Примеры межмолекулярной и внутримолекулярной водородной связи. Водородная межмолекулярная связь. Виды химической связи

Природа

Часто водородную связь рассматривают как электростатическое взаимодействие, усиленное небольшим размером водорода, которое разрешает близость взаимодействующих диполей. Тогда об этом говорят как о разновидности донорно-акцепторной связи , невалентном взаимодействии между атомом водорода H , ковалентно связанным с атомом A группы A-H молекулы RA-H и электроотрицательным атомом B другой молекулы (или функциональной группы той же молекулы) BR" . Результатом таких взаимодействий являются комплексы RA-H BR" различной степени стабильности, в которых атом водорода выступает в роли «моста», связывающего фрагменты RA и BR" .

Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность , её распространенность и важность, особенно в органических соединениях , а также некоторые побочные эффекты, связанные с малыми размерами и отсутствием дополнительных электронов у водорода.

Свойства

Энергия водородной связи значительно меньше энергии обычной ковалентной связи (не превышает 40 кДж/моль). Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, то есть их объединение в димеры или полимеры . Именно ассоциация молекул служит причиной аномально высоких температур плавления и кипения таких веществ, как фтороводород , вода , аммиак .

Связь этого типа, хотя и слабее ионной и ковалентной связей, тем не менее играет очень важную роль во внутри- и межмолекулярных взаимодействиях. Водородные связи во многом обусловливают физические свойства воды и многих органических жидкостей (спирты, карбоновые кислоты, амиды карбоновых кислот, сложные эфиры).

Прочность водородной связи (энтальпия образования комплекса) зависит от полярности комплекса и колеблется от ~ 6 кДж/моль для комплексов молекул галогеноводородов с инертными газами до 160 кДж/моль для ион-молекулярных комплексов (AHB) ± ; так, для комплекса (H 2 O H OH 2) + образованного H 2 O и H 3 O + - 132 кДж/моль в газовой фазе.

В воде

Механизм Гротгуса

В нуклеиновых кислотах и белках

Водородная связь в значительной мере определяет свойства и таких биологически важных веществ, как белки и нуклеиновые кислоты . В частности, элементы вторичной структуры (например, α-спирали , β-складки) и третичной структуры в молекулах белков , РНК и ДНК стабилизированы водородными связями. В этих макромолекулах, водородные связи сцепляют части той же самой макромолекулы, заставляя её сворачиваться в определенную форму. Например, двойная спиральная структура ДНК, определяется в значительной степени наличием водородных связей, сцепляющих пары нуклеотидов, которые связывают одну комплементарную нить с другой.

В полимерах

Много полимеров усилены водородными связями в их главных цепях. Среди синтетических полимеров самый известный пример - нейлон , где водородные связи играют главную роль в кристаллизации материала. Водородные связи также важны в структуре полученных искусственно полимеров (например, целлюлозы) и в многих различных формах в природе, таких как древесина , хлопок и лён .

См. также

Примечания

Литература

  • Химическая Энциклопедия. Советская Энциклопедия, М., 1988
  • В. В. Москва. Водородная связь в органической химии. Соросовский образовательный журнал, 11999,N 2, с.58-64

Wikimedia Foundation . 2010 .

Исключительно большое значение в биологических системах имеет особый тип межмолекулярного взаимодействия, водородная связь, которая осуществляется между атомами водорода, химически соединенными в одной молекуле, и электроотрицательными атомами F, О, N, Cl, S, принадлежащими другой молекуле. Понятие «водородная связь» было введено впервые в 1920 г. Латимером и Родебушем для объяснения свойств воды и других ассоциированных веществ. Рассмотрим отдельные примеры такой связи.

В п. 5.2 речь шла о молекуле пиридина и было отмечено, что атом азота в ней имеет два внешних электрона с антипараллельными спинами, не участвующих в образовании химической связи. Эта «свободная» или «неподеленная» пара электронов будет притягивать протон и образовывать с ним химическую связь. При этом молекула пиридина перейдет в ионное состояние . Если имеются две пиридиновые молекулы, то они будут соревноваться в захвате протона, в результате образуется соединение

в котором тремя точками обозначен новый тип межмолекулярного взаимодействия, называемый водородной связью. В этом соединении протон находится ближе к левому атому азота. С таким же успехом протон может оказаться ближе к правому атому азота. Следовательно, потенциальная энергия протона как функция расстояния до правого или левого атома азота при фиксированном расстоянии между ними (примерно ) должна изображаться кривой с двумя минимумами. Квантовомеханический расчет такой кривой, проведенный Рейном и Харрисом , приведен на рис. 4.

