Экология шума. Шум как негативный экологический фактор Звук и шум как экологические факторы кратко

Проблема загрязнения окружающей среды слишком сложна и многогранна, чтобы пытаться её изучить быстро.

В средствах массовой информации шуму обычно уделяется мало внимания, и многие не считают его загрязнителем атмосферы. Но на самом деле это не так? До сих пор огромная часть людей не догадывается об опасности шумового загрязнения. Это происходит из-за того, что проблемы шумового загрязнения городской среды были на научном уровне осознаны относительно недавно и стали остроактуальными только в последние десятилетия. Пути решения выбрана нами не случайно. В настоящее время проблема здоровья стоит очень остро, стремительный темп жизни приводит не только к росту городов, городских агломераций и мегаполисов, промышленности, но и в связи с нижеперечисленным, к ухудшению экологии, нарушению географической среды обитания человека, и, как правило, ухудшает здоровье населении

Изучить шум как один из загрязнителей окружающей среды;

Выявить влияние шума на организм человека;

Выявить меры защиты человека от шумового воздействия

1. Виды шумов и их воздействие на чувства человека.

Что такое шум? На основе ранее полученных знаний из курса физики, учащиеся могут дать

Шум – случайная смесь звуков различной высоты (частоты). Единица измерения 1 дБ= 10 Lg.

Человек всегда жил в мире звуков и шума. Звуком называют такие механические колебания внешней среды, которые воспринимаются слуховым аппаратом человека (от 16 до 20000 колебаний в секунду). Колебания большей частоты называют ультразвуком, меньшей - инфразвуком. Шум - громкие звуки, слившиеся в нестройное звучание.

Уровень шума измеряется в единицах, выражающих степень звукового давления, - децибелах. Это давление воспринимается не беспредельно. Уровень шума в 20-30 децибелов (дБ) практически безвреден для человека, это естественный шумовой фон. Что же касается громких звуков, то здесь допустимая граница составляет примерно 80 децибелов. Звук в 130 децибелов уже вызывает у человека болевое ощущение, а 150 становится для него непереносимым.

Для всех живых организмов, в том числе и человека, звук является одним из воздействий окружающей среды.

В природе громкие звуки редки, шум относительно слаб и непродолжителен. Сочетание звуковых раздражителей дает время животным и человеку, необходимое для оценки их характера и формирования ответной реакции. Звуки и шумы большой мощности поражают слуховой аппарат, нервные центры, могут вызвать болевые ощущения и шок. Так действует шумовое загрязнение.

Очень высок уровень промышленных шумов. На многих работах и шумных производствах он достигает 90-100 децибелов и более. Не намного тише и у нас дома, где появляются все новые источники шума - так называемая бытовая техника.

Таким образом выделяют два вида шума:

1. Шумы природного происхождения.

2. Шумы антропогенного происхождения.

2. Изменения в слуховом аппарате под влиянием громких звуков

Какой орган реагирует на чрезмерный шум прежде всего? Конечно это орган слуха.

Тихий шелест листвы, журчание ручья, птичьи голоса, легкий плеск воды и шум прибоя всегда приятны человеку. Они успокаивают его, снимают стрессы. Это используется в лечебных заведениях, в кабинетах психологической разгрузки. Но естественные звучания голосов природы становятся все более редкими, исчезают совсем или заглушаются промышленными, транспортными и другими шумами.

Длительный шум неблагоприятно влияет на орган слуха, понижая чувствительность к звуку. Он приводит к расстройству деятельности сердца, печени, к истощению и перенапряжению нервных клеток. Ослабленные клетки нервной системы не могут достаточно четко координировать работу различных систем организма. Отсюда возникают нарушения их деятельности.

Долгое время влияние шума на организм человека специально не изучалось, хотя уже в древности знали о его вреде.

В настоящее время ученые во многих странах мира ведут различные исследования с целью выяснения влияния шума на здоровье человека. Их исследования показали, что шум наносит ощутимый вред здоровью человека, но и абсолютная тишина пугает и угнетает его. Также ученые установили, что звуки определенной силы стимулируют процесс мышления, в особенности процесс счета.

Каждый человек воспринимает шум по-разному. Многое зависит от возраста, темперамента, состояния здоровья, окружающих условий.

Некоторые люди теряют слух даже после короткого воздействия шума сравнительно небольшой интенсивности.

Постоянное воздействие сильного шума может не только отрицательно повлиять на слух, но и вызывать другие вредные последствия - звон в ушах, головокружение, головную боль, повышение усталости.

Шум обладает аккумулятивным эффектом, то есть акустические раздражения, накапливаясь в организме, все сильнее угнетают нервную систему. Поэтому перед потерей слуха от воздействия шумов возникает функциональное расстройство центральной нервной системы. Особенно вредное влияние оказывает шум на нервно-психологическую деятельность организма.

Шум коварен, его вредное воздействие на организм совершается незримо, незаметно. Нарушения в организме обнаруживаются не сразу. К тому же организм человека против шума практически беззащитен.

Таблица. Уровни громкости звука от разных источников

Источник звука Уровень (дБ)

Спокойное дыхание не воспринимается

Шелест листьев в спокойную погоду 17

Перелистывание газет 20

Обычный шум в доме 40

Прибой на берегу 40

Разговор средней громкости 50

Громкий разговор 70

Работающий пылесос 80

Поезд в метро 80

Концерт рок-музыки 100

Раскат грома 110

Реактивный двигатель 110

Выстрел из орудия 120

Болевой порог 120

Практическая часть

1. Определение остроты слуха у обучающихся

Острота слуха – это минимальная громкость звука, которая может быть воспринята ухом испытуемого.

Для того, чтобы определить остроту слуха у обучающихся, мы взяли механические часы и линейку.

Оборудование:

Механические часы Линейка

Порядок работы:

1. Приближайте к себе часы до тех пор, пока не услышите звук. Измерьте расстояние от уха до часов в сантиметрах.

2. Приложите часы плотно к уху и отводите от себя до тех пор, пока не исчезнет звук. Опять определите расстояние до часов

3. Если данные совпадут, это будет приблизительно верное расстояние.

4. Если данные не совпадают, то для оценки расстояния слышимости нужно взять среднее арифметическое двух измерений.

В эксперименте участвовали (50 учеников) из них:

1. любители слушать громкую музыку в наушниках;

2. спокойную музыку;

3. любителей тишины

Оценка результатов тестов:

1. любители слушать громкую музыку в наушниках- 8-9 см;

2. спокойную музыку-12-13см;

3. любителей тишины-15-16 см.

■ При постоянном растяжении барабанной перепонки уменьшается её эластичность, поэтому требуется большая громкость звука, чтобы она начала колебаться, то есть снижается чувствительность слухового анализатора;

■ Повреждаются слуховые рецепторы.

Социологический опрос по выявлению действия шума на психические процессы учащихся 8-х классов

Как влияет шум на Вас?

■ Быстрая утомляемость;

■ Ослабление памяти;

■ Снижение внимания;

■ Потеря работоспособности;

■ Нарушение сна;

■ Общая слабость

Влияние шума на учителей

(20 человек)

Как влияет шум на Вас?

■ Досада;

■ Снижение функциональной деятельности;

■ Трудности в семье;

■ Потеря работоспособности;

■ Повышенная раздражительность;

■ Потеря сна;

Выводы: длительно действующий шум приводит к быстрой утомляемости, ослаблению памяти, снижению внимания, потере работоспособности, повышенной раздражительности, нарушению сна, общей слабости. Действие шума может постепенно привести к психическим заболеваниям.

Влияние шума, приводящее к психическим заболеваниям

Действие шума

Трудности взаимопонимания

Рассеивание внимания

Слабая сосредоточенность

Потеря сна

Раздражительность

Снижение функциональной деятельности

Недовольство

Трудности в семье

Психические заболевания

Заключение

Меры защиты человека от шумового воздействия.

Итак, шум вреден. «Шум – медленный убийца», – так заявляют американские специалисты. Но можно ли уменьшить его воздействие на живые организмы, включая и человека? Что может сделать каждый из нас?

Как и все другие виды антропогенных воздействий, проблема загрязнения среды шумом имеет международный характер. Всемирная организация здравоохранения, учитывая глобальный характер шумового загрязнения окружающей среды, разработала долгосрочную программу по снижению шума в городах и населенных пунктах мира.

В России защита от шумового воздействия регламентируется Законом Российской Федерации «Об охране окружающей среды» (2002) (ст. 55), а также постановлениями правительства о мерах по снижению шума на промышленных предприятиях, в городах и других населенных пунктах.

Защита от шумового воздействия - очень сложная проблема и для ее решения необходим комплекс мер: законодательных, технико-технологических, градостроительных, архитектурно - планировочных, организационных и др. Для защиты населения от вредного влияния шума нормативно - законодательными актами регламентируется его интенсивность, время действия и другие параметры. Госстандартом установлены единые санитарно-гигиенические нормы и правила по ограничению шума на предприятиях, в городах и других населенных пунктах. В основу норм положены такие уровни шумового воздействия, действие которых в течение длительного времени не вызывает неблагоприятных изменений в организме человека, а именно: 40 дБ днем и 30 - ночью. Допустимые уровни транспортного шума установлены в пределах 84- 92 дБ и со временем будут снижаться.

Технико-технологические меры сводятся к шумозащите, под которой понимают комплексные технические меры по снижению шума на производстве (установка звукоизолирующих кожухов станков, звукопоглощение и др.), на транспорте (глушители выбросов, замена колодочных тормозов на дисковые, шумопоглощающий асфальт и др.).

На градостроительном уровне защита от шумового воздействия может быть достигнута следующими мероприятиями:

Зонированием с выносом источников шумов за пределы застройки;

Организацией транспортной сети, исключающей прохождение шумных магистралей через районы жилой застройки;

Удалением источников шума и устройством защитных зон вокруг и вдоль источников шумового воздействия и организация зеленых насаждений;

Прокладкой магистралей в туннелях, устройством шу-мозащитных насыпей и других поглощающих шум препятствий на путях распространения шума (экраны, выемки, ковал ьеры);

Архитектурно-планировочные меры предусматривают создание шумозащитных зданий, т. е. таких зданий, которые обеспечивают помещениям нормальный акустический режим с помощью конструктивных, инженерных и других мер (герметизация окон, двойные двери с тамбуром, облицовка стен звукопоглощающими материалами и др.).

Определенный вклад в защиту среды от шумового воздей-твия вносит запрещение звуковых сигналов автотранспорта, виаполетов над городом, ограничение (или запрещение) взле-ов и посадок самолетов в ночное время и другие организаци- ннные меры.

Однако указанные меры вряд ли дадут должный экологический эффект, если не будет понято главное: защита от шумового воздействия - проблема не только техническая, но и социальная. Необходимо воспитывать звуковую культуру и осознанно не допускать действий, которые способствовали бы возрастанию шумового загрязнения среды.

ШУМ КАК ЭКОЛОГИЧЕСКИЙ ФАКТОР

Цель работы: ознакомление с характеристиками шума и особенностями его воздействия на организм человека, с особенностями измерения и нормирования параметров шума, а также с методами оценки шума в естественных условиях окружающей среды.

