Белки. Органические вещества. Углеводы. Белки Какой простой углевод служит мономером крахмала гликогена целлюлозы

Ответьте на следующие вопросы: Какие органеллы клетки выполняют пищеварительную функцию у простейших? Какое простейшее имеет клеточный «рот»? Какие

органоиды движения характерны для саркодовых? Назовите приспособление, при помощи которого одноклеточные животные переносят неблагоприятные условия. Из тел каких простейших образовались отложения известняков на морском дне?

. Химические элементы, входящие в состав углеродов 21. Количество молекул в моносахаридах 22. Количество мономеров в полисахаридах 23. Глюкозу, фруктозу,

галактозу, рибозу и дезоксирибозу относят к типу веществ 24. Мономер полисахаридах 25. Крахмал, хитин, целлюлоза, гликоген относится к группе веществ 26. Запасной углерод у растений 27. Запасной углерод у животных 28. Структурный углерод у растений 29. Структурный углерод у животных 30. Из глицерина и жирных кислот состоят молекулы 31. Самое энергоемкое органическое питательное вещество 32. Количество энергии, выделяемое при распаде белков 33. Количество энергии, выделяемое при распаде жиров 34. Количество энергии, выделяемое при распаде углеродов 35. Вместо одной из жирных кислот фосфорная кислота участвует в формирование молекулы 36. Фосфолипиды входят в состав 37. Мономером белков являются 38. Количество видов аминокислот в составе белков существует 39. Белки – катализаторы 40. Разнообразие молекул белков 41. Кроме ферментативной, одна из важнейших функций белков 42. Этих органических веществ в клетке больше всего 43. По типу веществ ферменты являются 44. Мономер нуклеиновых кислот 45. Нуклеотиды ДНК могут отличаться друг от друга только 46. Общее вещество Нуклеотиды ДНК и РНК 47. Углевод в Нуклеотидах ДНК 48. Углевод в Нуклеотидах РНК 49. Только для ДНК характерно азотистое основание 50. Только для РНК характерно азотистое основание 51. Двуцепочная Нуклеиновая кислота 52. Одноцепочная Нуклеиновая кислота 53. Типы химической связи между нуклеотидами в одной цепи ДНК 54. Типы химической связи между цепями ДНК 55. Двойная водородная связь в ДНК возникает между 56. Аденину комплемементарен 57. Гуанину комплемементарен 58. Хромосомы состоят из 59. Всего видов РНК существует 60. РНК в клетке находиться 61. Роль молекулы АТФ 62. Азотистое основание в молекуле АТФ 63. Тип углевода АТФ

Молекулярный уровень" 9 класс

1.Как называется органическое вещество,в молекулах которого содержатся атомы С,О,Н,выполняющее энегретическую и строительную функцию?
А-нуклеиновая кислота В-белок
Б-углевод Г-АТФ
2.Какие углеводы относятся к полимерам?
А-моносахариды Б-дисахариды В-полисахариды
3.К группе моносахаридов относят:
А-глюкозу Б-сахарозу В-целлюлозу
4.Какие из углеводов нерастворимы в воде?
А-глюкоза,фруктоза Б-крахмал В-рибоза,дезоксирибоза
5.Молекулы жиров образуются:
А-из глицерина,высших карбоновых кислот В-из глюкозы
Б-из аминокислот,воды Г-из этилового спирта,высших карбоновых кислот
6.Жиры выполняют в клетке функцию:
А-транспортную В-энергетическую
Б-каталитическую Г-информационную
7.К каким соединениям по отношению к воде относятся липиды?
А-гидрофильным Б-гидрофобным
8.Какое значение имеют жиры у животных?
А-структура мембран В-теплорегуляция
Б-источник энергии Г-источник воды Д-все перечисленное
9.Мономерами белков являются:
А-нуклеотиды Б-аминокислоты В-глюкоза Г-жиры
10. Важнейшее органическое вещество,входящее в состав клеток всех царств живой природы,обладающее первичной линейной конфигурацией,относится:
А-к полисахаридам В-к липидам
Б-к АТФ Г-к полипептидам
2. Напишите функции белков,приведите примеры.
3. Задача: По цепочки ДНК ААТГЦГАТГЦТТАГТТТАГГ, необходимо достроить комплементарную цепочку,и определить длину ДНК

