n-1... How to be!?

Calm! This formula is easy to derive. Not very strict, but definitely enough for confidence and the right decision!) For the conclusion, it is enough to remember the elementary meaning of the arithmetic progression and have a couple of minutes of time. You just need to draw a picture. For clarity.

We draw a numerical axis and mark the first one on it. second, third, etc. members. And note the difference d between members. Like this:

We look at the picture and think: what is the second term equal to? Second one d:

a 2 =a 1 + 1 d

What is the third term? Third term equals first term plus two d.

a 3 =a 1 + 2 d

Do you get it? I don't put some words in bold for nothing. Okay, one more step.)

What is the fourth term? Fourth term equals first term plus three d.

a 4 =a 1 + 3 d

It's time to realize that the number of gaps, i.e. d, always one less than the number of the member you are looking for n. That is, up to the number n, number of gaps will be n-1. So, the formula will be (no options!):

a n = a 1 + (n-1)d

In general, visual pictures are very helpful in solving many problems in mathematics. Don't neglect the pictures. But if it is difficult to draw a picture, then ... only a formula!) In addition, the formula of the nth term allows you to connect the entire powerful arsenal of mathematics to the solution - equations, inequalities, systems, etc. You can't put a picture in an equation...

Tasks for independent decision.

For warm-up:

1. In arithmetic progression (a n) a 2 =3; a 5 \u003d 5.1. Find a 3 .

Hint: according to the picture, the problem is solved in 20 seconds ... According to the formula, it turns out more difficult. But for mastering the formula, it is more useful.) In Section 555, this problem is solved both by the picture and by the formula. Feel the difference!)

And this is no longer a warm-up.)

2. In arithmetic progression (a n) a 85 \u003d 19.1; a 236 =49, 3. Find a 3 .

What, reluctance to draw a picture?) Still! It's better in the formula, yes ...

3. Arithmetic progression is given by the condition:a 1 \u003d -5.5; a n+1 = a n +0.5. Find the one hundred and twenty-fifth term of this progression.

In this task, the progression is given in a recurrent way. But counting up to the one hundred and twenty-fifth term... Not everyone can do such a feat.) But the formula of the nth term is within the power of everyone!

4. Given an arithmetic progression (a n):

-148; -143,8; -139,6; -135,4, .....

Find the number of the smallest positive term of the progression.

5. According to the condition of task 4, find the sum of the smallest positive and largest negative members of the progression.

6. The product of the fifth and twelfth terms of an increasing arithmetic progression is -2.5, and the sum of the third and eleventh terms is zero. Find a 14 .

Not the easiest task, yes ...) Here the method "on the fingers" will not work. You have to write formulas and solve equations.

Answers (in disarray):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Happened? It's nice!)

Not everything works out? It happens. By the way, in the last task there is one subtle point. Attentiveness when reading the problem will be required. And logic.

The solution to all these problems is discussed in detail in Section 555. And the fantasy element for the fourth, and the subtle moment for the sixth, and general approaches for solving any problems for the formula of the nth term - everything is painted. I recommend.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

So let's sit down and start writing some numbers. For example:
You can write any numbers, and there can be as many as you like (in our case, them). No matter how many numbers we write, we can always say which of them is the first, which is the second, and so on to the last, that is, we can number them. This is an example of a number sequence:

Numeric sequence
For example, for our sequence:

The assigned number is specific to only one sequence number. In other words, there are no three second numbers in the sequence. The second number (like the -th number) is always the same.
The number with the number is called the -th member of the sequence.

We usually call the whole sequence some letter (for example,), and each member of this sequence - the same letter with an index equal to the number of this member: .

In our case:

Let's say we have a numerical sequence in which the difference between adjacent numbers is the same and equal.
For example:

etc.
Such a numerical sequence is called an arithmetic progression.
The term "progression" was introduced by the Roman author Boethius as early as the 6th century and was understood in a broader sense as an endless numerical sequence. The name "arithmetic" was transferred from the theory of continuous proportions, which the ancient Greeks were engaged in.

This is a numerical sequence, each member of which is equal to the previous one, added with the same number. This number is called the difference of an arithmetic progression and is denoted.

Try to determine which number sequences are an arithmetic progression and which are not:

a)
b)
c)
d)

Got it? Compare our answers:
Is arithmetic progression - b, c.
Is not arithmetic progression - a, d.