Теоретическая часть

1. Звук и его основные характеристики

Любое нарушение стационарного состояния той или иной среды порождает волновые процессы. Механические колебания частиц среды в диапазоне частот 20 – 20000 Гц воспринимаются ухом человека и называются звуковыми волнами. Колебания среды с частотами ниже 20 Гц называют инфразвуком, а колебания с частотами выше 20000 Гц – ультразвуком. Длина звуковой волны l связана с частотой f и скоростью звука с зависимостью: l = c / f . Нестационарное состояние среды при распространении звуковой волны характеризуется звуковым давлением (P ), под которым понимают среднеквадратическое значение отклонения давления в среде при распространении звуковой волны от давления в невозмущённой среде, измеряемое в паскалях (Па ).Перенос энергии плоской звуковой волной через единицу поверхности, перпендикулярную к направлению распространения звуковой волны, характеризуют интенсивностью звука (плотностью потока звуковой мощности), Вт/м 2 : , (1)

где P – звуковое давление, Па ; r – удельная плотность среды, г/м 3 ; c скорость распространения звуковой волны в данной среде, м/с . Скорость переноса энергии равна скорости распространения звуковой волны.

Органы слуха человека способны воспринимать звуковые колебания в очень широких диапазонах изменения интенсивностей и звуковых давлений. Например, при частоте звука в 1 кГц усреднённому порогу чувствительности человеческого уха (порог слышимости) соответствуют значения звукового давления и интенсивности звука: P 0 = 2∙10 -5 Па и I 0 = 10 -12 Вт/м 2 , а порогу болевого ощущения (превышение которого уже может при­вести к физическому повреждению органов слуха) соответствуют значения P б = 20 Па и I б = 1 Вт/м 2 . Величины P 0 и I 0 в звукотехнике приняты в качестве стандартных (эталонных) величин. Согласно закону Вебера-Фехнера раздражающее человеческое ухо действие звука пропорционально логарифму звукового давления, поэтому на практике обычно вместо абсолютных значений интенсивности и звукового давления используют их относительные логарифмические уровни звука, выраженные в децибелах (дБ ): ; , (2)

где I 0 = 10 -12 Вт/м 2 и P 0 = 2∙10 -5 Па – стандартные пороговые значения интенсивности и звукового давления. Для реальных атмосферных условий можно считать, что L I = L P = L .

Реальное шумовое поле часто определяется не одним, а несколькими источниками шума. Наиболее просто выглядит экспериментально установленное правило сложения интенсивностей звука нескольких источников: . (3)Правило сложения звуковых давлений, создаваемых несколькими источниками, легко выводится из выражений (1), (3) и носит квадратичный характер:

Используя выражения (2) – (4), легко получить правило сложения относительных логарифмических уровней звука. Согласно определению относительные логарифмические уровни звука i -го источника и суммарный уровень звука определяются как

откуда соответственно получаем:

. (5)Аналогично можно выразить и суммарный уровень звука: .Подставляя последовательно сюда выражения (5) и (4), получаем правило сложения относительных логарифмических уровней звука нескольких источников: . (6)В случае n одинаковых источников звука (Li = L) формула (6) упрощается: L å = L + 10 lg ( n ) . (7)Из формул (6) и (7) следует, что если уровень одного из источников звука превышает уровень другого более чем на 10 дБ, то звуком более слабого источника практически можно пренебречь, так как его вклад в общий уровень будет менее 0,5 дБ. Таким образом, при борьбе с шумом в первую очередь необходимо заглушать наиболее интенсивные источники шума. Кроме того, следует иметь в виду, что при наличии нескольких одинаковых источников шума устранение одного-двух из них очень слабо влияет на общее снижение уровня шума.Важной характеристикой источника шума является уровень его звуковой мощности. Звуковая мощность W , Вт , – это общее количество звуковой энергии, излучаемой источником шума в единицу времени. . (8)Если энергия излучается по всем направлениям равномерно и затухание звука в воздухе мало, то при интенсивности I на расстоянии r от источника шума его звуковая мощность может быть определена по формуле: W = 4 p r2I . По аналогии с логарифмическими уровнями интенсивности и звукового давления введены логарифмические уровни звуковой мощности (дБ ): , (9)

где W 0 = I 0 s 0 = 10 -12 – стандартное значение звуковой мощности, Вт ; s 0 = 1 м 2 .

Распределение энергии шума в диапазоне звуковых частот характеризуется с помощью частотного спектра. В практическом применении спектр шума показывает уровни звукового давления или интенсивности (для источников звука – уровни звуковой мощности) в октавных частотных полосах частот, характеризующихся нижней f н и верхней f в граничными частотами в соотношении f в /f н = 2 и среднегеометрической частотой: f сг = (f н · f в) 0,5 . Среднегеометрические частоты соседних октавных полос соответствуют стандартному двоичному ряду, включающему 10 значений: 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000 Гц .

2. Особенности субъективного восприятия звука

Восприятие звука человеческим ухом очень сильно и нелинейно зависит от его частоты. Особенности субъективного восприятия звука иллюстрируются графически с помощью кривых равной громкости на рис. 1. Каждая кривая на рис. 1 характеризует уровни звукового давления на различных частотах, воспринимаемые ухом человека с одинаковым уровнем громкости (L N ).

Рис. 1. Кривые равной громкости

Относительный логарифмический уровень громкости оценивается с помощью специальных единиц – фон . Для определения уровня громкости произвольной точки N в поле чертежа на рис. 1 следует через эту точку провести кривую равной громкости (как показано пунктирной линией на рис. 1) и определить уровень звукового давления (L P * ) при котором эта кривая пересекает линию частоты в 1000 Гц . Полученное указанным образом численное значение уровня звукового давления, выраженное в дБ , и определит численное значение уровня громкости, выраженное в фон , т. е.: .Физический прибор для измерения уровней звукового давления (объективного физического параметра) – «шумомер » – технически реализуется просто. Для оценки уровней громкости (субъективно воспринимаемого человеком параметра) необходимо, как следует из чертежа на рис. 1, так скорректировать измерительный процесс в шумомере, чтобы при изменении уровня звукового давления в соответствии с одной из кривых равной громкости его показания оставались неизменными и равными уровню звукового давления на частоте 1000 Гц . То есть для произвольной кривой равной громкости (например, показанной пунктирной линией на рис. 1) необходимо, чтобы выполнялось условие: .Сравнительно простыми техническими средствами осуществить точную коррекцию не удаётся. Поэтому практически реализуемая коррекция осуществляется приближённо. Возможны несколько разновидностей коррекции показаний шумомера для оценки уровней громкости. Наибольшее распространение получила коррекция, называемая коррекцией типа А . Таким образом, корректированные уровни звукового давления, полученные с помощью физического шумомера (т.е. работающего в режиме с коррекцией типа А ) и принимаемые в качестве оценок уровней громкости, субъективно воспринимаемых человеком, определяются в виде (10)

и называются уровнями звука, измеряемыми в специальных единицах дБА .

Из вышеизложенного можно сделать следующий вывод: если любую из кривых равной громкости для тонального звука подвергнуть коррекции А , то в результате получим значение постоянного уровня звука (в дБА ), приближённо (точная коррекция практически не осуществима) соответствующее уровню громкости ΔL N данной кривой, выраженному в единицах измерения громкости (фон ), т. е. можно считать уровни звука L A приближённой оценкой субъективного восприятия шума в виде уровней громкости L N : .

3. Действие шума на организм человека

Шумом считается всякий звук, неблагоприятно действующий на организм человека . В зависимости от интенсивности и длительности действия шума на организм человека происходит снижение чувствительности органов слуха, выражающееся в виде временного смещения порога слышимости (нижняя кривая на рис. 1). В результате такого смещения порога чувствительности слухового аппарата человек начинает плохо слышать тихие звуки. Как правило, порог чувствительности восстанавливается спустя некоторый (сравнительно непродолжительный) интервал времени. Однако при большой интенсивности и длительности действия шума возможна необратимая потеря чувствительности слухового аппарата человека (тугоухость).Регулярное длительное воздействие на человека интенсивного шума (с уровнем вывшее 80 дБА ) обычно рано или поздно приводит к частичной или даже полной потере слуха. Исследования показывают, что в настоящее время тугоухость выходит на одно из лидирующих мест в ряду профессиональных заболеваний и имеет тенденцию к дальнейшему росту.Действие шума на организм не ограничивается лишь непосредственным влиянием на органы слуха. Звуковое раздражение через нервную систему слуховых органов передаётся в центральную и вегетативную нервные системы и посредством их может воздействовать на внутренние органы человека, вызывая существенные изменения в их состоянии. Таким образом, шум способен оказывать воздействие на организм человека в целом. Данный факт подтверждается тем, что статистика общей заболеваемости рабочих шумных производств оказывается на 10 – 15 % выше.Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 – 70 дБА ) и не зависит от субъективного восприятия шума человеком. Из вегетативных реакций наиболее выраженным являются нарушение периферического кровообращения в результате сужения капилляров кожного покрова и слизистых оболочек, а также повышение артериального давления (при уровнях звука выше 85 дБА ). Воздействие на центральную нервную систему человека вызывает увеличение времени зрительно-моторных реакций, нарушает биоэлектрическую активность головного мозга с возможным возникновением общих функциональных изменений в организме (при уровнях звука выше 50 – 60 дБА ), а также возникают биохимические изменения в структурах головного мозга.Психическое воздействие на человека шум может оказывать, начиная с уровней звука в 30 дБА . Воздействие на психику человека растёт с увеличением интенсивности звука, а также с уменьшением ширины полосы частотного спектра шума.При импульсных и нерегулярных шумах степень их воздействия повышается. Изменения в состояниях центральной и вегетативной нервных систем возникают гораздо раньше и при меньших уровнях шума.К симптомам «шумовой болезни» относятся: снижение слуховой чувствительности, изменение функций пищеварения (пониженная кислотность), сердечно-сосудистая недостаточность, нейроэндокринные расстройства. Под воздействием шума снижаются уровни внимания и памяти, возникает повышенная утомляемость, могут возникать головные боли.

4. Нормирование шума

По характеру спектра шумы подразделяют на широкополосные и тональные. Широкополосные шумы имеют непрерывный частотный спектр шириной менее одной октавы. В спектре тональных шумов имеются выраженные дискретные тона, определяемые путём измерений в третьоктавных полосах частот с превышением уровня звукового давления над соседними полосами не менее чем на 10 дБ .По временным характеристикам шумы делят на постоянные, уровень звука которых в течение 8-часового рабочего дня изменяется не более чем на 5 дБА при измерениях на временной характеристике “медленно” шумомера, и непостоянные, не удовлетворяющие данному условию.Непостоянные шумы, в свою очередь, делятся на следующие виды:

  • колеблющиеся во времени шумы , уровень звука которых непрерывно изменяется во времени;
  • прерывистые шумы , уровень звука которых ступенчато изменяется (на 5 дБА и более), причём длительность интервалов, в течение которых уровень остается постоянным, составляет не менее 1 с ;
  • импульсные шумы , состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с , при этом уровни звука в дБА и дБА(I ) , измеренные соответственно на временных характеристиках “медленно ” и “импульс ” шумомера, отличаются не менее чем на 7 дБА .