Вариант 1

1. Дайте определение терминама) гидрофильные веществаб) полимер в) редупликация
2. Какие из перечисленных веществ являются гетерополимерами:а) инсулин б) крахмал в) РНК
3. Уберите лишнее из списка:C, Zn, O, N, H. Объясните свой выбор.
4. Установите соответствие между веществами и их функциямиВещества: Функции:а) белки 1. двигательнаяб) углеводы 2. запас пит. веществ 3. транспортная 4. регуляторная
5. Дана одна цепочка ДНК ААЦ- ГЦТ- ТАГ- ТГГ. Постройте комплементарную вторую цепочку.6. Выберите правильный ответ:1) Мономером белков являетсяа) нуклеотид б) аминокислотав) глюкоза г) глицерин2) Мономером крахмала являетсяа) нуклеотид б) аминокислотав) глюкоза г) глицерин3) Белки, регулирующие скорость и направление химических реакций в клетке а) гормоны б) ферменты в) витамины г) протеины

Вспомните!

Какие вещества называют биологическими полимерами?

Каково значение углеводов в природе?

Назовите известные вам белки. Какие функции они выполняют?

Углеводы (сахара). Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5 % сухой массы, а в некоторых растительных (например, клубни картофеля) их содержание достигает 90 % сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот (рис. 11). Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Широко распространена в природе фруктоза – фруктовый сахар, который значительно слаще других Сахаров. Этот моносахарид придает сладкий вкус плодам растений и меду.

Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространенный в природе дисахарид – сахароза, или тростниковый сахар, – состоит из глюкозы и фруктозы (рис. 12). Ее получают из сахарного тростника или сахарной свеклы. Именно она и есть тот самый «сахар», который мы покупаем в магазине.


Рис. 11. Структурные формулы моносахаридов


Рис. 12. Структурная формула сахарозы (дисахарида)


Рис. 13. Строение полисахаридов

Сложные углеводы – полисахариды, состоящие из простых Сахаров, выполняют в организме несколько важных функций (рис. 13). Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии.

Крахмал запасается в растительных клетках в виде так называемых крахмальных зерен. Больше всего его откладывается в клубнях картофеля и в семенах бобовых и злаков. Гликоген у позвоночных содержится главным образом в клетках печени и мышцах. Крахмал, гликоген и целлюлоза построены из молекул глюкозы.

Целлюлоза и хитин выполняют в живых организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Белки (полипептиды). Одними из наиболее важных органических соединений в живой природе являются белки. В каждой живой клетке присутствует одновременно более тысячи видов белковых молекул. И у каждого белка своя особая, только ему свойственная функция. О первостепенной роли этих сложных веществ догадывались еще в начале XX в., именно поэтому им дали название протеины (от греч. protos – первый). В различных клетках на долю белков приходится от 50 до 80 % сухой массы.


Рис. 14. Общая структурная формула аминокислот, входящих в состав белков

Строение белков. Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала (R) (рис. 14). Соединяясь, молекулы аминокислот образуют так называемые пептидные связи (рис. 15).

Две полипептидные цепи, из которых состоит гормон поджелудочной железы – инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин – белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий ее прочность, состоит из трех полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

Последовательное расположение аминокислотных остатков, соединенных пептидными связями, является первичной структурой белка и представляет собой линейную молекулу (рис. 16). Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации – вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу) или фибриллу. Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной.


Рис. 15. Образование пептидной связи между двумя аминокислотами


Рис. 16. Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структуры

Может существовать четвертичная структура – объединение нескольких белковых глобул или фибрилл в единый рабочий комплекс. Так, например, сложная молекула гемоглобина состоит из четырех полипептидов, и только в таком виде она может выполнять свою функцию.

Функции белков. Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 17, 18). Около 10 тыс. белков-ферментов служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.


Рис. 17. Основные группы белков

Вторая по величине группа белков выполняет структурную и двигательную функции. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают актин и миозин.

Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму.


Рис. 18. Синтезированные белки или остаются в клетке для внутриклеточного применения, или выводятся наружу для использования на уровне организма

Белки-гормоны обеспечивают регуляторную функцию.

Например, соматотропный гормон, вырабатываемый гипофизом, регулирует общий обмен веществ и влияет на рост. Недостаток или избыток этого гормона в детском возрасте приводит, соответственно, к развитию карликовости или гигантизма.

Чрезвычайно важна защитная функция белков. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свертываемость крови, предохраняя организм от кровопотери. Есть у белков и защитная функция несколько иного рода. Многие членистоногие, рыбы, змеи и другие животные выделяют токсины – сильные яды белковой природы. Белками являются и самые сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая функция этих полимеров. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Денатурация и ренатурация белков. Денатурация – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жестких условиях – и первичной структуры (рис. 19). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов и органических растворителей.


Рис. 19. Денатурация белка

Дезинфицирующее свойство этилового спирта основано на его способности вызывать денатурацию бактериальных белков, что приводит к гибели микроорганизмов.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трехмерную форму. Этот процесс называется ренатурацией, и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, т. е. от его первичной структуры.

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

2. Что такое моно– и дисахариды? Приведите примеры.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

5. Как образуются вторичная и третичная структуры белка?

6. Назовите известные вам функции белков.

7. Что такое денатурация белка? Что может явиться причиной денатурации?

<<< Назад
Вперед >>>
Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

8. Органические вещества. Углеводы. Белки

Вспомните!

Какие вещества называют биологическими полимерами?

Каково значение углеводов в природе?

Назовите известные вам белки. Какие функции они выполняют?

Углеводы (сахара). Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5 % сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90 % сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот (рис. 15). Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Широко распространена в природе фруктоза – фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду.

Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом . Самый распространённый в природе дисахарид – сахароза , или тростниковый сахар, – состоит из глюкозы и фруктозы (рис. 16). Её получают из сахарного тростника или сахарной свёклы. Именно она и есть тот самый сахар, который мы покупаем в магазине.

Сложные углеводы – полисахариды , состоящие из простых сахаров, выполняют в организме несколько важных функций (рис. 17). Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии.

Рис. 15. Структурные формулы моносахаридов

Рис. 16. Структурная формула сахарозы (дисахарида)

Рис. 17. Строение полисахаридов

Крахмал запасается в растительных клетках в виде так называемых крахмальных зёрен. Больше всего его откладывается в клубнях картофеля и в семенах бобовых и злаков. Гликоген у позвоночных содержится главным образом в клетках печени и мышцах. Крахмал, гликоген и целлюлоза построены из молекул глюкозы.

Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Белки (полипептиды). Одними из наиболее важных органических соединений в живой природе являются белки. В каждой живой клетке присутствует одновременно более тысячи видов белковых молекул. И у каждого белка своя особая, только ему свойственная функция. О первостепенной роли этих сложных веществ догадывались ещё в начале XX в., именно поэтому им дали название протеины (от греч. protos – первый). В различных клетках на долю белков приходится от 50 до 80 % сухой массы.

Строение белков . Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала (R) (рис. 18). Соединяясь, молекулы аминокислот образуют так называемые пептидные связи (рис. 19).

Рис. 18. Общая структурная формула аминокислот, входящих в состав белков

Рис. 19. Образование пептидной связи между двумя аминокислотами

Две полипептидные цепи, из которых состоит гормон поджелудочной железы – инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин – белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

Последовательное расположение аминокислотных остатков, соединённых пептидными связями, является первичной структурой белка и представляет собой линейную молекулу (рис. 20). Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации – вторичную структуру . И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной.

Может существовать четвертичная структура – объединение нескольких белковых глобул в единый рабочий комплекс. Так, например, сложная молекула гемоглобина состоит из четырёх полипептидов, и только в таком виде она может выполнять свою функцию.