Квантовомеханическую теорию водородной связи А-Н...В на основе донорно-акцепторных взаимодействий одним из первых развивал Н. Д. Соколов . Причиной связи является вызываемое протоном перераспределение электронной плотности между атомами А и В. Кратко говорят, что происходит обобществление «неподеленной пары» электронов. В действительности же в

Рис. 4. Потенциальная кривая энергии протона в зависимости от расстояния между атомами азота двух пиридиновых молекул.

образовании потенциальных кривых водородной связи участвуют и другие электроны молекул, хотя и в меньшей степени (см. ниже).

Энергия типичных водородных связей варьирует в пределах от 0,13 до 0,31 эВ. Она на порядок меньше энергии химических ковалентных связей, но на порядок больше энергии вандерваальсовых взаимодействий.

Наиболее простым межмолекулярным комплексом, образованным водородной связью, является комплекс Этот комплекс имеет линейную структуру. Расстояние между атомами фтора 2,79 А. Расртояние между атомами в полярной молекуле равно 0,92 А. При образовании комплекса выделяется энергия около 0,26 эВ.

С помощью водородной связи образуется димер воды с энергией связи около 0,2 эВ. Эта энергия равна примерно двадцатой части энергии ковалентной связи ОН. Расстояние меж двумя атомами кислорода в комплексе равно примерно 2,76 А. Оно меньше сумш вандерваальсовых радиусов атомов кислорода, равной 3,06 А. На рис. 5 указано рассчитанное в работе изменение электронной плотности атомов воды при образовании комплекса. Эти расчеты подтверждают, что при образовании комплекса изменяется распределение электронной плотности вокруг всех атомов реагирующих молекул.

О роли всех атомов в установлении водородных связей в комплексе можно судить также по взаимному влиянию двух водородных связей между азотистыми основаниями, тимином и аденином, входящими в состав двойной спирали молекулы ДНК . Расположение минимумов потенциальных кривых протонов в двух связях отражает их взаимную корреляцию (рис. 6).

Наряду с обычной или слабой водородной связью, образованной водородом с выделением энергии, меньшей 1 эВ, и характеризуемой потенциальной энергией с двумя минимумами, водород образует некоторые комплексы с большим энерговыделением. Например, при создании комплекса выделяется энергия, равная 2,17 эВ. Такой тип взаимодействия называют сильной

Рис. 5. Изменение электронной плотности около атомов в комплексе, образованном водородными связями из двух молекул воды.

Заряд электрона принят равным единице. В свободной молекула воды заряд 10 электронов распределен так, что около атома кислорода находится заряд 8,64, а у атомов водорода

Рис. 6. Водородные связи междк азотистыми основаниями: а - тимином (Т) и аденипом (А), входящими в состав молекул ДНН (стрелками указаны места присоединения оснований к цепям молекул сахара и фоофорной кислоты); - потенциальные кривые водородных связей; О - кислород; - водород; - углерод; - азот.

водородной связью. При образовании комплексов с сильной водородной связью значительно изменяется конфигурация молекул. Потенциальная энергия протона имеет один сравнительно плоский минимум, расположенный примерно в центре связи. Поэтому протон легко смещается. Легкая смещаемость протона под влиянием внешнего поля обусловливает большое значение поляризуемости комплекса.

Сильная водородная свягь не проявляется в биологических системах. Что же касается слабой водородной связи, то она имеет решающее значение во всех живых организмах.

Исключительно большая роль водородной связи в биологических системах обусловлена прежде всего тем, что она определяет вторичную структуру белков, имеющую основное значение для всех жизненных процессов; с помощью водородных свявей удерживаются пары оснований в молекулах ДНК и обеспечивается их устойчивая структура в виде двойных спиралей, и, наконец, водородная связь ответственна за весьма необычные свойвтва воды, важные для существования живых систем.