Let's return to the given progression () and try to find the value of its th member. Exists two way to find it.

1. Method

We can add to the previous value of the progression number until we reach the th term of the progression. It’s good that we don’t have much to summarize - only three values:

So, the -th member of the described arithmetic progression is equal to.

2. Method

What if we needed to find the value of the th term of the progression? The summation would have taken us more than one hour, and it is not a fact that we would not have made mistakes when adding the numbers.
Of course, mathematicians have come up with a way in which you do not need to add the difference of an arithmetic progression to the previous value. Look closely at the drawn picture ... Surely you have already noticed a certain pattern, namely:

For example, let's see what makes up the value of the -th member of this arithmetic progression:


In other words:

Try to independently find in this way the value of a member of this arithmetic progression.

Calculated? Compare your entries with the answer:

Pay attention that you got exactly the same number as in the previous method, when we successively added the members of an arithmetic progression to the previous value.
Let's try to "depersonalize" this formula - we bring it into a general form and get:

Arithmetic progression equation.

Arithmetic progressions are either increasing or decreasing.

Increasing- progressions in which each subsequent value of the terms is greater than the previous one.
For example:

Descending- progressions in which each subsequent value of the terms is less than the previous one.
For example:

The derived formula is used in the calculation of terms in both increasing and decreasing terms of an arithmetic progression.
Let's check it out in practice.
We are given an arithmetic progression consisting of the following numbers:


Since then:

Thus, we were convinced that the formula works both in decreasing and in increasing arithmetic progression.
Try to find the -th and -th members of this arithmetic progression on your own.

Let's compare the results:

Arithmetic progression property

Let's complicate the task - we derive the property of an arithmetic progression.
Suppose we are given the following condition:
- arithmetic progression, find the value.
It's easy, you say, and start counting according to the formula you already know:

Let, a, then:

Absolutely right. It turns out that we first find, then add it to the first number and get what we are looking for. If the progression is represented by small values, then there is nothing complicated about it, but what if we are given numbers in the condition? Agree, there is a possibility of making mistakes in the calculations.
Now think, is it possible to solve this problem in one step using any formula? Of course, yes, and we will try to bring it out now.

Let's denote the desired term of the arithmetic progression as, we know the formula for finding it - this is the same formula that we derived at the beginning:
, then:

  • the previous member of the progression is:
  • the next term of the progression is:

Let's sum the previous and next members of the progression:

It turns out that the sum of the previous and subsequent members of the progression is twice the value of the member of the progression located between them. In other words, in order to find the value of a progression member with known previous and successive values, it is necessary to add them and divide by.

That's right, we got the same number. Let's fix the material. Calculate the value for the progression yourself, because it is not difficult at all.

Well done! You know almost everything about progression! It remains to find out only one formula, which, according to legend, one of the greatest mathematicians of all time, the "king of mathematicians" - Karl Gauss, easily deduced for himself ...

When Carl Gauss was 9 years old, the teacher, busy checking the work of students from other classes, asked the following task at the lesson: "Calculate the sum of all natural numbers from up to (according to other sources up to) inclusive." What was the surprise of the teacher when one of his students (it was Karl Gauss) after a minute gave the correct answer to the task, while most of the classmates of the daredevil after long calculations received the wrong result ...

Young Carl Gauss noticed a pattern that you can easily notice.
Let's say we have an arithmetic progression consisting of -ti members: We need to find the sum of the given members of the arithmetic progression. Of course, we can manually sum all the values, but what if we need to find the sum of its terms in the task, as Gauss was looking for?

Let's depict the progression given to us. Look closely at the highlighted numbers and try to perform various mathematical operations with them.


Tried? What did you notice? Correctly! Their sums are equal


Now answer, how many such pairs will there be in the progression given to us? Of course, exactly half of all numbers, that is.
Based on the fact that the sum of two terms of an arithmetic progression is equal, and similar equal pairs, we get that the total sum is equal to:
.
Thus, the formula for the sum of the first terms of any arithmetic progression will be:

In some problems, we do not know the th term, but we know the progression difference. Try to substitute in the sum formula, the formula of the th member.
What did you get?