Функции белков . Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций (рис. 21, 22). Около 10 тыс. белков-ферментов служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

Рис. 20. Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структуры

Вторая по величине группа белков выполняет структурную и двигательную функции. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани, а основным компонентом волос, рогов и перьев, ногтей и копыт является белок кератин. Сократительную функцию мышц обеспечивают актин и миозин.

Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму.

Белки-гормоны обеспечивают регуляторную функцию.

Например, соматотропный гормон, вырабатываемый гипофизом, регулирует общий обмен веществ и влияет на рост. Недостаток или избыток этого гормона в детском возрасте приводит соответственно к развитию карликовости или гигантизма.

Рис. 21. Основные группы белков

Чрезвычайно важна защитная функция белков. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины – защитные белки. Фибриноген и протромбин обеспечивают свёртываемость крови, предохраняя организм от кровопотери. Есть у белков и защитная функция несколько иного рода. Многие членистоногие, рыбы, змеи и другие животные выделяют токсины – сильные яды белковой природы. Белками являются и самые сильные микробные токсины, например ботулиновый, дифтерийный, холерный.

При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов, и тем самым реализуется энергетическая функция этих полимеров. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Рис. 22. Синтезированные белки или остаются в клетке для внутриклеточного применения, или выводятся наружу для использования на уровне организма

Рис. 23. Денатурация белка

Денатурация и ренатурация белков. Денатурация – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жёстких условиях – и первичной структуры (рис. 23). В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжёлых металлов и органических растворителей.

Дезинфицирующее свойство этилового спирта основано на его способности вызывать денатурацию бактериальных белков, что приводит к гибели микроорганизмов.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трёхмерную форму. Этот процесс называют ренатурацией , и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, т. е. от его первичной структуры.

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

2. Что такое моно– и дисахариды? Приведите примеры.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

5. Как образуются вторичная и третичная структуры белка?

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Подумайте! Выполните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

К настоящему времени выделено и изучено более тысячи ферментов, каждый из которых способен влиять на скорость той или иной биохимической реакции.

Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение, или кофермент. В качестве коферментов выступают различные вещества, как правило, витамины и неорганические – ионы различных металлов.

Как правило, ферменты строго специфичны, т. е. ускоряют только определённые реакции, хотя встречаются ферменты, которые катализируют несколько реакций. Такая избирательность действия ферментов связана с их строением. Активность фермента определяется не всей его молекулой, а определённым участком, который называют активным центром фермента. Форма и химическое строение активного центра таковы, что с ним могут связываться только определённые молекулы, которые подходят ферменту, как ключ замку. Вещество, с которым связывается фермент, называют субстратом. Иногда одна молекула фермента имеет несколько активных центров, что, естественно, ещё более ускоряет скорость катализируемого биохимического процесса.

На заключительном этапе химической реакции комплекс «фермент – субстрат» распадается на конечные продукты и свободный фермент. Освободившийся при этом активный центр фермента может снова принимать новые молекулы вещества-субстрата (рис. 24).

Рис. 24. Схема образования комплекса «фермент – субстрат»

Повторите и вспомните!

Человек

Обмен углеводов. В организм углеводы попадают в виде различных соединений: крахмал, гликоген, сахароза, фруктоза, глюкоза. Сложные углеводы начинают перевариваться уже в ротовой полости. В двенадцатиперстной кишке они расщепляются окончательно – до глюкозы и других простых углеводов. В тонком кишечнике простые углеводы всасываются в кровь и направляются в печень. Здесь избыток углеводов задерживается и превращается в гликоген, а оставшаяся часть глюкозы распределяется между всеми клетками тела. В организме глюкоза, прежде всего, является источником энергии. Расщепление 1 г глюкозы сопровождается выделением 17,6 кДж (4,2 ккал) энергии. Продукты распада углеводов (углекислый газ и вода) выводятся через лёгкие или с мочой. Главная роль в регуляции концентрации глюкозы в крови принадлежит гормонам поджелудочной железы и надпочечников.