Вода является одним из основных компонентов всего живого. Организмы животных почти на две трети состоят из воды. Человеческий эмбрион в течение первого месяца содержит около 93% воды. Бег воды не было бы жигни. Вода служит основной средой, в которой происходят биохимические реакции в клетке. Она образует жидкую часть крови и лимфы. Вода необходима для пищеварения, так как расщепление углеводов, белков и жиров происходит с присоединением молекул воды. Вода выделяется в клетке при построении белков из аминокислот. Физиологические

Рис. 7. Структура льда. Каждая молекула воды соединена водородными связями (три точки) с четырьмя молекулами воды, находящимися в вершинах тетраэдра.

Рис. 8. Водородная связь в димере и «линейная» водородная связь

свойства биополимеров и многих надмолекулярных структур (в частности, клеточных мембран) весьма существенно зависят от их взаимодействия с водой.

Рассмотрим некоторые свойства воды. Каждая молекула воды обладает большим электрическим моментом. Вследствие высокой электроотрицательности атомов кислорода молекула воды может образовывать водородные связи с одной, двумя, тремя и четырьмя другими молекулами воды. В результате получаются сравнительно устойчивые димеры и другие полимерные комплексы. В среднем каждая молекула в жидкой воде имеет четыре соседа. Состав и структура межмолекулярных комплексов зависят от температуры воды.

Наиболее упорядоченную структуру имеет кристаллическая вода (лед) при нормальном давлении и температуре ниже нуля градусов Цельсия. Кристаллы ее имеют гексагональную структуру. В элементарную ячейку входят четыре молекулы воды. Структура ячейки изображена на рис. 7. Вокруг центрального атома кислорода располдженьг в вершинах правильного тетраэдра на расстояниях 2,76 А четыре других атома кислорода. Каждая молекула воды соединена с соседними четырьмя водородными связями. При этом угол между ОН-связями в молекуле приближается к «тетраэдрическому» значению 109,1°. В свободной молекуле он равен приблизительно 105°.

Структура льда напоминает структуру алмаза. Однако в алмазе между атомами углерода действуют химические силы. Кристалл алмаза - это большая молекула. Кристаллы льда относятся к молекулярным кристаллам. Молекулы в кристалле сохраняют в основном свою индивидуальность и удерживают друг друга водородными связями.

Рис. 9. Экспериментальное значение смещения инфракрасной частоты колебаний в воде при образовании водородной связи под углом .

Решетка льда весьма рыхлая и содержит много «пустот», так как число ближайших молекул воды у каждой молекулы (координационное число) равно только четырем. При расплавлении решетка льда частично разрушается, одновременно заполняются некоторые пустоты и плотность воды становится больше плотности льда. Это одна из основных аномалий воды. При дальнейшем нагревании до 4° С процесс уплотнения продолжается. При нагревании выше 4° С возрастает амплитуда ангармонических колебаний, уменьшается число ассоциированных молекул в комплексах (роях) и плотность воды уменьшается. По грубым оценкам в состав роев при комнатной температуре входит около 240 молекул, при 37° С - около 150, при 45 и 100° С соответственно 120 и 40.

Вклад водородной связи в полную энергию межмолекулярных взаимодействий (11,6 ккал/моль) составляет около 69%. Вследствие водородных связей температуры плавления (0° С) и кипения (100° С) воды существенно отличаются от температур плавления и кипения других молекулярных жидкостей, между молекулами которых действуют только вандерваальсовы силы. Например, для метана эти значения соответственно равны-186 и -161° С.

В жидкой воде наряду с остатками тетраэдрической структуры льда имеются линейные и циклические димеры и другие комплексы, содержащие 3, 4, 5, 6 и более молекул. Существенно, что в зависимости от числа молекул в цикле меняется угол Р, образованный между связью ОН и водородной связью (рис. 8). В димере этот угол равен 110°, в пятичленном кольце 10°, а в шестичленном кольце и гексагональной структуре льда он близок к пулю («линейная» водородная связь).

