Преобразование корней формулы. Извлечение корней: методы, способы, решения. Повторение свойств квадратных корней

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа .

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

2 2 = 4;
8 2 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
20 2 < 576 < 30 2

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

Осталось возвести каждое число в квадрат и сравнить с исходным:

24 2 = (20 + 4) 2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

Операции со степенями и корнями. Степень с отрицательным ,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются :

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются .

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc … ) n = a n · b n · c n

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

(a m ) n = a m n .

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .

Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы. 2 0 = 1, (5) 0 = 1, (3 / 5) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений. любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

Случай 3.


0 0 - любое число.

Действительно,


Р е ш е н и е. Рассмотрим три основных случая:

1) x = 0 это значение не удовлетворяет данному уравнению

(Почему?).

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

Нашем случае x > 0 , ответом является x > 0 ;

3) при x < 0 получаем: – x / x = 1, т. e . –1 = 1, следовательно,

В этом случае нет решения.

Таким образом, x > 0.

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

Квадрат суммы раскроем по соответствующей формуле:

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

При.

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

После сокращения дроби применяем формулу разности квадратов.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

б) выполним аналогичные действия:

Ответ.; .

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго - 1.

Подставим это выражение под корень.


Преобразование выражений с корнями и степенями часто требует выполнения переходов от корней к степеням и обратно. В этой статье мы разберем, как такие переходы осуществляются, что лежит в их основе, и в каких моментах чаще всего возникают ошибки. Все это снабдим характерными примерами с детальным разбором решений.

Навигация по странице.

Переход от степеней с дробными показателями к корням

Возможность перехода от степени с дробным показателем к корню диктуется самим определением степени. Напомним, как определяется : степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называют корень n-ой степени из a m , то есть, где a>0 , m∈Z , n∈N . Аналогично определяется и дробная степень нуля , с той лишь разницей, что в этом случае m уже считается не целым, а натуральным, чтобы не возникало деления на нуль.

Таким образом, степень всегда можно заменить на корень . Например, от можно перейти к , а степень можно заменить корнем . А вот переходить от выражения к корню не следует, так как степень изначально не имеет смысла (степень отрицательных чисел не определена), несмотря на то, что корень имеет смысл.

Как видите, в переходе от степеней чисел к корням нет абсолютно ничего мудреного. Аналогично осуществляется переход к корням от степеней с дробными показателями, в основании которых находятся произвольные выражения. Заметим, что указанный переход осуществляется на ОДЗ переменных для исходного выражения. К примеру, выражение на всей ОДЗ переменной x для этого выражения можно заменить корнем . А от степени перейти к корню , такая замена имеет место для любого набора переменных x , y и z из ОДЗ для исходного выражения.

Замена корней степенями

Возможна и обратная замена, то есть, замена корней на степени с дробными показателями . В ее основе также лежит равенство , которое в данном случае используется справа налево, то есть, в виде .

Для положительных a указанный переход очевиден. Например, можно заменить степенью , а от корня перейти к степени с дробным показателем вида .

А при отрицательных a равенство не имеет смысла, но корень при этом может иметь смысл. Например, корни и имеют смысл, но заменить их степенями и нельзя. Так можно ли их вообще преобразовать в выражения со степенями? Можно, если провести предварительные преобразования, заключающиеся в переходе к корням с неотрицательными числами под ними, которые потом и заменить степенями с дробными показателями. Покажем, в чем заключаются эти предварительные преобразования и как их провести.

В случае с корнем позволяют выполнить такие преобразования: . А так как 4 – положительное число, то последний корень можно заменить степенью . А во втором случае определение корня нечетной степени из отрицательного числа −a (при этом a – положительное), выражающееся равенством , позволяет корень заменить выражением , в котором кубический корень из двух уже можно заменить степенью, и оно примет вид .