Well done! Now let's return to the problem that was given to Carl Gauss: calculate for yourself what the sum of numbers starting from the -th is, and the sum of the numbers starting from the -th.

How much did you get?
Gauss turned out that the sum of the terms is equal, and the sum of the terms. Is that how you decided?

In fact, the formula for the sum of members of an arithmetic progression was proved by the ancient Greek scientist Diophantus back in the 3rd century, and throughout this time, witty people used the properties of an arithmetic progression with might and main.
For example, imagine Ancient Egypt and the largest construction site of that time - the construction of a pyramid ... The figure shows one side of it.

Where is the progression here you say? Look carefully and find a pattern in the number of sand blocks in each row of the pyramid wall.


Why not an arithmetic progression? Count how many blocks are needed to build one wall if block bricks are placed in the base. I hope you will not count by moving your finger across the monitor, do you remember the last formula and everything we said about arithmetic progression?

In this case, the progression looks like this:
Arithmetic progression difference.
The number of members of an arithmetic progression.
Let's substitute our data into the last formulas (we count the number of blocks in 2 ways).

Method 1.

Method 2.

And now you can also calculate on the monitor: compare the obtained values ​​​​with the number of blocks that are in our pyramid. Did it agree? Well done, you have mastered the sum of the th terms of an arithmetic progression.
Of course, you can’t build a pyramid from the blocks at the base, but from? Try to calculate how many sand bricks are needed to build a wall with this condition.
Did you manage?
The correct answer is blocks:

Workout

Tasks:

  1. Masha is getting in shape for the summer. Every day she increases the number of squats by. How many times will Masha squat in weeks if she did squats at the first workout.
  2. What is the sum of all odd numbers contained in.
  3. When storing logs, lumberjacks stack them in such a way that each top layer contains one less log than the previous one. How many logs are in one masonry, if the base of the masonry is logs.

Answers:

  1. Let us define the parameters of the arithmetic progression. In this case
    (weeks = days).

    Answer: In two weeks, Masha should squat once a day.

  2. First odd number, last number.
    Arithmetic progression difference.
    The number of odd numbers in - half, however, check this fact using the formula for finding the -th member of an arithmetic progression:

    The numbers do contain odd numbers.
    We substitute the available data into the formula:

    Answer: The sum of all odd numbers contained in is equal to.

  3. Recall the problem about the pyramids. For our case, a , since each top layer is reduced by one log, there are only a bunch of layers, that is.
    Substitute the data in the formula:

    Answer: There are logs in the masonry.

Summing up

  1. - a numerical sequence in which the difference between adjacent numbers is the same and equal. It is increasing and decreasing.
  2. Finding formula th member of an arithmetic progression is written by the formula - , where is the number of numbers in the progression.
  3. Property of members of an arithmetic progression- - where - the number of numbers in the progression.
  4. The sum of the members of an arithmetic progression can be found in two ways:

    , where is the number of values.

ARITHMETIC PROGRESSION. AVERAGE LEVEL

Numeric sequence

Let's sit down and start writing some numbers. For example:

You can write any numbers, and there can be as many as you like. But you can always tell which of them is the first, which is the second, and so on, that is, we can number them. This is an example of a number sequence.

Numeric sequence is a set of numbers, each of which can be assigned a unique number.

In other words, each number can be associated with a certain natural number, and only one. And we will not assign this number to any other number from this set.

The number with the number is called the -th member of the sequence.

We usually call the whole sequence some letter (for example,), and each member of this sequence - the same letter with an index equal to the number of this member: .

It is very convenient if the -th member of the sequence can be given by some formula. For example, the formula

sets the sequence:

And the formula is the following sequence:

For example, an arithmetic progression is a sequence (the first term here is equal, and the difference). Or (, difference).

nth term formula

We call recurrent a formula in which, in order to find out the -th term, you need to know the previous or several previous ones:

To find, for example, the th term of the progression using such a formula, we have to calculate the previous nine. For example, let. Then:

Well, now it's clear what the formula is?

In each line, we add to, multiplied by some number. For what? Very simple: this is the number of the current member minus:

Much more comfortable now, right? We check:

Decide for yourself:

In an arithmetic progression, find the formula for the nth term and find the hundredth term.