Оказывается, что наибольшая энергия одной водородной связи соответствует углу Энергия водородной связи пропорциональна (правило Бадгера - Бауера) смещению частоты валентных инфракрасных колебаний группы ОН в молекуле воды но сравнению с частотой колебаний свободной молекулы. Максимальное смещение наблюдается в случае «линейной» водородной связи. В молекуле воды в этом случае частота уменьшается на , а частота - на . На рис. 9 приведен график зависимости отношения смещения

частоты к максимальному смещению от угла . Следовательно, этот график характеризует также зависимость энергии водородной связи от угла . Такая зависимость является проявлением кооперативного характера водородной связи.

Предпринимались многократные попытки теоретического вычисления структуры и свойств воды при учете водородных связей и других межмолекулярных взаимодействий. Согласно статистической физике термодинамические свойства системы взаимодействующих молекул, находящейся в объеме V при постоянном давлении Р в статистическом равновесии с термостатом, определяются через статистическую сумму состояний

.

К сожалению, вследствие сложного характера взаимодействий между молекулами в воде (анизотропные дипольные молекулы, водородные связи, приводящие к комплексам переменного состава, в которых энергия водородных связей сама зависит от состава и структуры комплекса и т. д.) мы не можем записать оператор Н в явном виде. Поэтому приходится прибегать к очень большим упрощениям. Так, Намети и Шерага вычислили статистическую сумму, исходя того, что можно учесть только пять энергетических состояний молекул в комплексах соответствии

с числом образуемых ими водородных связей (0, 1, 2, 3, 4) с соседними молекулами. С помощью этой модели им даже удалось показать, что плотность воды максимальна при 4° С. Однако в дальнейшем сами авторы подвергли критике развитую ими теорию, так как она не описывала многие экспериментальные факты. С другими попытками теоретических расчетов структуры воды можно познакомиться в обзоре Бен-Наима и Стиллингера .

Вследствие дипольного характера молекул воды и большой роли водородных связей исключительно важную роль играют и взаимодействия молекул воды с ионами и нейтральными молекулами в живых организмах. Взаимодействия, приводящие к гидратации ионов и особому типу взаимодействий, получивших название гидрофобных и гидрофильных, будут рассмотрены в следующих разделах этой главы»

Говоря о роли воды в биологических явлениях, следует отметить, что все живые организмы весьма успешно приспособились к определенной величине водородной связи между молекулами . Об этом свидетельствует тот факт, что замена молекулами тяжелой воды оказывает весьма существенное влияние на биологические системы . Уменьшается растворимость полярных молекул, уменьшается скорость прохождения нервного импульса, нарушается работа ферментов, замедляется рост бактерий и грибов и т. д. Возможно, все эти явления связаны с тем, что водородное взаимодействие между молекулами сильнее, чем взаимодействие между молекулами На большее значение водородной связи между молекулами тяжелой воды указывает бояее высокая температура ее плавления (3,8° С) и большая теплота плавления (1,51 ккал/моль). Для обычной воды теплота плавления 1,43 ккал/моль.


В молекулах соединениях HF, H 2 O, NH 3 существуют связи водорода с сильно электроотрицательным элементом (Н–F, Н–O, Н–N). Между молекулами таких соединений могут образовываться межмолекулярные водородные связи . В некоторых органических молекулах, содержащих связи Н–O, Н–N, могут возникать внутримолекулярные водородные связи .

Механизм образования водородной связи имеет частично электростатический, частично донорно – акцепторный характер. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором - атомы водорода, соединенные с этими атомами. Как и для ковалентной связи, для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь принято обозначать точками: Н ··· F. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и серы. Соответственно меняется и энергия водородной связи (табл. 1).

Таблица 1. Средние значения энергий водородных связей

Межмолекулярная и внутримолекулярная водородная связь

Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты. Молекулы воды образуют ассоциаты (Н 2 О) 2 , (Н 2 О) 3 , (Н 2 О) 4 ; спирта (C 2 H 5 ОН) 4 . Этим и объясняется увеличение температуры кипения спиртов по сравнению с углеводородами, Наблюдается хорошее растворение метанола и этанола в воде. Водородная связь, возникшая между молекулами, называется межмолекулярной.