Больше всего углеводов содержится в продуктах растительного происхождения. Обычно в пище человека встречаются такие углеводы, как крахмал, свекловичный сахар (сахароза) и фруктовый сахар. Особенно богаты крахмалом различные крупы, хлеб, картофель. Очень полезен фруктовый сахар, он легко усваивается организмом. Этого сахара много в мёде, фруктах и ягодах. Взрослому человеку необходимо получать с пищей не менее 150 г углеводов в сутки. При выполнении физически тяжёлых работ это количество необходимо увеличить в 1,5–2 раза. С точки зрения процессов обмена веществ введение в организм полисахаридов более рационально, чем моно– и дисахаридов. Действительно, относительно медленный распад крахмала в пищеварительной системе приводит к постепенному поступлению глюкозы в кровь. В случае же переедания сладкого концентрация глюкозы в крови растёт резко, скачкообразно, что негативно влияет на работу многих органов (в том числе поджелудочной железы).

Обмен белков. Попадая в организм, пищевые белки под действием ферментов расщепляются в желудочно-кишечном тракте до отдельных аминокислот и в таком виде всасываются в кровь. Главная функция этих аминокислот – пластическая, т. е. из них строятся все белки нашего организма. Реже белки используются как источники энергии: при распаде 1 г выделяется 17,6 кДж (4,2 ккал). Аминокислоты, входящие в состав белков нашего организма, подразделяют на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в нашем организме из других аминокислот, поступающих с пищей. К ним относятся глицин, серин и другие. Однако многие необходимые нам аминокислоты не синтезируются в нашем организме и поэтому должны постоянно поступать в организм в составе белков пищи. Такие аминокислоты называют незаменимыми . Среди них, например, валин, метионин, лейцин, лизин и некоторые другие. В случае дефицита незаменимых аминокислот возникает состояние «белкового голодания», приводящее к замедлению роста организма, ухудшению процессов самовозобновления клеток и тканей. Пищевые белки, содержащие все необходимые человеку аминокислоты, называют полноценными . К ним относят животные и некоторые растительные белки (бобовых растений). Пищевые белки, в составе которых отсутствуют какие-либо незаменимые аминокислоты, называют неполноценными (например, белки кукурузы, ячменя, пшеницы).

Большинство продуктов питания содержит белок. Богаты белком мясо, рыба, сыр, творог, яйца, горох, орехи. Особенно важны животные белки молодому растущему организму. Недостаток полноценных белков в пище приводит к замедлению роста. В сутки человеку необходимо съедать с пищей 100–120 г белка.

Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак, который в печени превращается в мочевину. Конечные продукты обмена белков выводятся из организма с мочой, по?том и в составе выдыхаемого воздуха.

Данный текст является ознакомительным фрагментом. Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

О природе родства, связывающего органические существа. Так как модифицированные потомки доминирующих видов, принадлежащих к обширным родам, склонны унаследовать преимущества, делавшие группы, к которым они принадлежат, обширными и их прародителей доминирующими, то тем

Из книги Заводи кого угодно, только НЕ КРОКОДИЛА! автора Орсаг Михай

Ну а белки? В шестидесятых годах я неоднократно пытался завести в доме и белок, но каждая такая попытка кончалась самым печальным образом. Через некоторое время белки слабели, задние конечности у них отнимались и несчастные животные в судорогах погибали. Поначалу я

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Диагностика и коррекция отклоняющегося поведения у собак автора Никольская Анастасия Всеволодовна

3.1. Органические поражения ЦНС В рамках онтогенетического подхода к причинам возникновения поведенческих расстройств следует отметить, что органические поражения ЦНС могут быть вызваны неправильно протекавшей беременностью, сложными родами, осложненным послеродовым

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

ГМ растения с заданным химическим составом и структурой молекул (аминокислоты, белки, углеводы) Основной закон рационального питания диктует необходимость соответствия уровней поступления и расхода энергии. Уменьшение энерготрат современного человека ведет к

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что такое углеводы, зачем они нужны организму и в каких продуктах содержатся? Углеводы (сахара) – обширная группа природных соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (то есть углерод плюс вода, отсюда название). Углеводы являются