Для оценки непостоянных шумов введено понятие эквивалентного уровня звука LАэ (по энергии воздействия), выражаемого в дБА и представляющего уровень звука такого постоянного широкополосного шума, интенсивность которого в течение рассматриваемого интервала времени (T ) имеет такое же среднее значение, что и данный изменяющийся во времени шум: ,

где L A ( t ) – текущие значения, соответственно, звукового давления и уровня звука изменяющегося во времени шума. Значения L А э могут быть измерены с помощью автоматических интегрирующих шумомеров в течение заданного периода T .

Нормируемыми параметрами шума являются:для постоянного шума – уровни звукового давления L P (дБ ) в октавных полосах частот со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц ; кроме того, для ориентировочной оценки постоянного широкополосного шума на рабочих местах допускается использовать уровень звука L A , выраженный в дБА ;для непостоянного шума (кроме импульсного) – эквивалентный уровень звука L Аэ (по энергии воздействия), выраженный в дБА , представляет собой уровень звука такого постоянного широкополосного шума, который воздействует на ухо с такой же звуковой энергией, как и реальный, меняющийся во времени шум за тот же период времени;для импульсного шума – эквивалентный уровень звука L Аэ , выраженный в дБА , и максимальный уровень звука L А max в дБА(I) , измеренный на временной характеристике “импульс” шумомера.Допустимые значения параметров шума на рабочих местах регламентируются ГОСТ 12.1.003-83* “Шум. Общие требования безопасности” и СН 3223-85 “Санитарные нормы допустимых уровней шума на рабочих местах”. Допустимые значения параметров шума устанавливаются в зависимости от вида выполняемой работы (рабочих мест) и характера шума. Для работ, связанных с творческой, управленческой, научной деятельностью или требующих повышенного внимания, сосредоточенности, слухового контроля, предусмотрены более низкие уровни шума.Ниже приведены характерные виды работ, различаемые при нормировании, с указанием порядкового номера.Творческая, научная работа, обучение, проектирование, конструирование, разработка, программирование.Административно-управленческая работа, требующая сосредоточенности работа, аналитическая работа в лаборатории.Диспетчерская работа, требующая речевой связи по телефону, в залах обработки информации на ЭВМ, на участках точной сборки, в машинописных бюро.Работы в помещениях для размещения шумных агрегатов ЭВМ, связанные с процессами наблюдения и дистанционного управления без речевой связи по телефону; работы в лабораториях с шумным оборудованием.Все виды работ за исключением перечисленных в п.п. 1 – 4.Для широкополосного шума в табл. 1 приведены допустимые уровни звукового давления L P в октавных полосах частот со среднегеометрическими частотами f сг , уровни звука L A (для субъективной оценки громкости постоянных шумов) и эквивалентные уровни звука L Аэ (для оценки непостоянных шумов).Для тонального и импульсного шумов, а также для шумов, создаваемых в помещениях установками кондиционирования и вентиляции, допустимые уровни должны быть на 5 дБ ниже указанных в табл.1 (при измерениях на характеристике “медленно” шумомера).

Таблица 1

Допустимые уровни шума

вида работы

Уровни звукового давления L P (дБ ) в октавных полосах частот со среднегеометрическими частотами, Гц

Уровни звука L А , дБА

Для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА .Для импульсного шума максимальный уровень звука, измеренный на характеристике “импульс” шумомера, не должен превышать 125 дБА (I).Согласно СН 3077-84 установлены более жесткие требования к шуму в жилых помещениях, общественных зданиях и на территории жилой застройки. Например, в аудиториях учебных заведений уровни L A и L Аэ не должны превышать 40 дБА , а максимальный уровень звука – 55 дБА .В любом случае запрещается даже кратковременное пребывание людей в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе. Зоны с уровнем звука свыше 85 дБ должны быть обозначены знаками безопасности; работающих в таких зонах следует снабжать средствами индивидуальной защиты.

5. Особенности распространения звука в атмосфере

Уровень звука (дБ ), создаваемого точечным источником на расстоянии r (м ) от него в однородной среде без поглощения и вдали от каких-либо препятствий, определяется формулой: , (11)

где L W – относительный логарифмический уровень звуковой мощности источника (формула (9)); ф – фактор направленности излучения звука источником относительно контрольной точки (для точечных источников звука, рассматриваемых в данной работе, ф= 1); Ω – телесный (пространственный) угол излучения звука источником, ср ; Δ L в – дополнительное ослабление уровня звука, вызываемое поглощением энергии звуковой волны атмосферным воздухом.

Уровень звукового давления, создаваемого источником звука в точке наблюдения, удалённой на некоторое расстояние от источника, зависит от характеристик источника (излучаемый спектр, характеристика направленности излучения), от расположения точки наблюдения (контрольной точки) относительно источника звука и ряда некоторых других параметров.Телесный угол (W ) представляет собой часть пространства, ограниченную конической поверхностью. Коническая поверхность в общем случае представляет собой множество прямых линий (образующих) в трёхмерном пространстве, соединяющих все точки некоторой линии (направляющей) с данной точкой (вершиной). Мерой телесного угла является отношение площади той части поверхности сферы s произвольного радиуса r с центром в вершине телесного угла, которая вырезается конической поверхностью данного телесного угла, к квадрату радиуса сферы (рис. 2): , стерадиан (ср ). (12)Коническая поверхность представляется как множество прямых линий (образующих ) в пространстве, соединяющих все точки некоторой, в общем случае произвольной, линии (направляющей ) с данной точкой (вершиной ), как показано на рис. 2.

Если источник звука расположен в свободном пространстве и излучает по всем направлениям (не обязательно одинаково), то телесный угол излучения будет равен полному телесному углу (телесный угол заключает в себе всё пространство): W = 4 p ср .

При расположении источника звука на некоторой плоскости, например на земной поверхности, телесный угол будет включать в себя полупространство и, следовательно, величина телесного угла в данном случае составит 2 p ср .Из выражения (11), без учёта величины Δ L в , следует, что уровень звукового давления в контрольной точке уменьшается на 6 дБ при удвоении расстояния до источника звука. Такое уменьшение звукового давления называют «геометрическим спадом уровня звука».В реальной окружающей среде подавляющее большинство источников звука расположено вблизи земной поверхности, обладающей определённой звукоотражающей способностью. В таких случаях уровень звука в контрольной точке будет определяться и прямой, и отражённой звуковыми волнами (рис. 3). На рис. 3 обозначено: r 1 и r 2 – расстояния, проходимые прямой и отражённой звуковыми волнами, м ; h ш и h к.т. – высоты расположения над поверхностью источника звука и контрольной точки.С учётом обозначений на рис. 3 имеет место формула для оценки уровня звука, распространяющегося вблизи отражающей поверхности: , (13)где: ф 1 и ф 2 – факторы направленности излучения звука источником в направлении контрольной точки и в направлении точки отражения звуковой волны от поверхности (в данной работе для точечных источников шума принимаются равными 1); a отр – коэффициент отражения звуковой волны от поверхности (0 < a отр < 1, для земной поверхности a отр = 0,37) .При h ш £ r 1 / 3 и a ор 1 с незначительной погрешностью можно считать, что излучение звука происходит непосредственно с поверхности. В этом случае полагают r 1 r 2 r (рис. 4), ф = 0,5(ф 1 + ф 2)= 1 и W = 2p ср (излучение звука в полупространство) и в качестве расчётной формулы используют формулу (11).Если h к.т << r , h ш << r и f ср £ 40/ (h ш h к.т. ) – средняя частота излучаемой источником полосы частот, Гц , то прямая и отражённая звуковые волны синфазно складываются и уровень звукового давления возрастает на величину D L доп = 3 дБ относительно уровня, определяемого формулой (14).Дополнительное ослабление уровня звука, вызываемое потерями звуковой энергии в атмосферном воздухе, пропорционально расстоянию r (м ), проходимому звуковой волной: , (14)

где b в – коэффициент поглощения звука в воздухе, дБ/км . Величина b в зависит от частоты звука, а также от температуры и относительной влажности воздуха (в данной работе принято b в =5,2 дБ/км ).

Дополнительное ослабление шума на пути распространения звуковых волн в окружающей среде могут вызывать различные препятствия, например полосы лесонасаждений. Если высота лесонасаждений не менее 5 м , то звук частично отражается от неё, а частично рассеивается в кронах деревьев и кустарнике. Дополнительное ослабление шума полосой лесонасаждений может быть учтено путём вычисления отрицательной поправки к формулам (11) и (13): D L л.п. = b л.п. b л.п , (15)где: b л.п. – коэффициент ослабления звука полосой лесонасаждений, дБ/м ; b л.п – ширина полосы лесонасаждений, м . Коэффициент ослабления звука лесополосой сложным образом зависит от вида растительности и типа её посадки, а также от её ширины. Усреднённым значением коэффициента ослабления звука лесополосой считается значение b л.п. = 0,08 дБ/м . Следует, конечно, иметь в виду, что лесополоса, состоящая из лиственных насаждений, в зимнее время практически не ослабляет уровень проходящей сквозь неё звуковой волны. Приведённые выше формулы позволяют оценить уровень шума на некотором удалении от его точечного источника. Однако в окружающей среде имеют место шумовые источники, такие как протяжённые улицы, шоссе, шумные производственные цехи и т. п., которые нельзя считать точечными. Такие источники шума называют протяжёнными или линейными.Уровень звукового давления (дБ ) при удалении на расстояние d от бесконечно длинного линейного источника шума в среде без поглощения снижается на 3 дБ при удвоении расстояния (d , м ) : L к.т. = L * W – 10 lg( d) – 3 , (16)где L * W относительный логарифмический уровень звуковой мощности, излучаемой участком протяжённого источника длиной 1 м . Уровни звукового давления, создаваемые отдельными участками линейных источников или протяжёнными источниками конечной длины в произвольно расположенной контрольной точке (рис. 4), определяются по формуле : . (17)На рис. 4 обозначено: l щ – длина протяжённого источника шума, м ; d – кратчайшее расстояние от фронта протяжённого источника шума до контрольной точки, м ; α – угол, под которым виден протяжённый источник шума из данной контрольной точки, рад ; r – расстояние от середины протяжённого источника шума до контрольной точки, м . Если r > 2l ш , то можно использовать формулу (14) с ф = 1 и Ω = 2p ср , т. е. протяжённый источник в данном случае можно считать точечным.

Рис. 4. К определению уровня звукового давления вблизи протяжённого источника шума конечной длины

При достаточно большом удалении от протяжённого источника шума в формулах (16) и (17) следует делать поправки на поглощение звука воздушной средой (формула (14)) и при необходимости на ослабление шума лесозащитной полосой (формула (14)).

Практическая часть

1. Получить у преподавателя вариант задания.

2. Изучить полученное задание.

3. Произвести классификацию шума в заданной ситуации.

4. Путём соответствующих расчётов оценить уровень шума в ситуациях, определённых вариантом задания.

5. По результатам расчётов построить графические зависимости, указанные в задании.

6. Оценить полученные характеристики шума на соответствие нормативным уровням.

1) Отчёт должен содержать результаты требуемых вычислений и графические зависимости, иллюстрирующие результаты вычислений.

2) По данным задания классифицировать исследуемые шумы (определить их характер).

3) Дать заключение о соответствии рассчитанных уровней шума в заданных контрольных точках нормативным уровням.