Например, образование димера парагидроксибензальдегида можно представить следующей схемой (рис. 1).

Рис. 1. Образование межмолекулярных водородных связей в парагидроксибензальдегиде.

Водородные связи могут возникать как между различными молекулами (межмолекулярная водородная связь), так и внутри молекулы (внутримолекулярная водородная связь). Внутримолекулярные водородные связ и имеются в многоатомных спиртах, углеводах, белках и других органических веществах.

Влияние водородной связи на свойства веществ

Наиболее удобным индикатором существования межмолекулярной водородной связи является температура кипения вещества. Более высокая температура кипения воды (100 o C по сравнению с водородными соединениями элементов подгруппы кислорода (H 2 S, H 2 Se, H 2 Te) объясняется наличием водородных связей: на разрушение межмолекулярных водородных связей в воде необходимо затратить дополнительную энергию.

Водородная связь существенным образом может влиять на структуру и свойства веществ. Существование межмолекулярной водородной связи повышает температуры плавления и кипения веществ. Наличие внутримолекулярной водородной связи приводит к тому, что молекула дезоксирибонуклеиновой кислоты (ДНК) оказывается свернутой в воде двойной спирали.

Водородная связь также играет важную роль в процессах растворения, поскольку растворимость зависит и от способности соединения давать водородные связи с растворителем. В результате содержащие ОН-группы такие вещества, как сахар, глюкоза, спирты, карбоновые кислоты, как правило, хорошо растворимы в воде.

Примеры соединений: одноатомные (метанол, этанол) и многоатомные спирты (глицерин, этиленгликоль), карбоновые кислоты, амины, аминокислоты, белки, вода, аммиак, фтороводород, кислородсодержащие карбоновые кислоты.

Введение

Помимо различных гетерополярных и гомеополярных связей, существует еще один особый вид связи, который в последние два десятилетия привлекает все большее внимание химиков. Это так называемая водородная связь. Оказалось, что атом водорода может образовывать связь между двумя электроотрицательными атомами (F, О, N, реже Сl и S). Известны случаи, когда эту связь образует водородный атом, связанный с атомом углерода в соединениях типа НСХ3, где X - электроотрицательный атом или группа (например, в HCN, фторуглеводородах). Хотя в настоящее время природа водородной связи еще до конца не выяснена, однако определённое представление о ней уже можно составить.

Водородная связь образуется между электроотрицательными атомами, из которых хотя бы один имеет свободную электронную пару, например:

Водородная связь - глобальное явление, охватывающее всю химию.


1. Сущность и природа водородной связи

Первую научную трактовку водородной связи дали в 1920 году В. Латимер и В.Родебуш, работавшие в лаборатории Г. Льюиса, основоположника учения о ковалентной связи, автора теории кислот и оснований и плодотворной в органической химии концепции обобщенной электронной пары. Причину особых физических и химических свойств воды авторы объясняли наличием водородной связи, сущность которой состоит во взаимодействии атома водорода одной молекулы с электронной парой атома кислорода другой молекулы. При этом атом водорода становится одновременно связанным с двумя атомами кислорода ковалентной и водородной связью:

За все последующее время вплоть до наших дней не изменился принципиальный подход к трактовке водородной связи, концепция неподелённого протона осталась незыблемой. Длительные и интенсивные исследования позволили уточнить влияние структуры соединений на склонность к образованию Н-связей, внесена определенная ясность в электронную природу последних, найдены надежные методы их идентификации. А главное - сделаны широкие обобщения по оценке влияния Н-связей на физические и химические свойства веществ. Бутлеровский тезис “структура определяет свойства” раскрывается с учетом возможности образования Н-связи и ее вклада в конкретные свойства. Ниже представлен итоговый материал по изучению вопросов, связанных с проблемой водородной связи.