Из книги Гены и развитие организма автора Нейфах Александр Александрович

2. Белки хроматина Мы уже знаем, что хроматин состоит из ДНК и гистонов в равном весовом количестве и негистоновых белков (НГБ), которых в неактивных районах хромосомы всего 0,2 веса ДНК, а в активных - более чем 1,2 (в среднем НГБ мепьше, чем ДНК). Мы знаем также, что гистоны

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

7. Органические вещества. Общая характеристика. Липиды Вспомните!В чём особенность строения атома углерода?Какую связь называют ковалентной?Какие вещества называют органическими?Какие продукты питания содержат большое количество жира?Общая характеристика

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

9. Органические вещества. Нуклеиновые кислоты Вспомните!Почему нуклеиновые кислоты относят к гетерополимерам?Что является мономером нуклеиновых кислот?Какие функции нуклеиновых кислот вам известны?Какие свойства живого определяются непосредственно строением и

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

2.1. Органические соединения в составе живых организмов Органические соединения характерны только для живых организмов. Можно сказать, что жизнь на Земле построена на основе углерода, который обладает рядом уникальных свойств. Основное значение для выполнения роли

Из книги автора

Углеводы Углеводы – это наиболее распространенная в природе группа органических веществ. Основная их функция – энергетическая. Все углеводы содержат гидроксильные группы (-ОН) вместе с альдегидной или кетогруппой. Выделяют три группы углеводов (табл. 2.1).Наибольшее

Из книги автора

Белки Белки имеют первостепенное значение в жизни организмов. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся в их организме белков. Например, в организме человека их известно более 5 млн.Белки – это полимеры,

Из книги автора

Белки Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная

Из книги автора

Углеводы Основными углеводами пищи являются моносахариды, олигосахариды и полисахариды, которые должны поступать в количестве 400–500 г в сутки. Углеводы пищи являются основным энергетическим материалом клетки, обеспечивают 60–70% суточного энергопотребления. Для обмена

Из книги автора

Глава 16. Углеводы тканей и пищи – обмен и функции Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде

Вопрос 1. Какие химические соединения называют углеводами?
Углеводы - большая группа органических соединений, входящих в состав живых клеток. Термин "углеводы" введен впервые отечественным ученым К.Шмидтом в середине прошлого столетия (1844 г.). В нем отражены представления о группе веществ, молекула которых отвечает общей формуле: Сn(Н2О)n -углерод и вода.
Углеводы принято делить на 3 группы: моносахариды (например, глюкоза, фруктоза, манноза), олигосахариды (включают от 2 до 10 остатков моносахаридов: сахароза, лактоза), полисахариды (высокомолекулярные соединения, например, гликоген, крахмал).
Угленоды выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток: сложный полисахарид хитин - главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается
17,6 кДж энергии. Крахмал у растенийй и гликоген у животных, откладываясь в клетках, служит энергетическим резервом.
Именно углеводы древних живых существ (прокариотов и растений) стали основой для образования ископаемого топлива - нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? Приведите примеры.
Моносахариды - это углеводы, количество атомов углерода (n) в которых относительно невелико (от 3 до 6-10). Моносахариды обычно существуют в циклической форме; наиболее важны среди них гексозы
(n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото¬nрая является важнейшим продуктом фотосинтеза растений и одним из основных источников энергии для животных; широко распространена также фруктоза - фруктовый сахар, придающий сладкий вкус плодам и меду. Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Тетрозы содержат 4 (n = 4), а триозы, соответственно, 3(n =3) атомов углерода. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Составные части (мономеры) дисахарида могут быть одинаковыми либо разными. Так, две глюкозы образуют мальтозу, а глюкоза и фруктоза - сахарозу. Мальтоза является промежуточным продуктом переваривания крахмала; Сахароза - тем самым сахаром, который можно купить в магазине.
Все они хорошо растворимы в воде и растворимость их значительно увеличивается с повышением температуры.

Вопрос 3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?
Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С6Н12О6) и обладает несколькими -ОН - группами. За счет установления связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гликоген) полимеры. Средний размер такого полимера - несколько тысяч молекул глюкозы.