Контрольные вопросы

  1. Звук и его характеристики.
  2. Особенности субъективного восприятия звука органами слуха человека.
  3. Действие шумов на организм человека.
  4. Характеристики шумов и их классификация.
  5. С какой целью введено представление об эквивалентном уровне звука и что представляет этот параметр?
  6. Принципы нормирования шумов.
  7. Особенности восприятия шумов, исходящих от нескольких источников.
  8. Представление о телесном угле, в пределах которого происходит излучение звука.
  9. Какие факторы могут оказывать влияние на уровень воспринимаемого звука при его распространении в атмосферном воздухе.
  10. Особенности и различие точечных и протяжённых источников звука.
  11. Борьба с шумом на производстве: Справочник / Под общ. ред. Е. Я. Юдина. М.: Машиностроение, 1985. С. 11 – 17, 36 – 57.
  12. Охрана окружающей среды / Под ред. С. В. Белова. М.: Высшая школа, 1991. С. 200 – 234.
  13. Денисенко Г.Ф. Охрана труда. М.: Высшая школа, 1985. С. 182 – 193.

Библиографический список

Лабораторная работа № 4

ОПРЕДЕЛЕНИЕ УСЛОВИЙ РАССЕИВАНИЯ ВЫБРОСОВ ПРОМЫШЛЕННЫМИ ПРЕДПРИЯТИЯМИ

Цель работы: определить уровень загрязнения атмосферного воздуха промышленными выбросами и выбросами из вентиляционных устройств.

Теоретическая часть

1. Техногенные эмиссии и воздействия на окружающую среду

Техногенное загрязнение среды является наиболее очевидной причинной связью в системе экосферы: «экономика, производство, техника, среда». Оно приводит к деградации экологических систем, глобальным климатическим и геохимическим изменениям, к поражениям людей и животных. На рис.1 приведена классификация техногенных загрязнений ОС.

Рис. 1. Классификация техногенных загрязнений ОС

В целом по природе и масштабам наиболее существенны химические загрязнения, а самая большая угроза связана с радиацией. Что касается объектов воздействия, то на первом месте, конечно же, стоит человек. В последнее время особую опасность представляет не только рост загрязнений, но и их суммарное влияние, часто превышающее по конечному эффекту простое суммирование последствий.С экологической точки зрения все продукты техносферы являются загрязнениями либо потенциальными загрязнителями, даже те, которые химически инертны, поскольку они занимают место в биосфере и становятся балластом экологических потоков. Большинство продуктов производства также со временем становятся загрязнителями, представляя собой «отложенные отходы».Большая часть загрязнений ОС относится к непреднамеренным, хотя и очевидным, экологическим нарушениям. Многие из них значительны, многие трудно контролировать и они опасны непредвиденными эффектами из-за отдалённости последствий. Например: техногенная эмиссия СО 2 или тепловое загрязнение принципиально неизбежны пока существует топливная энергетика.Масштабы отходов современного человечества и продуктов техносферы составляют почти 160 Гт/год , из которых около 10 Гт образуют массу изделий, т.е. «отложенный отход». В среднем на одного жителя Земли приходится около 26 т всех антропогенных эмиссий в год. 160 Гт отходов распределяются примерно следующим образом: 30 % выбрасывается в атмосферу, 10 % попадает в водоемы, 60 % остается на поверхности Земли.Очень больших масштабов достигла к настоящему времени химизация биосферы, которая заметно влияет на геохимический облик экосферы. Общая масса производимых химических веществ и активных отходов всей химической промышленности мира превысила 1,5 Гт/год . Почти все это количество может быть отнесено к загрязнениям ОС. Но дело не только в массе, но и в разнообразии и токсичности большинства производимых химических веществ. В мировой химической номенклатуре значится более 10 7 химических соединений и ежегодно их число возрастает на несколько тысяч. Однако большинство используемых веществ не оценены с точки зрения их токсичности и экологической опасности.

2. Источники техногенных эмиссий

Все источники техногенных выбросов подразделяются на организованные, стационарные и подвижные. Организованные источники оборудованы специальными устройствами для направленного вывода эмиссий (трубы, вентиляционные шахты, выводные каналы, желоба и т.д.). Эмиссии от неорганизованных источников произвольны. Источники разделяются также по геометрическим характеристикам (точечные, линейные, производные) и по режиму работы – непрерывному, периодическому, залповому.Источниками преобладающей части химического и теплового загрязнения являются термохимические процессы в энергетике – сжигание топлива и связанные с ним термические и химические процессы и утечки. Главные реакции, определяющие эмиссию углекислого газа, паров воды и теплоты, идут следующим образом:

Углерод: C + O 2 → CO 2 ;

Углеводороды: C n H m + (n + 0,25m)O 2 → nCO 2 + 0,5mH 2 O.

Попутно идут реакции, определяющие эмиссию других загрязнителей, и связаны они с содержанием в топливе различных примесей, с термоокислением азота воздуха и со вторичными реакциями, происходящими в ОС. Все эти реакции сопровождают работу тепловых станций, промышленных печей, двигателей внутреннего сгорания, газотурбинных и реактивных двигателей, процессы в металлургии, обжиг минерального сырья и т.д. Наибольший вклад в энергетически зависимое загрязнение среды вносят теплоэнергетика и транспорт.Общая картина воздействия теплоэлектростанции (ТЭС) на ОС показана на рис. 2.При сжигании топлива вся его масса превращается в твердые, жидкие и газообразные отходы. Данные о выбросах главных загрязнителей воздуха при работе ТЭС приведены в табл. 1.

Таблица 1

Удельные выбросы в атмосферу при работе ТЭС мощностью 1000 МВт на разных видах топлива, г/кВт час

Природный газ

Количество выбросов зависит от качества топлива, типа топочных агрегатов, систем нейтрализации выбросов и пыледымовых уловителей и устройств очистки сточных вод. В среднем в топливной теплоэнергетике на 1т сжигаемого топлива выбрасывается в ОС около 150 кг загрязнителей.

Рис. 2. Влияние теплоэлектростанции на окружающую среду

1 – котёл; 2 – труба; 3 – паровая труба; 4 –электрогенератор; 5 – электрическая подстанция; 6 – конденсатор; 7 – водо-забор для охлаждения конденсатора; 8 – водное питание котла; 9 – линии электропередачи; 10 – потребители электроэнергии; 11 - водоём

Металлургические процессы основаны на восстановлении металлов из руд, где они содержатся преимущественно в виде окислов или сульфи­дов, с помощью термических и электролитических реакций. Наиболее характерные суммарные (упрощенные) реакции:

железо: Fe 2 O 3 + 3C + O 2 → 2Fe + CO + 2CO 2 ;

медь: Cu 2 S + O 2 → 2Cu + SO 2 ;

алюминий (электролиз): Al 2 O 3 + 2O → 2Al + CO + CO 2 .

Технологическая цепь в черной металлургии включает производство окатышей и агломератов, коксохимическое, доменное, сталеплавильное, про­катное, ферросплавное, литейное производства и другие вспомогательные технологии. Все металлургические переделы сопровождаются интенсивным загрязнением среды (табл. 2). В коксохимическом производстве дополни­тельно выделяются ароматические углеводороды, фенолы, аммиак, цианиды и целый ряд других веществ. Черная металлургия потребляет большое ко­личество воды. Хотя промышленные нужды на 80 – 90 % удовлетворяются за счет систем оборотного водоснабжения, забор свежей воды и сброс за­грязненных стоков достигают очень больших объемов, соответственно порядка 25 – 30 м 3 и 10 – 15 м 3 на 1 т продукции полного цикла. Со сто­ками в водные объекты поступают значительные количества взвешенных веществ, сульфатов, хлоридов, соединений тяжелых металлов.

Таблица 2

Газовые выбросы (до очистки) основных переделов черной металлургии

(бeз коксохимического производства), в кг/т соответствующего продукта

Производство

Агломерационное

Доменное

Сталеплавильное

Прокатное

* кг/м 2 поверхности металла

Цветная металлургия, несмотря на относительно меньшие ма­териальные потоки производства, не уступает черной металлургии по совокупной токсичности эмиссий. Кроме большого количества твердых и жидких отходов, содержащих такие опасные загрязнители, как сви­нец, ртуть, ванадий, медь, хром, кадмий, таллий и др., выбрасывается и много аэрополлютантов. При металлургической переработке суль­фидных руд и концентратов образуется большая масса диоксида серы. Так, около 95 % всех вредных газовых выбросов Норильского горно-ме­таллургического комбината приходится на SO 2 , а степень его утилиза­ции на превышает 8 %.Технологии химической промышленности со всеми ее отраслями (ба­зовая неорганическая химия, нефтегазохимия, лесохимия, оргсинтез, фармакологическая химия, микробиологическая промышленность и др.) со­держат множество существенно незамкнутых материальных циклов. Основными источниками вредных эмиссий являются процессы производ­ства неорганических кислот и щелочей, синтетического каучука, ми­неральных удобрений, ядохимикатов, пластмасс, красителей, растворите­лей, моющих средств, крекинг нефти. Список твердых, жидких и газо­образных отходов химической промышленности огромен и по массе загряз­нителей, и по их токсичности. В химическом комплексе РФ ежегодно образуется более 10 млн т вредных промышленных отходов.Различные технологии в обрабатывающих отраслях промышленнос­ти, в первую очередь в машиностроении, включают большое число разнообразных термических, химических и механических процессов (ли­тейное, кузнечно-прессовое, механообрабатывающее производства, сварка и резка металлов, сборка, гальваническая, лакокрасочная обра­ботка и др.). Они дают большой объем вредных эмиссий, загрязняющих среду. Заметный вклад в общее загрязнение среды вносят также раз­личные процессы, сопровождающие добычу и обогащение минерального сырья и строительство.Сельское хозяйство и быт людей по собственным отходам – остат­кам и продуктам жизнедеятельности растений, животных и человека – по существу не являются источниками загрязнения среды, так как эти про­дукты могут включаться в биотический круговорот. Но, во-первых, для современных агротехнологий и коммунального хозяйства характерен кон­центрированный сброс большей части отходов, что приводит к значи­тельным локальным превышениям допустимых концентраций органики и таким явлениям, как эвтрофикация и заражение водоемов. Во-вторых, что еще серьезнее, сельское хозяйство и быт людей являются посредниками и участника ми рассредоточения и распространения значительной части про­мышленных загрязнений в виде распределенных потоков эмиссий, остат­ков нефтепродуктов, удобрений, ядохимикатов и различных употребленных изделий, мусора – от туалетной бумаги до заброшенных ферм и городов.

Рис. 3. Схема влияний загрязнений окружающей среды

Между всеми средами существует постоянный обмен частью загрязни­телей: тяжелая часть аэрозолей, газодымовых и пылевых примесей из атмосферы выпадает на земную поверхность и в водоемы, часть твердых отходов с поверхности земли смывается в водоёмы или рассеивается воздушными потоками. Загрязнение среды влияет на человека прямо или через биологическое звено (рис. 3). В техногенных потоках поллютантов ключевое место занимают транспортирующие среды – воздух и вода.