По современной терминологии, образование водородной связи наступает при взаимодействии протонодонора (кислоты Бренстеда, электроноакцептора) с протоноакцептором (основанием, электронодонором). Для схематичного представления обсуждаемых процессов молекулу протонодонора обозначим А-Н (а для случаев, когда необходимо указать природу атома, ковалентно связанного с водородом, R-X-H). Протоноакцептор обозначим: В (символическое обозначение как основания в целом, так и атома с неподеленной парой электронов) или B-Y. С учетом принятой символики водородную связь можно представить как невалентное взаимодействие между группой Х-Н одной молекулы и атомом В другой, в результате которого образуется устойчивый комплекс А-Н…В с межмолекулярной водородной связью, в котором атом водорода играет роль мостика, соединяющего фрагменты А и В. Отметим, что до настоящего времени нет однозначного подхода, какую конкретно связь называть водородной. Большинство авторов к понятию водородной связи относят дополнительное взаимодействие, которое возникает между атомом водорода и электронодонором В, то есть связь Н…В. Другие авторы к понятию водородной связи относят всю цепочку Х-Н…В, то есть связь между атомами Х и В через водородный мостик. Ориентируясь на большинство, характеристики водородной связи (длина, энергия) будем относить к связи Н…В, сознавая, что образование последней не может не сказаться на состоянии ковалентной связи Х-Н.

На ранних этапах изучения водородной связи полагали, что водородный мостик образуется только между атомами с высокой электроотрицательностью (F, O, N). В последние десятилетия, когда в руках исследователей появилось более совершенное оборудование, круг атомов - партнеров по водородному связыванию значительно расширен (Cl, S и некоторые другие). В качестве атома Х может фигурировать любой атом, более электроотрицательный по сравнению с атомом водорода и образующий с последним обычную химическую связь (например, атом углерода). В роли акцептора атома водорода могут выступать как атомы с неподеленными парами электронов (в отдельных случаях даже аргон и ксенон), так и соединения, имеющие π-связи.

Рассмотрев природу соединений, потенциально способных к образованию Н-связи, легко убеждаемся, что образование водородной связи может быть представлено как кислотно-основное взаимодействие, определяющее первую стадию переноса протона при протолитических реакциях.

A-H + :BA-H…BA-…H-B + A- + HB +

Такие взаимодействия наблюдаются в растворах кислот. Когда же продукт А-Н не обладает выраженной кислотностью или при отсутствии соответствующего растворителя процесс кислотно-основного взаимодействия останавливается на стадии молекулярного комплекса.

Несмотря на всеобщее признание Н-связей, в литературе так и не сформировалось единой точки зрения на природу этого явления. Вопрос до сих пор продолжает оставаться дискуссионным. Прежде чем изложить современный взгляд на природу сил, обусловливающих образование водородных связей, отметим наиболее существенные экспериментальные факты, сопровождающие этот процесс.

I. При образовании водородных связей выделяется теплота - термохимическая мера энергии Н-связи. Эту характеристику используют для калибровки спектральных методов изучения водородных связей.

II. Расстояние между соседними атомами, участвующими в образовании водородной связи, значительно меньше суммы их ван-дер-ваальсовых радиусов. Так, в воде расстояние между атомами кислорода в системе О-Н…О составляет 0,276 нм. Если принять, что длина ковалентной связи О-Н равна 0,1 нм, то длина связи Н…О составит 0,176 нм, то есть она значительно (примерно на 70%) длиннее ковалентной связи между этими атомами. Тем не менее связь Н…О оказывается значительно короче суммы ван-дер-ваальсовых радиусов, составляющих для водорода и кислорода соответственно 0,12 и 0,14 нм. Последнее обстоятельство является од-
ним из критериев, указывающих на образование между молекулами водородных связей.

III. Водородная связь увеличивает длину связи Х-Н, что приводит к смещению соответствующей полосы валентных колебаний в ИК-спектре в сторону более низких частот. Метод ИК-спектроскопии является главным методом изучения водородной связи.

IV. При образовании водородной связи полярность связи Х-Н возрастает, что приводит к повышению дипольного момента молекулярного комплекса в сравнении с расчетными данными, полученными путем векторного сложения диполей молекул R-X-H и B-Y.

V. Протоны, участвующие в водородной связи, характеризуются более низкой электронной плотностью, поэтому они деэкранируются, что приводит к существенному смещению соответствующих резонансных сигналов в спектрах ЯМР 1 Н в слабое поле. Протонный магнитный резонанс наряду с ИК-спектрами является наиболее чувствительным к образованию Н-связи.