Осталось разобрать, как заменяются корни, под которыми находятся выражения, на степени, содержащие эти выражения в основании. Здесь не стоит спешить с заменой на , буквой A мы обозначили некоторое выражение. Приведем пример, поясняющий, что под этим имеется в виду. Корень так и хочется заменить степенью , основываясь на равенстве . Но такая замена уместна лишь при условии x−3≥0 , а для остальных значений переменной x из ОДЗ (удовлетворяющих условию x−3<0 ) она не подходит, так как формула не имеет смысла для отрицательных a . Если обратить внимание на ОДЗ, то несложно заметить ее сужение при переходе от выражения к выражению , а помните, что мы договорились не прибегать к преобразованиям, сужающим ОДЗ.

Из-за такого неаккуратного применения формулы нередко возникают ошибки при переходе от корней к степеням. Например, в учебнике дано задание, представить выражение в виде степени с рациональным показателем, и приведен ответ , который вызывает вопросы, так как в условии не задано ограничение b>0 . А в учебнике присутствует переход от выражения , скорее всего через следующие преобразования иррационального выражения

к выражению . Последний переход также вызывает вопросы, так как сужает ОДЗ.

Возникает закономерный вопрос: «Как же правильно перейти от корня к степени для всех значений переменных из ОДЗ»? Такая замена проводится на базе следующих утверждений:


Прежде чем обосновать записанные результаты, приведем несколько примеров их использования для перехода от корней к степеням. Для начала вернемся к выражению . Его надо было заменять не на , а на (в данном случае m=2 – целое четное, n=3 – натуральное). Другой пример: .

Теперь обещанное обоснование результатов.

Когда m – целое нечетное, а n – натуральное четное, то для любого набора переменных из ОДЗ для выражения значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ). Поэтому, .

Переходим ко второму результату. Пусть m – целое положительное нечетное, а n – натуральное нечетное. Для всех значений переменных из ОДЗ, для которых значение выражения A неотрицательно, , а для которых отрицательно,

Аналогично доказывается следующий результат для целых отрицательных и нечетных m и натуральных нечетных n . Для всех значений переменных из ОДЗ, для которых значение выражения A положительно, , а для которых отрицательно,

Наконец, последний результат. Пусть m – целое четное, n – любое натуральное. Для всех значений переменных из ОДЗ, для которых значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ), . А для которых отрицательно, . Таким образом, если m – целое четное, n – любое натуральное, то для любого набора значений переменных из ОДЗ для выражения его можно заменить на .

Список литературы.

  1. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  2. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. – М.: Просвещение, 2009.- 336 с.: ил.- ISBN 979-5-09-016551-8.

Поздравляю: сегодня мы будем разбирать корни — одну из самых мозговыносящих тем 8-го класса.:)

Многие путаются в корнях не потому, что они сложные (чего там сложного-то — пара определений и ещё пара свойств), а потому что в большинстве школьных учебников корни определяются через такие дебри, что разобраться в этой писанине могут разве что сами авторы учебников. Да и то лишь с бутылкой хорошего виски.:)

Поэтому сейчас я дам самое правильное и самое грамотное определение корня — единственное, которое вам действительно следует запомнить. А уже затем объясню: зачем всё это нужно и как это применять на практике.

Но сначала запомните один важный момент, про который многие составители учебников почему-то «забывают»:

Корни бывают чётной степени (наш любимый $\sqrt{a}$, а также всякие $\sqrt{a}$ и даже $\sqrt{a}$) и нечётной степени (всякие $\sqrt{a}$, $\sqrt{a}$ и т.д.). И определение корня нечётной степени несколько отличается от чётной.

Вот в этом грёбаном «несколько отличается» скрыто, наверное, 95% всех ошибок и недопонимания, связанного с корнями. Поэтому давайте раз и навсегда разберёмся с терминологией:

Определение. Корень чётной степени n из числа $a$ — это любое неотрицательное число $b$ такое, что ${{b}^{n}}=a$. А корень нечётной степени из того же числа $a$ — это вообще любое число $b$, для которого выполняется всё то же равенство: ${{b}^{n}}=a$.