Вопрос 4.Из каких органических соединений состоят белки?
Белки - высокомолекулярные полимерные органические вещества, определяющие структуру и жизнедеятельность клетки и организма в целом. Структурной единицей, мономером их биополимерной молекулы является аминокислота. В образовании белков принимают участие 20 аминокислот. В состав молекулы каждого белка входят определенные аминокислоты в свойственном этому белку количественном соотношении и порядке расположения в полипептидной цепи. Аминокислоты - органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кислотной группой (-СООН), аминогруппой
(-NН 2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Аминокислоты - амфотерные соединения, соединяющиеся друг с другом в молекуле белка с помощью пептидных связей. Этим обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп (- NH - СО -) с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксильной группой другой ковалентная. В данном случае она называется пептидной связью.
Соединение двух аминокислот называется дипептидом, трех - трипептидом и т. д., а соединение, состоящее из 20 аминокислотных остатков и более, - полипептидом.
Белки, входящие в состав живых организмов, включают сотни и тысячи аминокислот. Порядок их соединения в молекулах белков самый разнообразный, чем и определяется различие их свойств.

Вопрос 5. Как образуются вторичная и третичная структуры белка?
Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру (например, инсулин). Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру (например, кератин). Многие белки, например коллаген, функционируют в форме закрученной спирали. Полипептидные цепи, скручиваясь определенным образом в компактную структуру, образуют глобулу (шар), представляющую собой третичную структуру белка. Замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате способности к участию в биохимических реакциях. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы.

Вопрос 6. Назовите известные вам функции белков.
Белки выполняют следующие функции:
ферментативную (например, амилаза, расщепляет углеводы). Ферменты выполняют функцию катализаторов химических реакций и участвуют во всех биологических процессах.
структурную (например, входят в состав мембран клетки). Структурные белки участвуют в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и соединительной ткани, а кератин является основным компонентом волос, ногтей, перьев.
рецепторную (например, родопсин, способствует лучшему зрению).
транспортную (например, гемоглобин, переносит кислород или диоксид углерода).
защитную (например, иммуноглобулины, участвуют в образовании иммунитета).
двигательную (например, актин, миозин, участвуют в сокращении мышечных волокон). Сократительная функция белков обеспечивает организму возможность двигаться посредством сокращения мышц.
гормональную (например, инсулин, превращает глюкозу в гликоген). Белки-гормоны обеспечивают регуляторную функцию. Белковую природу имеет гормон роста (его избыток у ребенка приводит к гигантизму), гормоны, регулирующие работу почек, и др.
энергетическую (при расщеплении 1 г белка выделяется 4,2 ккал энергии). Энергетическую функцию белки начинают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Чаще мы наблюдаем, как пищевой белок, перевариваясь, расщепляется до аминокислот, из которых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?
Денатурация - это утрата белковой молекулой своего нормального («природного») строения: третичной, вторичной и даже первичной структуры. При денатурации белковый клубок и спираль раскручиваются; водородные, а затем и пептидные связи разрушаются. Денатурированный белок не способен выполнять свои функции. Причинами денатурации являются высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов, органических растворителей. Примером денатурации служит варка куриного яйца. Содержимое сырого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина - денатурация яичного белка альбумина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.
При улучшении условий денатурированный белок способен восстановить свою структуру вновь, если не разрушается его первичная структура. Этот процесс называется ренатурацией.

Вопрос 1. Какие химические соединения назы-вают углеводами?

Углеводы — это обширная группа природ-ных органических соединений. Углеводы под-разделяют на три основных класса: моносаха-риды, дисахариды и полисахариды. Дисахарид представляет собой соединение двух моносаха-ридов; полисахариды являются полимерами моносахаридов. Углеводы выполняют в живых организмах энергетическую, запасающую и строительную функции. Последняя особенно важна для растений, клеточная стенка которых в основном состоит из полисахарида целлюло-зы. Именно углеводы древних живых существ (прокариотов и растений) стали основой для об-разования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? При-ведите примеры.