VI. Для межмолекулярных водородных связей обнаружено смещение кислотно-основного равновесия молекулярный комплекс ионная пара вправо при повышении полярности растворителя.

Кроме указанных фиксируются и другие структурные и спектроскопические особенности водородных связей, которые используются, с одной стороны, для идентификации последних, а с другой – в расшифровке их электронной природы. Так как водородная связь возникает только в том случае, если атом водорода связан с электроотрицательным атомом, то ранее предполагалось, что природа водородной связи сводится к диполь-дипольному взаимодействию типа R-X - d -H + d …B - d -Y, которое еще называют электростатическим взаимодействием. Такое предположение подкрепляется тем фактом, что наиболее прочные водородные связи образуются атомами водорода, связанными с наиболее электроотрицательными элементами. Более высокую прочность водородной связи по сравнению с неспецифическим диполь-дипольным взаимодействием (примерно в 10 раз) можно объяснить маленьким размером атома водорода, благодаря чему он может ближе подойти к другому диполю. Дипольная модель объясняет также линейную геометрию водородной связи, так как при линейном расположении атомов силы притяжения максимальны, а силы отталкивания минимальны.

Однако не все экспериментальные факты, фиксируемые при изучении водородных связей, можно объяснить исходя лишь из диполь-дипольного взаимодействия. Не удается заметить никакой закономерной зависимости между энергией водородной связи и дипольным моментом или поляризуемостью взаимодействующих молекул. Небольшая длина водородных связей свидетельствует о существенном перекрывании ван-дер-ваальсовых радиусов. А простая электростатическая модель не учитывает перекрывания волновых функций, перераспределения электронной плотности при сближении молекул. Решить эти вопросы можно, допустив, что водородная связь носит частично ковалентный характер за счет донорно-акцепторного взаимодействия электронодонора В с электоноакцептором А-Х-Н. Повышение электронной плотности на атоме Х происходит через посредника - водородный мостик. При этом допускается частичное заполнение несвязывающей орбитали атома водорода.

v Водородная связь

Ø Водородной связью называется электростатическое взаимодействие атома водорода, связанного с сильно электроотрицательным элементом, с другими атомами.

Водородные связи образует атом водорода, связанный с атомом фтора, кислорода или азота. Электроотрицательность других элементов недостаточна для того, чтобы заставить образовать прочную водородную связь связанный с ними атом водорода. Механизм образования водородной связи рассмотрим на примере взаимодействия молекул фтороводорода. Высокая электроотрицательность атома фтора приводит к тому, что связь водород-фтор в данной молекуле сильно полярна и общая пара электронов смещена к фтору H®F. Поскольку у атома водорода отсутствует внутренняя электронная оболочка, оттягивание его валентного электрона почти полностью обнажает ядро, представляющего собой элементарную частицу - протон. По этой причине сильно поляризованный атом водорода обладает очень мощным электростатическим полем, за счет которого он притягивается к атому фтора другой молекулы фтороводорода с образованием водородной связи:

Водородной связи присущи следующие особенности:

1. Водородная связь является насыщаемой. Атом водорода образует лишь одну водородную связь; его партнеры могут участвовать в образовании нескольких водородных связей.

2. Водородная связь является направленной. Фрагмент Х-Н××××Y обычно линейный, хотя в некоторых случаях может быть и угловым, но при этом величина валентного угла не сильно отличается от 180°.

3. Энергия водородной связи невелика (8-40 кДж/моль) и представляет величину того же порядка, что и энергия межмолекулярного взаимодействия. Прочность водородной связи тем выше, чем больше электроотрицательность партнера атома водорода. Так энергия связи H××××F составляет 25-40 кДж/моль, связи Н××××О - 19-21 кДж/моль, связей N××××H и S×××H - около 8 кДж/моль.

4. Водородная связь асимметрична: во фрагментах Х-Н××××Х длина связи Н××××Х больше длины Н-Х.