Solution:

The first member is equal. And what is the difference? And here's what:

(after all, it is called the difference because it is equal to the difference of successive members of the progression).

So the formula is:

Then the hundredth term is:

What is the sum of all natural numbers from to?

According to legend, the great mathematician Carl Gauss, being a 9-year-old boy, calculated this amount in a few minutes. He noticed that the sum of the first and last number is equal, the sum of the second and penultimate is the same, the sum of the third and the 3rd from the end is the same, and so on. How many such pairs are there? That's right, exactly half the number of all numbers, that is. So,

The general formula for the sum of the first terms of any arithmetic progression will be:

Example:
Find the sum of all two-digit multiples.

Solution:

The first such number is this. Each next is obtained by adding a number to the previous one. Thus, the numbers of interest to us form an arithmetic progression with the first term and the difference.

The formula for the th term for this progression is:

How many terms are in the progression if they must all be two digits?

Very easy: .

The last term of the progression will be equal. Then the sum:

Answer: .

Now decide for yourself:

  1. Every day the athlete runs 1m more than the previous day. How many kilometers will he run in weeks if he ran km m on the first day?
  2. A cyclist rides more miles each day than the previous one. On the first day he traveled km. How many days does he have to drive to cover a kilometer? How many kilometers will he travel on the last day of the journey?
  3. The price of a refrigerator in the store is reduced by the same amount every year. Determine how much the price of a refrigerator decreased every year if, put up for sale for rubles, six years later it was sold for rubles.

Answers:

  1. The most important thing here is to recognize the arithmetic progression and determine its parameters. In this case, (weeks = days). You need to determine the sum of the first terms of this progression:
    .
    Answer:
  2. Here it is given:, it is necessary to find.
    Obviously, you need to use the same sum formula as in the previous problem:
    .
    Substitute the values:

    The root obviously doesn't fit, so the answer.
    Let's calculate the distance traveled over the last day using the formula of the -th member:
    (km).
    Answer:

  3. Given: . Find: .
    It doesn't get easier:
    (rub).
    Answer:

ARITHMETIC PROGRESSION. BRIEFLY ABOUT THE MAIN

This is a numerical sequence in which the difference between adjacent numbers is the same and equal.

Arithmetic progression is increasing () and decreasing ().

For example:

The formula for finding the n-th member of an arithmetic progression

is written as a formula, where is the number of numbers in the progression.

Property of members of an arithmetic progression

It makes it easy to find a member of the progression if its neighboring members are known - where is the number of numbers in the progression.

The sum of the members of an arithmetic progression

There are two ways to find the sum:

Where is the number of values.

Where is the number of values.

THE REMAINING 2/3 ARTICLES ARE AVAILABLE ONLY TO YOUCLEVER STUDENTS!

Become a student of YouClever,

Prepare for the OGE or USE in mathematics at the price of "a cup of coffee per month",

And also get unlimited access to the "YouClever" textbook, the "100gia" training program (solution book), unlimited trial USE and OGE, 6000 tasks with analysis of solutions and other YouClever and 100gia services.

Attention!
There are additional
material in Special Section 555.
For those who strongly "not very..."
And for those who "very much...")

An arithmetic progression is a series of numbers in which each number is greater (or less) than the previous one by the same amount.

This topic is often difficult and incomprehensible. Letter indexes, the nth member of the progression, the difference of the progression - all this is somehow confusing, yes ... Let's figure out the meaning of the arithmetic progression and everything will work out right away.)

The concept of arithmetic progression.

Arithmetic progression is a very simple and clear concept. Doubt? In vain.) See for yourself.

I'll write an unfinished series of numbers:

1, 2, 3, 4, 5, ...

Can you extend this line? What numbers will go next, after the five? Everyone ... uh ..., in short, everyone will figure out that the numbers 6, 7, 8, 9, etc. will go further.

Let's complicate the task. I give an unfinished series of numbers:

2, 5, 8, 11, 14, ...

You can catch the pattern, extend the series, and name seventh row number?

If you figured out that this number is 20 - I congratulate you! You not only felt key points of an arithmetic progression, but also successfully used them in business! If you don't understand, read on.

Now let's translate the key points from sensations into mathematics.)

First key point.

Arithmetic progression deals with series of numbers. This is confusing at first. We are used to solving equations, building graphs and all that ... And then extend the series, find the number of the series ...