3. Загрязнение атмосферы

Состав, количество и опасность аэрополлютантов. Из 52 Гт гло­бальных антропогенных выбросов в атмосферу более 90 % приходится на углекислый газ и пары воды, которые обычно не относят к загряз­нителям (об особой роли выбросов CO 2 говорится ниже). Техногенные выбросы в воздушную среду насчитывают десятки тысяч индивидуаль­ных веществ. Однако наиболее распространенные, «многотоннажные» загрязнители сравнительно немногочисленны. Это различные твердые частицы (пыль, дым, сажа), окись углерода (CO), диоксид серы (SO 2), окислы азота (NO и NO 2), различные летучие углеводороды (CH x), со­единения фосфора, сероводород (H 2 S), аммиак (NH 3), хлор (Cl), фтористый водород (HF). Количества первых пяти групп веществ из этого перечня, измеряемые десятками миллионов тонн и выбрасывае­мые в воздушную среду всего мира и России, представлены в табл. 3.

Таблица 3

Выбросы в атмосферу пяти главных загрязнителей в мире и в России (млн т )

Стационарные источники

Транспорт

Стационарные источники

Транспорт

Наибольшая загрязненность атмосферы наблюдается в индустриальных регионах. Около 90 % выбросов приходятся на 10 % территории суши и со­средоточены в основном в Северной Америке, Европе и Восточной Азии. Особенно сильно загрязняется воздушный бассейн крупных промышленных городов, где техногенные потоки тепла и аэрополлютантов, чаще при не­благоприятных метеоусловиях (высоком атмосферном давлении и термоин­версиях), часто создают пылевые купола и явления смога – токсичных смесей тумана, дыма, углеводородов и вредных окислов. Такие ситуации со­провождаются сильными превышениями ПДК многих аэрополлютантов.Более 200 городов России, население которых составляет 65 млн че­ловек, испытывают постоянные превышения ПДК токсичных веществ. Жители 70 городов систематически сталкиваются с превышениями ПДК в 10 и более раз. Среди них такие города, как Москва, Санкт-Петербург, Самара, Екатеринбург, Челябинск, Новосибирск, Омск, Кемерово, Хабаровск. В перечисленных городах основной вклад в общий объем выбросов вредных веществ приходится на долю автотранспорта, например, в Москве он составляет – 88 %, в Санкт-Петербурге – 71 %.Земная атмосфера обладает способностью самоочищения от за­грязняющих веществ, благодаря происходящим в ней физико-химическим и биологическим процессам. Однако мощность техноген­ных источников загрязнения возросла настолько, что в нижнем слое тропосферы наряду с локальным повышением концентрации неко­торых газов и аэрозолей происходят глобальные изменения. Человек вторгается в сбалансированный биотой круговорот веществ, резко увеличив выброс вредных веществ в атмосферу, но не обеспечив их вывод. Концентрация ряда антропогенных веществ в атмосфере (уг­лекислый газ, метан, оксиды азота и др.) быстро растёт. Это свидетельствует о том, что ассимиляционный потенциал биоты близок к исчерпанию.Кислотные осадки. По ряду показателей, в первую очередь по массе и распростра­ненности вредных эффектов, атмосферным загрязнителем номер один считают диоксид серы. Он образуется при окислении серы, содержа­щейся в топливе или в составе сульфидных руд. В связи с увеличением мощности высокотемпературных процессов, переводом многих ТЭС на газ и ростом парка автомобилей растут выбросы окислов азота, обра­зующихся при окислении атмосферного азота. Поступление в атмо­сферу больших количеств SO и окислов азота приводит к заметному снижению рН атмосферных осадков. Это происходит из-за вторичных реакций в атмосфере, приводящих к образованию сильных кислот – серной и азотной. В этих реакциях участвуют кислород и пары воды, а также частицы техногенной пыли в качестве катализаторов:2SO 2 + O 2 + 2H 2 O → 2H 2 SO 4 ;4NO 2 + O 2 + 2H 2 O → 4HNO 3 .В атмосфере оказывается и ряд промежуточных продуктов указан­ных реакций. Растворение кислот в атмосферной влаге приводит к выпадению «кислотных дождей». Кислотные осадки очень опасны в районах с кислыми почвами, гибнет микрофлора, вымывается органика, закисляются водоемы рек, озёр и происходят необратимые изменения в экосистемах.Нарушение озонового слоя. В 70-х годах появились сообщения о региональных снижениях содержания озона в стратосфере. Особен­но заметной стала сезонно пульсирующая озоновая дыра над Антарк­тидой площадью более 10 млн км 2 , где содержание O 3 за 80-е годы уменьшилось почти на 50 %. Позднее «блуждающие озоновые дыры», правда, меньшие по размеру и не с таким значительным снижением, стали наблюдаться в зимнее время и в Северном полушарии, в зонах стойких антициклонов – над Гренландией, Северной Канадой и Яку­тией. Средняя скорость глобального уменьшения за период с 1980 по 1995 г. оценена в 0,5 – 0,7 % в год.Поскольку ослабление озонового экрана чрезвычайно опасно для всей наземной биоты и для здоровья людей, эти данные привлекли пристальное внимание ученых, а затем и всего общества. Был высказан ряд гипотез о причинах нарушения озонового слоя.Большинство специалистов склоня­ется к мнению о техногенном происхождении озоновых дыр. Наиболее обосновано представление, согласно которому главной причиной является попадание в верхние слои атмосферы техногенного хлора и фтора, а также других атомов и радикалов, способных чрезвычайно активно присоединять атомарный кислород, тем самым конкурируя с реакцией O + O 2 → O 3 .Занос активных галогенов в верхние слои атмосферы опосредован ле­тучими хлорфторуглеродами (ХФУ) типа фреонов (смешанные фторохлориды метана и этана, например фреон-12 – дихлордифторметан, CF 2 Cl 2), которые, будучи в обычных условиях инертными и нетоксичными, под действием коротковолновых ультрафиолетовых лучей в стратосфере распадаются. Вырвавшись «на свободу», каждый атом хлора способен разрушить или помешать образованию множества молекул озона.Хлорфторуглероды обладают рядом полезных свойств, обусло­вивших широкое их применение в холодильных установках, конди­ционерах, аэрозольных баллончиках, огнетушителях и т. д. С 1950 г. объем мирового производства ХФУ ежегодно возрастал на 7 – 10 % и в 80-х годах составил около 1 млн т . В последующем были приняты ме­ждународные соглашения,
обязывающие стран-участниц сократить использование ХФУ. США еще в 1978 г. ввели запрет на использование ХФУ-аэрозолей. Но рас­ширение других областей применения ХФУ снова привело к росту их мирового про­изводства. Переход промышленности к новым озоносбе­регающим техно­логиям связан с большими финансовыми затратами.В последние десяти­летия появились и другие, чисто технические пути заноса активных разрушителей озона в стратосферу: ядерные взрывы в атмосфере, вы­бросы сверхзвуковых самолетов, запуски ракет и космических кораб­лей многора­зового использования. Не исключено, однако, что часть наблюдаемого ослабления озонового экрана Земли связана не с техно­генными выброса­ми, а с вековыми колебаниями аэрохимических свойств атмосферы и независимыми изменениями климата.Парниковый эффект и изменения климата. Техногенное загряз­не­ние атмосферы в определенной степени связано с изменениями кли­мата. Речь идет не только о вполне очевидной зависимости мезокли­мата промышленных центров и их окрестностей от теплового, пыле­вого и химического загрязнения воздуха, но и о глобальном климате.С конца XIX в. по настоящее время наблюдается тенденция повы­шения средней температуры атмосферы; за последние 50 лет она повысилась приблизительно на 0,7 °С . Это отнюдь не ма­ло, если учесть, что при этом валовое увеличение внутренней энергии атмо­сферы очень велико - порядка 3000 МДж . Оно не связано с уве­личе­нием солнечной постоянной и зависит только от свойств самой атмо­сферы. Главным фактором является уменьшение спектральной про­зрачности атмосферы для длинноволнового обратного излучения от поверхности земли, т.е. усиление парникового эффекта. Парни­ковый эффект создается увеличением концентрации ряда газов – CO 2 , CO, CH 4 , NO x , ХФУ и др., названных парниковыми газами. По данным, обобщенным в последнее время Международной группой экспертов по проблеме изменения климата (МГЭИК), существует до­вольно высокая положительная корреляция между концентрацией парниковых газов и отклонениями глобальной температуры атмо­сферы. В настоящее время значительная часть эмиссии парниковых газов имеет техногенное происхождение.Тенденции глобального потепления придается очень большое значение. Вопрос о том, произойдет оно или нет, уже не стоит. По оценкам экспертов Всемирной метеорологической службы, при суще­ствующем уровне выбросов парниковых газов средняя глобальная температура в следующем столетии будет повышаться со скоростью 0,25 °С за 10 лет. Её рост к концу XXI в., по разным сценариям, (в зависимости от принятия тех или иных мер) может составить от 1,5 до 4 °С . В северных и средних широтах потепление скажется силь­нее, чем на экваторе. Казалось бы, такое повышение температуры не должно вызывать особого беспокойства. Более того, возможное по­тепление в странах с холодным климатом, как, например, Россия, представляется чуть ли не желанным. На самом деле последствия изме­нения климата могут иметь катастрофический характер. Глобальное потепление вызовет существенное перераспределение осадков на плане­те. Уровень Мирового океана за счет таяния льдов может повыситься к 2050 г. на 30 – 40 см , а к концу столетия – от 60 до 100 см . Это создаст угрозу затопления значительных прибрежных территорий.Для территории России общая тенденция изменения климата харак­теризуется слабым потеплением, среднегодовая температура воздуха с 1891 по 1994 гг. повысилась на 0,56 °С . За период инструментальных на­блюдений самыми теплыми были последние 15 лет, а максимально теплым оказался 1999 г. В последние три десятилетия заметна также тенденция к уменьшению осадков. Одним из тревожных для России последствий изме­нения климата может стать деструкция мерзлых грунтов. Повышение температуры в зоне вечной мерзлоты на 2 –3 °С приведет к изменению несу­щих свойств грунтов, что поставит под угрозу различные сооружения и коммуникации. Кроме того, содержащиеся в вечной мерзлоте запасы CO 2 и метана из оттаявших грунтов начнут поступать в атмосферу, усугубляя парниковый эффект.