Водородная связь более длинная по сравнению с ковалентной и имеет меньшую энергию. Тем не менее, она оказывает очень большое влияние на физические свойства веществ, значительно увеличивая их температуры плавления и кипения. Так, фтороводород имеет т. пл. -83 °С и т. кип. +20 °С, в то время как его ближайший аналог - хлороводород плавится при - 114 °С и кипит при - 85 °С. Фактически, за счет водородных связей, фторофодород представляет собой полимер, который начинает частично диссоциировать только при температуре, близкой к температуре кипения. Но даже в газовой фазе фтороводород существует в виде малых ассоциатов молекул, в основном в виде димеров. В виде мономерных молекул фтороводород существует только при температурах выше 90 °С. Очень прочные водородные связи образует молекула воды, окруженная в кристаллическом состоянии (лед) четырьмя соседями.

Трехмерная сетка водородных связей, построенная из тетраэдров, существует и в жидкой воде во всем интервале температур от плавления льда и до ее кипения.

Наряду с межмолекулярными существуют и внутримолекулярные водородные связи, не оказывающие столь значительного влияния на физические свойства вещества.

Муравьиная кислота НСООН и многие другие карбоновые кислоты в жидком и газообразном состояниях за счет водородных связей образует циклические димеры.

Очень важную роль водородные связи играют в организации многих биологически важных макромолекул (a-спирали и b-структуры белков и полипептидов, двойная спираль ДНК и т.д.).

v Силы межмолекулярного взаимодействия .

Ø Силами межмолекулярного взаимодействия (ван-дер-ваальсовыми силами ) называют силы электростатического притяжения диполей вещества.

Данный вид взаимодействия атомных и молекулярных частиц отличается рядом особенностей:

1. Межмолекулярное взаимодействие является относительно слабым. Отвечающие ему эффекты на один-два порядка меньше тепловых эффектов образования ковалентных связей. Так, энергия связи для молекулы Н 2 равна 432 кДж/моль, в то время как энтальпия сублимации кристаллического водорода, связанная с межмолекулярным взаимодействием, составляет 2,1 кДж/моль.

2. Межмолекулярное взаимодействие не является специфическим. Ван-дер-ваальсовые силы действуют между самыми разнообразными молекулами, одинаковыми или различными.

3. Силы Ван-дер-Ваальса имеют электростатическую природу, в связи с чем межмолекулярное взаимодействие является ненасыщаемым и ненаправленным.

По происхождению взаимодействующих диполей выделяют три типа сил межмолекулярного взаимодействия:

· Ориентационноевзаимодействие – электростатическое притяжение постоянных диполей вещества, которые ориентируются друг по отношению к другу противоположными полюсами.

Энергия ориентационного взаимодействия двух одинаковых молекул (ориентационный эффект) выражается следующим уравнением:

(9),

где m – дипольный момент молекулы, r – расстояние между молекулами.

· Индукционноевзаимодействие – электростатическое притяжение постоянного и наведенного (индуцированного) диполя.

(10),

где a - поляризуемость молекулы.

· Дисперсионноевзаимодействие – электростатическое притяжение мгновенных микродиполей вещества. Возникновение мгновенных микродиполей вызвано случайным нарушением симметрии распределения электронной плотности в частице, приводящим к возникновению и исчезновению электрических полюсов. При проявлении сил дисперсионного взаимодействия мгновенные микродиполи появляются и исчезают синхронно, ориентируясь таким образом, чтобы частицы притягивались.

(11),

где h - постоянная Планка, n 0 - частота колебаний молекул при температуре абсолютного нуля.

Естественно, что вклад дисперсионного взаимодействия в энергию межмолекулярного взаимодействия увеличивается при возрастании поляризуемости молекулы. Например, для HI энергия дисперсионного взаимодействия (60,47 кДж/моль) составляет 98,5% энергии сил межмолекулярного взаимодействия.

Действие сил Ван-дер-Ваальса приводит к сближению атомных и молекулярных частиц, не связанных химической связью, до некого равновесного состояния, в котором силы притяжения уравновешиваются силами отталкивания. При этом расстояние между атомами можно представить как сумму так называемых ван-дер-ваальсовских радиусов (табл. 3.3).