It's OK. It's just that progressions are the first acquaintance with a new branch of mathematics. The section is called "Series" and works with series of numbers and expressions. Get used to it.)

Second key point.

In an arithmetic progression, any number differs from the previous one by the same amount.

In the first example, this difference is one. Whatever number you take, it is one more than the previous one. In the second - three. Any number is three times greater than the previous one. Actually, it is this moment that gives us the opportunity to catch the pattern and calculate the subsequent numbers.

Third key point.

This moment is not striking, yes ... But very, very important. Here he is: each progression number is in its place. There is the first number, there is the seventh, there is the forty-fifth, and so on. If you confuse them haphazardly, the pattern will disappear. The arithmetic progression will also disappear. It's just a series of numbers.

That's the whole point.

Of course, new terms and notation appear in the new topic. They need to know. Otherwise, you won't understand the task. For example, you have to decide something like:

Write down the first six terms of the arithmetic progression (a n) if a 2 = 5, d = -2.5.

Does it inspire?) Letters, some indexes... And the task, by the way, couldn't be easier. You just need to understand the meaning of the terms and notation. Now we will master this matter and return to the task.

Terms and designations.

Arithmetic progression is a series of numbers in which each number is different from the previous one by the same amount.

This value is called . Let's deal with this concept in more detail.

Arithmetic progression difference.

Arithmetic progression difference is the amount by which any progression number more the previous one.

One important point. Please pay attention to the word "more". Mathematically, this means that each progression number is obtained adding the difference of an arithmetic progression to the previous number.

To calculate, let's say second numbers of the row, it is necessary to first number add this very difference of an arithmetic progression. For calculation fifth- the difference is necessary add to fourth well, etc.

Arithmetic progression difference may be positive then each number of the series will turn out to be real more than the previous one. This progression is called increasing. For example:

8; 13; 18; 23; 28; .....

Here each number is adding positive number, +5 to the previous one.

The difference can be negative then each number in the series will be less than the previous one. This progression is called (you won't believe it!) decreasing.

For example:

8; 3; -2; -7; -12; .....

Here every number is obtained too adding to the previous, but already negative number, -5.

By the way, when working with a progression, it is very useful to immediately determine its nature - whether it is increasing or decreasing. It helps a lot to find your bearings in the decision, to detect your mistakes and correct them before it's too late.

Arithmetic progression difference usually denoted by the letter d.

How to find d? Very simple. It is necessary to subtract from any number of the series previous number. Subtract. By the way, the result of subtraction is called "difference".)

Let's define, for example, d for an increasing arithmetic progression:

2, 5, 8, 11, 14, ...

We take any number of the row that we want, for example, 11. Subtract from it the previous number those. eight:

This is the correct answer. For this arithmetic progression, the difference is three.

You can just take any number of progressions, because for a specific progression d-always the same. At least somewhere at the beginning of the row, at least in the middle, at least anywhere. You can not take only the very first number. Just because the very first number no previous.)

By the way, knowing that d=3, finding the seventh number of this progression is very simple. We add 3 to the fifth number - we get the sixth, it will be 17. We add three to the sixth number, we get the seventh number - twenty.

Let's define d for a decreasing arithmetic progression:

8; 3; -2; -7; -12; .....

I remind you that, regardless of the signs, to determine d needed from any number take away the previous one. We choose any number of progression, for example -7. His previous number is -2. Then:

d = -7 - (-2) = -7 + 2 = -5

The difference of an arithmetic progression can be any number: integer, fractional, irrational, any.

Other terms and designations.

Each number in the series is called member of an arithmetic progression.

Each member of the progression has his number. The numbers are strictly in order, without any tricks. First, second, third, fourth, etc. For example, in the progression 2, 5, 8, 11, 14, ... two is the first member, five is the second, eleven is the fourth, well, you understand ...) Please clearly understand - the numbers themselves can be absolutely any, whole, fractional, negative, whatever, but numbering- strictly in order!

How to write a progression in general form? No problem! Each number in the series is written as a letter. To denote an arithmetic progression, as a rule, the letter is used a. The member number is indicated by the index at the bottom right. Members are written separated by commas (or semicolons), like this:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 is the first number a 3- third, etc. Nothing tricky. You can write this series briefly like this: (a n).