4. Определение условий рассеивания выбросов промышленных предприятий

Распространение в атмосфере промышленных выбросов из труб и вентиляционных устройств подчиняется законам турбулентной диффузии. На процесс рассеивания выбросов существенное влияние оказывают состояние атмосферы, расположение предприятий и источников выбросов, характер местности, химические свойства выбрасываемых веществ, высота источника, диаметр трубы и т.д. Горизонтальное перемещение примесей определяется в основном скоростью и направлением ветра, а вертикальное – распределением температур в атмосфере по высоте.В основу «Методики расчета концентраций в атмосферном воз­духе вредных веществ, содержащихся в выбросах предприятий» ОНД-86 положено условие, при котором суммарная концентрация каждого вредного вещества не должна превышать максимальную разовую предельно допустимую концентрацию данного вещества в атмосферном воздухе. Максимальная концентрация C m вредных веществ (в мг/м 3 ) у земной поверхности образуется на оси факела выброса на расстоянии X max от источника выброса (для горячей газовоздушной смеси):

A – коэффициент стратификации атмосферы, зависящий от тем­пературного градиента и определяющий условия вертикального и горизонтального рассеивания выбросов (для центра России прини­мает значение в пределах 140 – 200);

M – масса вещества, выбрасываемого в атмосферу в единицу вре­мени, г/с ;

V 1 – объем выбрасываемой газовоздушной смеси, м 3 /с ;

h – высота трубы, м ;

F – коэффициент, учитывающий скорость оседания взвешенных частиц выброса в атмосфере (для газов равен 1, для пыли при эф­фективности очистки более 90 % – 2, от 75 % до 90 % – 2,5, менее 75 % – 3);

Δ T – разность между температурой выбрасываемой газовоздушной смеси и температурой окружающего атмосферного воздуха, рав­ной средней температуре самого жаркого месяца в 13 часов;

η – безразмерный коэффициент, учитывающий влияние релье­фа местности;

m – безразмерный коэффициент, учитывающий условия выхода газов из трубы:

где: f = 10 3 W 0 D/h 3 ΔT;

W 0 = 4 V 1 / π D 2 – средняя скорость выхода газов из трубы, м/с ;

D – диаметр трубы, м ;

n – безразмерный коэффициент, зависящий от параметра V M , м/с :

При Vm ≤ 0,3 принимают n = 3 , при Vm > 2 принимают n = 1 , при 0,3 < Vm < 2 принимают n = [(Vm – 0,3 )(4,36 – Vm )] 0,5 .

Ожидаемая максимальная концентрация загрязнителей (в мг/м 3 ) при выбросе холодной газовоздушной смеси определяется по уравнению:

Расстояние до места, где ожидается максимальная концен­трация, (X mах ) определяется следующим образом: для газов и мелкодисперсной пыли X max = dh , где d – безразмерная величина, зависящая от параметра V M :

для холодного выброса

d = 11,4 V M при V M ≤ 2;

d = 16,1 ( V M) 0,5 при V M > 2;

для крупнодисперсной пыли (F ≥ 2)

X mах = 0,25(5 – F) dh ;

для горячей газовоздушной смеси:

d = 4,95 V M (1 + 0,28 f 1/3) при V M ≤ 2;

d = 7 ( V M) 0,5 (1 + 0,28 f 1/3) при V M > 2.

Концентрация загрязнителя в приземном слое атмосферы на любом расстоянии X от источника выброса, отличном от X max , опре­деляется по формуле: C = C m S 1 ,

где S 1 – коэффициент, зависящий от величины χ = X / X max :

● при χ ≤ 1 S 1 = 3 χ 4 – 8 χ 3 + 6 χ 2 ;

● при 1 < χ ≤ 8 S 1 = 1,13(1 + 0,13 χ 2) –1 ;

● при χ ≤ 8 (F = 1) S 1 = χ (3,58 χ 2 +3,52 χ + 120) –1 ;

● при χ ≤ 8 (F = 1) S 1 = (0,1 χ 2 +2,47 χ + 17,8) – 1 .

Практическая часть

Отчет о выполнении лабораторной работы должен содержать:

1) исходные данные;

2) результаты всех вычислений;

3) выводы.

Контрольные вопросы

  1. Что такое техногенные эмиссии?
  2. Тепловые источники и их роль в загрязнении ОС.
  3. Влияние металлургических и химических процессов на загрязнение ОС.
  4. С чем связано разрушение озонового слоя?
  5. Чем вызваны кислотные осадки?
  6. Что такое парниковый эффект и в чем его опасность?
  7. С чем связано загрязнение атмосферы?
  8. Охрана окружающей среды / Под ред. С.В. Белова. М.: Высшая школа, 1991. 2. 234 с.
  9. Экология / Под ред. Денисова В.В.: Ростов-на-Дону, МарТ, 2002, 630 с.
  10. Федорова А.И. Практикум по экологии и охране окружающей среды. М.: ВЛАДОС, 2001, 288 с.

Шум – это любые звуки, нарушающие тишину или раздражающе действующие на человека и мешающие восприятию полезных сигналов. Раздражающее действие шума является существенным фактором, влияющим на функциональное состояние коры головного мозга и центральной нервной системы, а через них – на весь организм в целом.

Подсчитано, что в США убытки от шума на производстве составляют около 4 млн долларов в год, а в Великобритании они выше, чем от пожаров. В крупных городах шум сокращает жизнь на 8-12 лет.

Человеческое ухо воспринимает звуки с частотой от 20 до 20 000 Гц. Ниже этого предела лежит инфразвук, выше – ультразвук. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1 000 до 4 000 Гц.

Шум принято измерять на характеристике «А» шумомера. Эта характеристика корректирует частотную чувствительность шумомера в соответствии с особенностями слухового аппарата человека, то есть отражает физиологическое действие звука на организм. Получаемую величину называют уровнем звука, единица измерения - децибел «А» (дБА). Эта характеристика является международной и в России закреплена ГОСТ 12.1.003-83 и санитарными нормами СН-2.2.4/2.1.8.582-96. Порог слышимости находится на уровне 10 дБА, раздражающее действие оказывает уровень звука 60-70 дБА, при 100-110 дБА происходит нарушение слуха, 120-130 дБА – болевой порог.

Основными источниками шума на железнодорожном транспорте являются движущиеся поезда, путевые машины и производственное оборудование предприятий. Уровень шума на железной дороге колеблется от 66 дБА (при движении в час одной пары пассажирских поездов) до 91 дБА (30 пар грузовых поездов). Локомотив – один из основных источников шума в движущемся поезде. Так, на тепловозе шум дизеля 2Д100 достигает 115 дБА, системы выпуска – 123 дБА, тягового генератора – 99 дБА, тягового двигателя – 99 дБА, масляного насоса – 100 дБА, топливного насоса – 97 дБА, компрессора – 105 дБА. На электровозе ВЛ-10 уровень звука вентилятора составляет 111 дБА, а компрессора – 108 дБА.

Уровни допускаемого шума для производственных и жилых помещений приведены в табл. 8.



Таблица 8

Уровни допускаемого шума

Вид помещения или территории Уровень допускаемого шума, дБА
Производственные помещения:
учебные заведения, НИИ, административные здания
помещения конструкторских бюро, техотделов и т.п.
кабины наблюдений и дистанционного управления без речевой связи по телефону
то же, с речевой связью по телефону
рабочие места в цехах, кабины водителей автотранспорта
вокзалы
Жилая застройка:
жилые комнаты квартир - с 7 до 23 ч
- с 23 до 7 ч
комнаты в общежитиях - с 7 до 23 ч
- с 23 до 7 ч
территории жилой застройки - с 7 до 23 ч
- с 23 до 7 ч

Очевидно, что уровни допускаемого шума для производственных и жилых помещений и территорий вблизи железнодорожных станций, локомотивных депо и заводов по ремонту подвижного состава существенно превышаются.

Движущиеся поезда также являются источниками низкочастотных (инфразвуковых) вибраций. Механические колебания, создаваемые поездами, особенно велики при движении по мостам и тоннелям. Исследования показали, что длительное воздействие вибрации вызывает функциональные изменения центральной нервной и сердечно-сосудистой систем, последствиями которых являются снижение скорости реакций человека, развитие гипертонической болезни и т.п.

Для снижения шума на железнодорожном транспорте проводятся основные мероприятия:

Защитное лесоразведение;

Экранирование источников шума;

Рациональная планировка прилегающих жилых массивов вблизи железнодорожных объектов;

Установка глушителей;

Защита расстоянием.

Зеленые насаждения оказывают на распространение шума в приземном пространстве заметное влияние. Наталкиваясь на них, часть энергии звуковой волны отражается как от экрана, другая (большая) часть поглощается. Защитная лесополоса, ширина которой изменяется от 10 до 30 м, позволяет снизить уровень шума на величину от 4 дБА (три ряда лиственных деревьев) до 11 дБА (пять рядов хвойных деревьев).

Вредное воздействие шума на население может быть снижено при размещении высокоскоростных железнодорожных путей в тоннелях, выемках, за склонами естественного или искусственного рельефа. Здесь возможно использование шумозащитных барьеров из листов гофрированной стали высотой 3 м. Такие барьеры выполняют также роль ограждения полосы отвода. Эффективность снижения шума экранирующими сооружениями прямо пропорциональна их высоте и обратно пропорциональна расстоянию от источника шума до экрана. Поэтому экраны целесообразно располагать как можно ближе к источнику шума.

Глушители бывают двух типов: активные (используют звукопоглощающие материалы – керамику, минеральную вату и др.) и реактивные (основаны на отражении звука назад к источнику или уменьшении энергии). Большинство глушителей являются комбинированными.

Однако основной мерой защиты от шума, вибрации и ЭМП является защита расстоянием.

Задачи урока

1. Общеобразовательные

    Усиление экологической направленности биологических знаний; сообщение учащимся сведений о шумовом загрязнении окружающей среды и его воздействии на человека.

    Приобретение учащимися знаний этического, гуманитарного характера, составляющих основу мировоззрения.

    Обучение учащихся самостоятельному приобретению знаний при групповой форме организации познавательной деятельности.

    Освоение учащимися основ методологии научного познания.

2. Развивающие

    Развитие познавательного интереса.

    Развитие логического мышления (анализ, сравнение, обобщение, определение и объяснение понятий).

    Разностороннее развитие личности: тренировка памяти, наблюдательности, стимуляция познавательного интереса, творческих способностей, навыков анализа проблем и путей их решения.

    Развитие навыков по применению биологических знаний на практике.

3. Воспитательные задачи

    Воспитание экологической грамотности, чувства коллективизма, формирование и развитие нравственных качеств школьников.

Методы обучения

    Частично-поисковый (выполнение самостоятельных исследований, деловая игра).

    Словесный (эвристическая беседа с элементами самостоятельной работы).

    Наглядно-образный (таблицы, иллюстрации, прослушивание записей шумов, отрывков из литературных произведений).

Тип урока: усвоение нового материала.

Формы организации познавательной деятельности: индивидуальная и групповая.

Оборудование: аудиомагнитофон, аудиокассета с записью произведения Э.Грига «Утро», с шумами природного и антропогенного происхождения; информационные листы для индивидуальной работы учащихся; таблицы, плакаты и рисунки по теме урока; механические часы и линейка.
На предыдущем уроке двум ученицам дается задание провести опрос учащихся девятых классов для выяснения их отношения к природным шумам (вопрос: «Какие чувства вызывают у вас шумы природного происхождения?»). Перед началом урока класс делится на четыре группы; на столе у каждого школьника находятся информационный лист, механические часы и линейка.

ХОД УРОКА

1. Вступительное слово учителя

Звучит тихая музыка. Учитель читает отрывки из стихотворений о Земле – планете животных, pacтeний и людей, планете, неотъемлемой частью и главным врагом которой является человек.

Мы дети малые одной большой природы,
Мы делим с ней удачи и невзгоды,
Одна судьба у нас и у нее.

Моя планета – человечий дом,
Но как ей жить под дымным колпаком,
Где сточная канава – океан,
Где вся природа поймана в капкан?
Где места нет ни аисту, ни льву.
Где стонут травы: «Больше не могу!»

(Беседа с учащимися об актуальности проблемы защиты окружающей среды .)

О чем идет речь в этих отрывках?