Моносахариды — это углеводы, количест-во атомов углерода (n) в которых относительно невелико (от 3 до 6-10). Моносахариды обыч-но существуют в циклической форме; наибо-лее важны среди них гексозы (n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото-рая является важнейшим продуктом фотосин-теза растений и одним из основных источни-ков энергии для животных; широко распрост-ранена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пен-тозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Если в одной молекуле объединяются два моносахарида, такое соеди-нение называют дисахаридом. Составные части (мономеры) дисахарида могут быть оди-наковыми либо разными. Так, две глюкозы об-разуют мальтозу, а глюкоза и фруктоза — са-харозу. Мальтоза является промежуточным продуктом переваривания крахмала; сахаро-за — тем самым сахаром, который можно ку-пить в магазине.

Вопрос 3. Какой простой углевод служит моно-мером крахмала, гликогена, целлюлозы?

Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С 6 Н 12 0 6) и обладает не-сколькими ОН-группами. За счет установле-ния связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гли-коген) полимеры. Средний размер такого по-лимера — несколько тысяч молекул глюкозы.

Вопрос 4. Из каких органических соединений состоят белки?

Белки — это гетерополимеры, состоящие из 20 типов аминокислот, соединенных между собой особыми, так называемыми, пептидны-ми связями. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кис-лотной группой (-СООН), аминогруппой (-NH 2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Образование пеп-тидной связи происходит за счет соединения кислотной группы и аминогруппы двух ами-нокислот, расположенных рядом в молекуле белка.

Вопрос 5. Как образуются вторичная и третич-ная структуры белка?

Цепь аминокислот, составляющая основу молекулы белка, является его первичной структурой. Между положительно заряжен-ными аминогруппами и отрицательно заря-женными кислотными группами аминокис-лот возникают водородные связи. Образование этих связей вызывает сворачивание белковой молекулы в спираль.

Белковая спираль — вторичная структура белка. На следующем этапе за счет взаимодей-ствий между радикалами аминокислот белок сворачивается в клубок (глобулу) или нить (фибриллу). Такую структуру молекулы назы-вают третичной; именно она является биоло-гически активной формой белка, обладающей индивидуальной специфичностью и опреде-ленной функцией.

Вопрос 6. Назовите известные вам функции белков.

Белки выполняют в живых организмах чрезвычайно разнообразные функции.

Одна из самых многочисленных групп бел-ков — ферменты. Они выполняют функцию катализаторов химических реакций и уча-ствуют во всех биологических процессах.

Многие белки выполняют структурную функцию, участвуя в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и со-единительной ткани, а кератин является ос-новным компонентом волос, ногтей, перьев.

Сократительная функция белков обес-печивает организму возможность двигаться посредством сокращения мышц. Эта функция присуща таким белкам, как актин и миозин.

Транспортные белки связывают и пере-носят различные вещества как внутри клетки, так и по всему организму. К ним относится, например, гемоглобин, который транспорти-рует молекулы кислорода и углекислого газа.

Белки-гормоны обеспечивают регулятор-ную функцию. Белковую природу имеет гор-мон роста (его избыток у ребенка приводит к гигантизму), инсулин, гормоны, регулирую-щие работу почек, и др.

Чрезвычайно важны белки, выполняющие защитную функцию. Иммуноглобулины (антитела) — основные участники иммунных реакций; они защищают организм от бактерий и вирусов. Фибриноген и ряд других белков плазмы крови обеспечивают свертывание кро-ви, останавливая кровопотерю. Материал с сайта

Энергетическую функцию белки начи-нают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Ча-ще мы наблюдаем, как пищевой белок, перева-риваясь, расщепляется до аминокислот, из ко-торых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация — это утрата белковой мо-лекулой своего нормального («природного») строения: третичной, вторичной и даже пер-вичной структуры. При денатурации белко-вый клубок и спираль раскручиваются; водо-родные, а затем и пептидные связи разруша-ются. Денатурированный белок не способен выполнять свои функции. Причинами денату-рации являются высокая температура, ультра-фиолетовое излучение, действие сильных кис-лот и щелочей, тяжелых металлов, органиче-ских растворителей. Примером денатурации служит варка куриного яйца. Содержимое сы-рого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбу-мина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • углеводы кратко
  • что такое моно и дисахариды приведите примеры