There are progressions finite and infinite.

ultimate the progression has a limited number of members. Five, thirty-eight, whatever. But it's a finite number.

Endless progression - has an infinite number of members, as you might guess.)

You can write a final progression through a series like this, all members and a dot at the end:

a 1 , a 2 , a 3 , a 4 , a 5 .

Or like this, if there are many members:

a 1 , a 2 , ... a 14 , a 15 .

In a short entry, you will have to additionally indicate the number of members. For example (for twenty members), like this:

(a n), n = 20

An infinite progression can be recognized by the ellipsis at the end of the row, as in the examples in this lesson.

Now you can already solve tasks. The tasks are simple, purely for understanding the meaning of the arithmetic progression.

Examples of tasks for arithmetic progression.

Let's take a closer look at the task above:

1. Write down the first six members of the arithmetic progression (a n), if a 2 = 5, d = -2.5.

We translate the task into understandable language. Given an infinite arithmetic progression. The second number of this progression is known: a 2 = 5. Known progression difference: d = -2.5. We need to find the first, third, fourth, fifth and sixth members of this progression.

For clarity, I will write down a series according to the condition of the problem. The first six members, where the second member is five:

a 1 , 5 , a 3 , a 4 , a 5 , a 6 ,....

a 3 = a 2 + d

We substitute in the expression a 2 = 5 and d=-2.5. Don't forget the minus!

a 3=5+(-2,5)=5 - 2,5 = 2,5

The third term is less than the second. Everything is logical. If the number is greater than the previous one negative value, so the number itself will be less than the previous one. Progression is decreasing. Okay, let's take it into account.) We consider the fourth member of our series:

a 4 = a 3 + d

a 4=2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5=0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

So, the terms from the third to the sixth have been calculated. This resulted in a series:

a 1 , 5 , 2.5 , 0 , -2.5 , -5 , ....

It remains to find the first term a 1 according to the well-known second. This is a step in the other direction, to the left.) Hence, the difference of the arithmetic progression d should not be added to a 2, a take away:

a 1 = a 2 - d

a 1=5-(-2,5)=5 + 2,5=7,5

That's all there is to it. Task response:

7,5, 5, 2,5, 0, -2,5, -5, ...

In passing, I note that we solved this task recurrent way. This terrible word means, only, the search for a member of the progression by the previous (adjacent) number. Other ways to work with progression will be discussed later.

One important conclusion can be drawn from this simple task.

Remember:

If we know at least one member and the difference of an arithmetic progression, we can find any member of this progression.

Remember? This simple conclusion allows us to solve most of the problems of the school course on this topic. All tasks revolve around three main parameters: member of an arithmetic progression, difference of a progression, number of a member of a progression. Everything.

Of course, all previous algebra is not cancelled.) Inequalities, equations, and other things are attached to the progression. But according to the progression- everything revolves around three parameters.

For example, consider some popular tasks on this topic.

2. Write the final arithmetic progression as a series if n=5, d=0.4, and a 1=3.6.

Everything is simple here. Everything is already given. You need to remember how the members of an arithmetic progression are calculated, count, and write down. It is advisable not to skip the words in the task condition: "final" and " n=5". In order not to count until you are completely blue in the face.) There are only 5 (five) members in this progression:

a 2 \u003d a 1 + d \u003d 3.6 + 0.4 \u003d 4

a 3 \u003d a 2 + d \u003d 4 + 0.4 \u003d 4.4

a 4 = a 3 + d = 4.4 + 0.4 = 4.8

a 5 = a 4 + d = 4.8 + 0.4 = 5.2

It remains to write down the answer:

3,6; 4; 4,4; 4,8; 5,2.

Another task:

3. Determine if the number 7 will be a member of an arithmetic progression (a n) if a 1 \u003d 4.1; d = 1.2.

Hmm... Who knows? How to define something?

How-how ... Yes, write down the progression in the form of a series and see if there will be a seven or not! We believe:

a 2 \u003d a 1 + d \u003d 4.1 + 1.2 \u003d 5.3

a 3 \u003d a 2 + d \u003d 5.3 + 1.2 \u003d 6.5

a 4 = a 3 + d = 6.5 + 1.2 = 7.7

4,1; 5,3; 6,5; 7,7; ...