Проблема загрязнения окружающей среды слишком сложна и многогранна, чтобы пытаться изучить ее на уроке. Поэтому мы ограничимся ее небольшой частью и ознакомимся с одним из видов загрязнителей окружающей среды. А вот с каким, попытайтесь определить, прослушав отрывок из повести Б.Васильева «Не стреляйте в белых лебедей». (Прослушивание отрывка на фоне музыки Э.Грига. Ответы учащихся .)

В средствах массовой информации шуму обычно уделяется мало внимания, и многие не считают его загрязнителем атмосферы. Но на самом ли деле это так? Мы это выясним на сегодняшнем уроке. (Постановка задач урока. Учащиеся предлагают задачи урока, а учитель вывешивает соответствующие транспаранты .)

1. Изучить шум как один из загрязнителей окружающей среды.
2. Выявить влияние шума на организм человека.
3. Установить связь между охраной окружающей среды и охраной здоровья.

Пусть нашим девизом сегодня будут слова писателя Б.Васильева: «Мне необходимо разобраться самому, а чтобы разобраться самому, надо думать сообща».

Девиз написан на доске. Учитель объясняет правила работы с информационным листом. Информационный лист вклеивается в рабочую тетрадь, на нем учащиеся пишут тему урока, основные понятия темы, заполняют таблицу, записывают домашнее задание.

2. Изучение нового материала

Виды шумов и их воздействие на чувства человека

В ходе фронтальной беседы с учащимися на основе ранее полученных ими знаний из курса физики конкретизируется понятие шума как случайной смеси звуков различной высоты (частоты), дается классификация шумов (природные и антропогенные). При прослушивании шумов и в ходе фронтальной беседы выявляется воздействие шума на организм человека (на психические процессы).

В ходе работы заполняются графы таблицы рабочей страницы информационного листа.

ИНФОРМАЦИОННЫЙ ЛИСТ

Тема урока. Влияние шума на организм человека

Новый термин:___________________________

Область экологии на стыке биоакустики и экологии человека, которая занимается природными и техногенными звуками, воздействующими на психику и здоровье человека, а также состояние и устойчивость экосистем.

Учитель обобщает полученные данные и подводит класс к выводу о благоприятном, в целом, влиянии природных шумов на организм человека.

Как вы думаете, из каких звуков складывается шумовой фон в современном городе?

Прослушивается аудиозапись городского шума, идет обсуждение следующих вопросов:

– понравилась ли вам эта шумовая симфония;
– как вы объясните свое отношение к этим шумам;
– каких шумов в записи больше и почему?

Учитель подводит класс к выводу о том, что шумы по-разному действуют на человека: их действие зависит от происхождения шума, уровня громкости, возраста и состояния здоровья человека, окружающих условий.

Уровень громкости шума зависит от источника и измеряется в относительных единицах – децибелах: 1 дБ = 10 lg(P1/P2), где под знаком десятичного логарифма стоит отношение акустических мощностей шумов. Шум может иметь громкость от 0 дБ (самый тихий слышимый звук) до более 160 дБ. Звуки громкостью более 120 дБ, т.е. в один триллион раз более громкие, чем самые тихие из слышимых звуков, вызывают болевые ощущения. Восприятие звука зависит также от высоты тона. Наибольший вред органам слуха причиняют (и вызывают наибольший стресс) громкие звуки высокой частоты. В таблице приведены типичные или максимальные громкости шумов от различных источников.

С помощью вывешенной на доске таблицы ученики отвечают на следующие вопросы:

– почему шепот и перелистывание газет безвредны для человека;
– как бы вы оценили уровень шума в течение учебного дня (уроки и перемены) с точки зрения воздействия на организм;
– какие выводы можно сделать на основании данных таблицы?

Таблица. Уровни громкости звука от разных источников

Изменения в слуховом аппарате под влиянием громких звуков

Предлагаю вам ответить на вопрос: «Какой орган реагирует на чрезмерный шум прежде всего?»

По статистике сегодня 20 из 150 млн россиян страдают тугоухостью. Группа ученых обследовала молодежь, часто слушающих громкую современную музыку. У 20% юношей и девушек, которые непомерно увлекались рок-музыкой, слух оказался сниженным так же, как и у 85-летних стариков.

В группах проводится тест по определению остроты слуха (задание из информационного листа). Учитель предварительно выявляет в результате опроса любителей слушать громкую музыку в наушниках, спокойную музыку, любителей тишины, и у них определяется острота слуха.

Определение остроты слуха

Острота слуха – это минимальная громкость звука, которая может быть воспринята ухом испытуемого.

Оборудование: механические часы, линейка.

Порядок работы

1. Приближайте к себе часы до тех пор, пока не услышите звук. Измерьте расстояние от уха до часов в сантиметрах.
2. Приложите часы плотно к уху и отводите от себя до тех пор, пока не исчезнет звук. Опять определите расстояние до часов.
3. Если данные совпадут, это будет приблизительно верное расстояние.
4. Если данные не совпадают, то для оценки расстояния слышимости нужно взять среднее арифметическое двух измерений.

Оценка результатов теста

Нормальным слухом будет такой, при котором тиканье ручных часов среднего размера слышно на расстоянии 10–15 см.

Цифры записываются на доске, анализируются, после чего ученики отвечают на вопрос: «Какие изменения происходят в слуховом аппарате под влиянием громких звуков?»

Используя таблицу «Слуховой анализатор», ученики рассказывают о преобразовании звуковых сигналов в электрические, указывают на изменения, происходящие в слуховом аппарате при длительном воздействии громких звуков:

– при постоянном растяжении барабанной перепонки уменьшается ее эластичность, поэтому требуется большая громкость звука, чтобы она начала колебаться, т.е. снижается чувствительность слухового анализатора;

– повреждаются слуховые рецепторы.

Влияние шума на организм человека

Но только ли органы слуха страдают от шумов?

Учащимся предлагается это выяснить, ознакомившись со следующими утверждениями видных ученых о шуме.

1. Шум становится причиной преждевременного старения. В тридцати случаях из ста шум сокращает продолжительность жизни людей в крупных городах на 8–12 лет.

2. Каждая третья женщина и каждый четвертый мужчина страдают неврозами, вызванными повышенным уровнем шума.

3. Достаточно сильный шум уже через 1 мин может вызывать изменения в электрической активности мозга, которая становится схожей с электрической активностью мозга у больных эпилепсией.

4. Такие болезни, как гастрит, язвы желудка и кишечника, чаще всего встречаются у людей, живущих и работающих в шумной обстановке. У эстрадных музыкантов язва желудка – профессиональное заболевание.

5. Шум угнетает нервную систему, особенно при повторяющемся действии.

6. Под влиянием шума происходит стойкое уменьшение частоты и глубины дыхания. Иногда появляется аритмия сердца, гипертония.

7. Под влиянием шума изменяются углеводный, жировой, белковый, солевой обмены веществ, что проявляется в изменении биохимического состава крови (снижается уровень сахара в крови).

Краткий вывод из обсуждения: от чрезмерного шума (выше 80 дБ) страдают не только органы слуха, но и другие органы и системы (кровеносная, пищеварительная, нервная и т.д.), нарушаются процессы жизнедеятельности, энергетический обмен начинает преобладать над пластическим, что приводит к преждевременному старению организма.

Обсуждение данных социологического опроса

Две ученицы вашего класса провели исследование в виде социологического опроса по выявлению действия длительно действующего шума на психические процессы учащихся девятых классов. Им я и предоставляю слово.

Первая ученица представляет данные опроса, из которых следует, что длительно действующий шум приводит к жалобам на быструю утомляемость, ослабление памяти, снижение внимания, потерю работоспособности, повышенную раздражительность, нарушение сна, общую слабость. Рассказ сопровождается демонстрацией красочной круговой диаграммы, где все данные представлены в процентах.

По данным второй ученицы, действие шума может постепенно приводить к психическим заболеваниям. В качестве иллюстрации на доску вывешивается «лестница», свернутая в гармошку, которая в ходе рассказа постепенно разворачивается.

Меры защиты человека от шумового воздействия

Итак, шум вреден. «Шум – медленный убийца», – так заявляют американские специалисты. Но можно ли уменьшить его воздействие на живые организмы, включая и человека? Что может сделать каждый из нас?

Работа в группах (оргдеятельная игра) – разработка проектов защиты человека от шумового воздействия на разных социальных уровнях.

    I группа. Я – обыватель (памятка обывателю).

    II группа. Я – мэр города.

    III группа. Я – архитектор.

    IV группа. Я – директор крупного завода.

Группы оформляют проекты на листах ватмана, вывешивают их на доску и защищают.

3. Заключение

Мы еще не раз будем на наших уроках говорить и думать о последствиях деятельности человека для природы и самого себя. Хотелось бы надеяться, что сегодняшний разговор не прошел для вас бесследно. Мы почти не затронули проблемы воздействия шума на окружающую среду, а эта проблема так же сложна и многогранна, как и обсуждавшаяся нами проблема воздействия шума на человека. Только защищая природу от вредных последствий своей деятельности, мы сможем сохранить и самих себя.

Коль суждено дышать нам воздухом одним,
Давайте же мы все на век объединимся,
Давайте наши души сохраним,
Тогда мы на Земле и сами сохранимся.

Н.Старшинов

Какие же выводы вы сделали для себя после сегодняшнего разговора? (Заслушиваются ответы учеников .)

4. Проверка усвоения нового материала способом самоанализа

На уроке мы думали сообща, но при этом каждый работал индивидуально. И сейчас вам предстоит оценить свою деятельность на уроке.

Учитель объясняет, как надо заполнить лист самооценки учащегося, затем включает аудиозапись звуков природы, и ученики оценивают свой труд.

ЛИСТ САМООЦЕНКИ УЧАЩЕГОСЯ

Шум как экологический фактор.

Задачи:

1. Общеобразовательные

  • Усиление экологической направленности биологических знаний; сообщение учащимся сведений о шумовом загрязнении окружающей среды и его воздействии на человека.
  • Приобретение учащимися знаний этического, гуманитарного характера, составляющих основу мировоззрения.
  • Обучение учащихся самостоятельному приобретению знаний при групповой форме организации познавательной деятельности.
  • Освоение учащимися основ методологии научного познания.

2. Развивающие

  • Развитие познавательного интереса.
  • Развитие логического мышления (анализ, сравнение, обобщение, определение и объяснение понятий).
  • Разностороннее развитие личности: тренировка памяти, наблюдательности, стимуляция познавательного интереса, творческих способностей, навыков анализа проблем и путей их решения.
  • Развитие навыков по применению биологических знаний на практике.

3. Воспитательные задачи

  • Воспитание экологической грамотности, чувства коллективизма, формирование и развитие нравственных качеств школьников.

Методы обучения

  • Частично-поисковый (выполнение самостоятельных исследований, деловая игра).
  • Словесный (эвристическая беседа с элементами самостоятельной работы).
  • Наглядно-образный (таблицы, иллюстрации, прослушивание записей шумов, отрывков из литературных произведений).
  • Тест.

Формы организации познавательной деятельности: индивидуальная и групповая.

Оборудование: аудиомагнитофон, аудиокассета с записью произведения Э.Грига «Утро», с шумами природного и антропогенного происхождения; информационные листы для индивидуальной работы учащихся; таблицы, плакаты и рисунки по теме урока; механические часы и линейка.
Заблаговременно двум ученицам дается задание провести опрос учащихся 8- 9-х классов для выяснения их отношения к природным шумам с вопросом: «Какие чувства вызывают у вас шумы природного происхождения?». Перед началом урока ребята делятся на 4 группы; на столе у каждого школьника находятся информационный лист, механические часы и линейка.