Now it is clearly seen that we are just seven slipped through between 6.5 and 7.7! The seven did not get into our series of numbers, and, therefore, the seven will not be a member of the given progression.

Answer: no.

And here is a task based on a real version of the GIA:

4. Several consecutive members of the arithmetic progression are written out:

...; fifteen; X; 9; 6; ...

Here is a series without end and beginning. No member numbers, no difference d. It's OK. To solve the problem, it is enough to understand the meaning of an arithmetic progression. Let's see and see what we can to know from this line? What are the parameters of the three main ones?

Member numbers? There is not a single number here.

But there are three numbers and - attention! - word "consecutive" in condition. This means that the numbers are strictly in order, without gaps. Are there two in this row? neighboring known numbers? Yes there is! These are 9 and 6. So we can calculate the difference of an arithmetic progression! We subtract from the six previous number, i.e. nine:

There are empty spaces left. What number will be the previous one for x? Fifteen. So x can be easily found by simple addition. To 15 add the difference of an arithmetic progression:

That's all. Answer: x=12

We solve the following problems ourselves. Note: these puzzles are not for formulas. Purely for understanding the meaning of an arithmetic progression.) We just write down a series of numbers-letters, look and think.

5. Find the first positive term of the arithmetic progression if a 5 = -3; d = 1.1.

6. It is known that the number 5.5 is a member of the arithmetic progression (a n), where a 1 = 1.6; d = 1.3. Determine the number n of this member.

7. It is known that in an arithmetic progression a 2 = 4; a 5 \u003d 15.1. Find a 3 .

8. Several consecutive members of the arithmetic progression are written out:

...; 15.6; X; 3.4; ...

Find the term of the progression, denoted by the letter x.

9. The train started moving from the station, gradually increasing its speed by 30 meters per minute. What will be the speed of the train in five minutes? Give your answer in km/h.

10. It is known that in an arithmetic progression a 2 = 5; a 6 = -5. Find a 1.

Answers (in disarray): 7.7; 7.5; 9.5; 9; 0.3; four.

Everything worked out? Wonderful! You can master arithmetic progression at a higher level in the following lessons.

Didn't everything work out? No problem. In Special Section 555, all these problems are broken down into pieces.) And, of course, a simple practical technique is described that immediately highlights the solution of such tasks clearly, clearly, as in the palm of your hand!

By the way, in the puzzle about the train there are two problems on which people often stumble. One - purely by progression, and the second - common to any tasks in mathematics, and physics too. This is a translation of dimensions from one to another. It shows how these problems should be solved.

In this lesson, we examined the elementary meaning of an arithmetic progression and its main parameters. This is enough to solve almost all problems on this topic. Add d to the numbers, write a series, everything will be decided.

The finger solution works well for very short pieces of the series, as in the examples in this lesson. If the series is longer, the calculations become more difficult. For example, if in problem 9 in the question, replace "five minutes" on the "thirty-five minutes" the problem will become much worse.)

And there are also tasks that are simple in essence, but utterly absurd in terms of calculations, for example:

Given an arithmetic progression (a n). Find a 121 if a 1 =3 and d=1/6.

And what, we will add 1/6 many, many times?! Is it possible to kill yourself!?

You can.) If you do not know a simple formula by which you can solve such tasks in a minute. This formula will be in the next lesson. And that problem is solved there. In a minute.)

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

Mathematics has its own beauty, as does painting and poetry.

Russian scientist, mechanic N.E. Zhukovsky

Very common tasks in the entrance tests in mathematics are tasks related to the concept of an arithmetic progression. To successfully solve such problems, it is necessary to know the properties of an arithmetic progression well and have certain skills in their application.

Let us first recall the main properties of an arithmetic progression and present the most important formulas, associated with this concept.

Definition. Numeric sequence, in which each subsequent term differs from the previous one by the same number, called an arithmetic progression. At the same time, the numberis called the progression difference.

For an arithmetic progression, the formulas are valid

, (1)

where . Formula (1) is called the formula of the common term of an arithmetic progression, and formula (2) is the main property of an arithmetic progression: each member of the progression coincides with the arithmetic mean of its neighboring members and .

Note that it is precisely because of this property that the progression under consideration is called "arithmetic".

Formulas (1) and (2) above are summarized as follows:

(3)

To calculate the sum first members of an arithmetic progressionthe formula is usually used

(5) where and .

If we take into account the formula (1), then formula (5) implies

If we designate

where . Since , then formulas (7) and (8) are a generalization of the corresponding formulas (5) and (6).

In particular , from formula (5) it follows, what

Among the little-known to most students is the property of an arithmetic progression, formulated by means of the following theorem.

Theorem. If , then

Proof. If , then

The theorem has been proven.

For example , using the theorem, it can be shown that

Let's move on to the consideration of typical examples of solving problems on the topic "Arithmetic progression".

Example 1 Let and . Find .

Solution. Applying formula (6), we obtain . Since and , then or .

Example 2 Let three times more, and when dividing by in the quotient, it turns out 2 and the remainder is 8. Determine and.

Solution. The system of equations follows from the condition of the example

Since , , and , then from the system of equations (10) we obtain

The solution of this system of equations are and .

Example 3 Find if and .

Solution. According to formula (5), we have or . However, using property (9), we obtain .

Since and , then from the equality the equation follows or .

Example 4 Find if .

Solution.By formula (5) we have

However, using the theorem, one can write

From here and from formula (11) we obtain .

Example 5. Given: . Find .

Solution. Since , then . However , therefore .

Example 6 Let , and . Find .

Solution. Using formula (9), we obtain . Therefore, if , then or .

Since and then here we have a system of equations

Solving which, we get and .

Natural root of the equation is .

Example 7 Find if and .

Solution. Since according to formula (3) we have that , then the system of equations follows from the condition of the problem

If we substitute the expressioninto the second equation of the system, then we get or .

The roots of the quadratic equation are and .

Let's consider two cases.

1. Let , then . Since and , then .

In this case, according to formula (6), we have

2. If , then , and

Answer: and.

Example 8 It is known that and Find .

Solution. Taking into account formula (5) and the condition of the example, we write and .

This implies the system of equations

If we multiply the first equation of the system by 2, and then add it to the second equation, we get

According to formula (9), we have. In this connection, from (12) it follows or .

Since and , then .

Answer: .

Example 9 Find if and .

Solution. Since , and by condition , then or .

From formula (5) it is known, what . Since , then .

Consequently , here we have a system of linear equations

From here we get and . Taking into account formula (8), we write .

Example 10 Solve the equation.

Solution. It follows from the given equation that . Let's assume that , , and . In this case .

According to formula (1), we can write or .

Since , equation (13) has a unique suitable root .

Example 11. Find the maximum value provided that and .

Solution. Since , then the considered arithmetic progression is decreasing. In this regard, the expression takes on a maximum value when it is the number of the minimum positive member of the progression.

We use formula (1) and the fact, which and . Then we get that or .

Because , then or . However, in this inequalitylargest natural number, that's why .

If the values ​​, and are substituted into formula (6), then we get .

Answer: .

Example 12. Find the sum of all two-digit natural numbers that, when divided by 6, have a remainder of 5.

Solution. Denote by the set of all two-valued natural numbers, i.e. . Next, we construct a subset consisting of those elements (numbers) of the set that, when divided by the number 6, give a remainder of 5.

Easy to install, what . Obviously , that the elements of the setform an arithmetic progression, in which and .

To determine the cardinality (number of elements) of the set, we assume that . Since and , then formula (1) implies or . Taking into account formula (5), we obtain .

The above examples of solving problems can by no means claim to be exhaustive. This article is written on the basis of an analysis of modern methods for solving typical problems on a given topic. For a deeper study of methods for solving problems related to arithmetic progression, it is advisable to refer to the list of recommended literature.

1. Collection of tasks in mathematics for applicants to technical universities / Ed. M.I. Scanavi. - M .: World and Education, 2013. - 608 p.

2. Suprun V.P. Mathematics for high school students: additional sections of the school curriculum. – M.: Lenand / URSS, 2014. - 216 p.

3. Medynsky M.M. A complete course of elementary mathematics in tasks and exercises. Book 2: Number Sequences and Progressions. – M.: Editus, 2015. - 208 p.

Do you have any questions?

To get the help of a tutor - register.

site, with full or partial copying of the material, a link to the source is required.