Ход занятия

1. Вступительное слово учителя.

Звучит тихая музыка. Учитель читает отрывки из стихотворений о Земле – планете животных, pacтeний и людей, планете, неотъемлемой частью и главным врагом которой является человек.

Мы дети малые одной большой природы,
Мы делим с ней удачи и невзгоды,
Одна судьба у нас и у нее.

Моя планета – человечий дом,
Но как ей жить под дымным колпаком,
Где сточная канава – океан,
Где вся природа поймана в капкан?
Где места нет ни аисту, ни льву.
Где стонут травы: «Больше не могу!»

(Беседа с учащимися об актуальности проблемы защиты окружающей среды .)

О чем идет речь в этих отрывках?

Проблема загрязнения окружающей среды слишком сложна и многогранна, чтобы пытаться изучить ее на уроке. Поэтому мы ограничимся ее небольшой частью и ознакомимся с одним из видов загрязнителей окружающей среды. А вот с каким, попытайтесь определить, прослушав отрывок из повести Б.Васильева «Не стреляйте в белых лебедей». (Прослушивание отрывка на фоне музыки Э.Грига. Ответы учащихся .)

В средствах массовой информации шуму обычно уделяется мало внимания, и многие не считают его загрязнителем атмосферы. Но на самом ли деле это так? Мы это выясним на сегодняшнем занятии. (Озвучивание задач урока, учитель вывешивает соответствующие транспаранты .)

1. Изучить шум как один из загрязнителей окружающей среды.
2. Выявить влияние шума на организм человека.
3. Установить связь между охраной окружающей среды и охраной здоровья.

Пусть нашим девизом сегодня будут слова писателя Б.Васильева: «Мне необходимо разобраться самому, а чтобы разобраться самому, надо думать сообща».

(Девиз написан на доске. Педагог объясняет правила работы с информационным листом. Информационный лист вклеивается в рабочую тетрадь, на нем учащиеся пишут тему урока, основные понятия темы, заполняют таблицу, записывают задания).

2. Изучение нового материала.

Виды шумов и их воздействие на чувства человека

В ходе беседы с учащимися на основе ранее полученных ими знаний из курса физики конкретизируется понятие шума как случайной смеси звуков различной высоты (частоты), дается классификация шумов (природные и антропогенные). При прослушивании шумов и в ходе фронтальной беседы выявляется воздействие шума на организм человека (на психические процессы).

В ходе работы заполняются графы таблицы рабочей страницы информационного листа.

ИНФОРМАЦИОННЫЙ ЛИСТ

Тема занятия.

Новый термин:___________________________

Область экологии на стыке биоакустики и экологии человека, которая занимается природными и техногенными звуками, воздействующими на психику и здоровье человека, а также состояние и устойчивость экосистем.

Педагог обобщает полученные данные и подводит класс к выводу о благоприятном, в целом, влиянии природных шумов на организм человека.

Как вы думаете, из каких звуков складывается шумовой фон в современном городе?

(Прослушивается аудиозапись городского шума). Идет обсуждение следующих вопросов:

– понравилась ли вам эта шумовая симфония;
– как вы объясните свое отношение к этим шумам;
– каких шумов в записи больше и почему?

Учитель подводит класс к выводу о том, что шумы по-разному действуют на человека: их действие зависит от происхождения шума, уровня громкости, возраста и состояния здоровья человека, окружающих условий.

Уровень громкости шума зависит от источника и измеряется в относительных единицах – децибелах: 1 дБ = 10 lg(P1/P2), где под знаком десятичного логарифма стоит отношение акустических мощностей шумов. Шум может иметь громкость от 0 дБ (самый тихий слышимый звук) до более 160 дБ. Звуки громкостью более 120 дБ, т.е. в один триллион раз более громкие, чем самые тихие из слышимых звуков, вызывают болевые ощущения. Восприятие звука зависит также от высоты тона. Наибольший вред органам слуха причиняют (и вызывают наибольший стресс) громкие звуки высокой частоты. В таблице приведены типичные или максимальные громкости шумов от различных источников.

(С помощью вывешенной на доске таблицы ученики отвечают на следующие вопросы).

– Почему шепот и перелистывание газет безвредны для человека;
– Как бы вы оценили уровень шума в течение учебного дня (уроки и перемены) с точки зрения воздействия на организм;
– Какие выводы можно сделать на основании данных таблицы?

Таблица. Уровни громкости звука от разных источников

Изменения в слуховом аппарате под влиянием громких звуков

Предлагаю вам ответить на вопрос: «Какой орган реагирует на чрезмерный шум прежде всего?»

По статистике сегодня 20 из 150 млн. россиян страдают тугоухостью. Группа ученых обследовала молодежь, часто слушающих громкую современную музыку. У 20% юношей и девушек, которые непомерно увлекались рок-музыкой, слух оказался сниженным так же, как и у 85-летних стариков.

(В группах проводится тест по определению остроты слуха - задание из информационного листа. Учитель предварительно выявляет в результате опроса любителей слушать громкую музыку в наушниках, спокойную музыку, любителей тишины, и у них определяется острота слуха).

ТЕСТ

Определение остроты слуха

Острота слуха – это минимальная громкость звука, которая может быть воспринята ухом испытуемого.

Оборудование: механические часы, линейка.

Порядок работы

1. Приближайте к себе часы до тех пор, пока не услышите звук. Измерьте расстояние от уха до часов в сантиметрах.
2. Приложите часы плотно к уху и отводите от себя до тех пор, пока не исчезнет звук. Опять определите расстояние до часов.
3. Если данные совпадут, это будет приблизительно верное расстояние.
4. Если данные не совпадают, то для оценки расстояния слышимости нужно взять среднее арифметическое двух измерений.

Оценка результатов теста

Нормальным слухом будет такой, при котором тиканье ручных часов среднего размера слышно на расстоянии 10–15 см.

Цифры записываются на доске, анализируются, после чего ученики отвечают на вопрос: «Какие изменения происходят в слуховом аппарате под влиянием громких звуков?»

Используя таблицу «Слуховой анализатор», ребята рассказывают о преобразовании звуковых сигналов в электрические, указывают на изменения, происходящие в слуховом аппарате при длительном воздействии громких звуков:

– при постоянном растяжении барабанной перепонки уменьшается ее эластичность, поэтому требуется большая громкость звука, чтобы она начала колебаться, т.е. снижается чувствительность слухового анализатора;

– повреждаются слуховые рецепторы.

Влияние шума на организм человека

Но только ли органы слуха страдают от шумов?

Учащимся предлагается это выяснить, ознакомившись со следующими утверждениями видных ученых о шуме.

1. Шум становится причиной преждевременного старения. В тридцати случаях из ста шум сокращает продолжительность жизни людей в крупных городах на 8–12 лет.

2. Каждая третья женщина и каждый четвертый мужчина страдают неврозами, вызванными повышенным уровнем шума.

3. Достаточно сильный шум уже через 1 мин может вызывать изменения в электрической активности мозга, которая становится схожей с электрической активностью мозга у больных эпилепсией.

4. Такие болезни, как гастрит, язвы желудка и кишечника, чаще всего встречаются у людей, живущих и работающих в шумной обстановке. У эстрадных музыкантов язва желудка – профессиональное заболевание.

5. Шум угнетает нервную систему, особенно при повторяющемся действии.

6. Под влиянием шума происходит стойкое уменьшение частоты и глубины дыхания. Иногда появляется аритмия сердца, гипертония.

7. Под влиянием шума изменяются углеводный, жировой, белковый, солевой обмены веществ, что проявляется в изменении биохимического состава крови (снижается уровень сахара в крови).

Краткий вывод из обсуждения : от чрезмерного шума (выше 80 дБ) страдают не только органы слуха, но и другие органы и системы (кровеносная, пищеварительная, нервная и т.д.), нарушаются процессы жизнедеятельности, энергетический обмен начинает преобладать над пластическим, что приводит к преждевременному старению организма.

Обсуждение данных социологического опроса

Две ученицы вашего класса провели исследование в виде социологического опроса по выявлению действия длительно действующего шума на психические процессы учащихся девятых классов. Им я и предоставляю слово.

Первая ученица представляет данные опроса, из которых следует, что длительно действующий шум приводит к жалобам на быструю утомляемость, ослабление памяти, снижение внимания, потерю работоспособности, повышенную раздражительность, нарушение сна, общую слабость. Рассказ сопровождается демонстрацией красочной круговой диаграммы, где все данные представлены в процентах.

По данным второй ученицы, действие шума может постепенно приводить к психическим заболеваниям. В качестве иллюстрации на доску вывешивается «лестница», свернутая в гармошку, которая в ходе рассказа постепенно разворачивается.

ДЕЙСТВИЕ ШУМА

ТРУДНОСТИ ВЗАИМОПОНИМАНИЯ

РАССЕИВАНИЕ ВНИМАНИЯ

СЛАБАЯ СОСРЕДОТОЧЕННОСТЬ

ДОСАДА

ПОТЕРЯ СНА

РАЗДРАЖИТЕЛЬНОСТЬ

СНИЖЕНИЕ ФУНКЦИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ

НЕДОВОЛЬСТВО

ТРУДНОСТИ В СЕМЬЕ

ССОРЫ

ПСИХИЧЕСКИЕ ЗАБОЛЕВАНИЯ

Меры защиты человека от шумового воздействия

Итак, шум вреден. «Шум – медленный убийца», – так заявляют американские специалисты. Но можно ли уменьшить его воздействие на живые организмы, включая и человека? Что может сделать каждый из нас?

Работа в группах – разработка проектов защиты человека от шумового воздействия на разных социальных уровнях.

  • I группа. Я – обыватель (памятка обывателю).
  • II группа. Я – мэр города.
  • III группа. Я – архитектор.
  • IV группа. Я – директор крупного завода.

Группы оформляют проекты на листах ватмана, вывешивают их на доску и защищают.

3. Заключение

Мы еще не раз будем говорить и думать о последствиях деятельности человека для природы и самого себя. Хотелось бы надеяться, что сегодняшний разговор не прошел для вас бесследно. Мы почти не затронули проблемы воздействия шума на окружающую среду, а эта проблема так же сложна и многогранна, как и обсуждавшаяся нами проблема воздействия шума на человека. Только защищая природу от вредных последствий своей деятельности, мы сможем сохранить и самих себя.

Коль суждено дышать нам воздухом одним,
Давайте же мы все на век объединимся,
Давайте наши души сохраним,
Тогда мы на Земле и сами сохранимся.

Н.Старшинов

Какие же выводы вы сделали для себя после сегодняшнего разговора? (Заслушиваются ответы учеников .)

4. Проверка усвоения нового материала способом самоанализа

На уроке мы думали сообща, но при этом каждый работал индивидуально. И сейчас вам предстоит оценить свою деятельность на уроке.

Учитель объясняет, как надо заполнить лист самооценки учащегося, затем включает аудиозапись звуков природы, и ученики оценивают свой труд.

ЛИСТ САМООЦЕНКИ УЧАЩЕГОСЯ