В любом случае корень обозначается вот так:

\{a}\]

Число $n$ в такой записи называется показателем корня, а число $a$ — подкоренным выражением. В частности, при $n=2$ получим наш «любимый» квадратный корень (кстати, это корень чётной степени), а при $n=3$ — кубический (степень нечётная), который тоже часто встречается в задачах и уравнениях.

Примеры. Классические примеры квадратных корней:

\[\begin{align} & \sqrt{4}=2; \\ & \sqrt{81}=9; \\ & \sqrt{256}=16. \\ \end{align}\]

Кстати, $\sqrt{0}=0$, а $\sqrt{1}=1$. Это вполне логично, поскольку ${{0}^{2}}=0$ и ${{1}^{2}}=1$.

Кубические корни тоже часто встречаются — не надо их бояться:

\[\begin{align} & \sqrt{27}=3; \\ & \sqrt{-64}=-4; \\ & \sqrt{343}=7. \\ \end{align}\]

Ну, и парочка «экзотических примеров»:

\[\begin{align} & \sqrt{81}=3; \\ & \sqrt{-32}=-2. \\ \end{align}\]

Если вы не поняли, в чём разница между чётной и нечётной степенью — перечитайте определение ещё раз. Это очень важно!

А мы тем временем рассмотрим одну неприятную особенность корней, из-за которой нам и потребовалось вводить раздельное определение для чётных и нечётных показателей.

Зачем вообще нужны корни?

Прочитав определение, многие ученики спросят: «Что курили математики, когда это придумывали?» И вправду: зачем вообще нужны все эти корни?

Чтобы ответить на этот вопрос, вернёмся на минутку в начальные классы. Вспомните: в те далёкие времена, когда деревья были зеленее, а пельмени вкуснее, основная наша забота была в том, чтобы правильно умножать числа. Ну, что-нибудь в духе «пять на пять — двадцать пять», вот это вот всё. Но ведь можно умножать числа не парами, а тройками, четвёрками и вообще целыми комплектами:

\[\begin{align} & 5\cdot 5=25; \\ & 5\cdot 5\cdot 5=125; \\ & 5\cdot 5\cdot 5\cdot 5=625; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5=3125; \\ & 5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625. \end{align}\]

Однако суть не в этом. Фишка в другом: математики — людишки ленивые, поэтому им было в лом записывать умножение десяти пятёрок вот так:

Поэтому они придумали степени. Почему бы вместо длинной строки не записать количество множителей в виде верхнего индекса? Типа вот такого:

Это же очень удобно! Все вычисления сокращаются в разы, и можно не тратить кучу листов пергамента блокнотиков на запись какого-нибудь 5 183 . Такую запись назвали степенью числа, у неё нашли кучу свойств, но счастье оказалось недолгим.

После грандиозной пьянки, которую организовали как раз по поводу «открытия» степеней, какой-то особо упоротый математик вдруг спросил: «А что, если нам известна степень числа, но неизвестно само число?» Вот, действительно, если нам известно, что некое число $b$, допустим, в 5-й степени даёт 243, то как нам догадаться, чему равно само число $b$?

Проблема эта оказалась гораздо более глобальной, чем может показаться на первый взгляд. Потому что выяснилось, что для большинства «готовых» степеней таких «исходных» чисел нет. Судите сами:

\[\begin{align} & {{b}^{3}}=27\Rightarrow b=3\cdot 3\cdot 3\Rightarrow b=3; \\ & {{b}^{3}}=64\Rightarrow b=4\cdot 4\cdot 4\Rightarrow b=4. \\ \end{align}\]

А, что если ${{b}^{3}}=50$? Получается, что нужно найти некое число, которое будучи трижды умноженное само на себя даст нам 50. Но что это за число? Оно явно больше 3, поскольку 3 3 = 27 < 50. С тем же успехом оно меньше 4, поскольку 4 3 = 64 > 50. Т.е. это число лежит где-то между тройкой и четвёркой, но чему оно равно — фиг поймёшь.

Именно для этого математики и придумали корни $n$-й степени. Именно для этого ввели значок радикала $\sqrt{*}$. Чтобы обозначить то самое число $b$, которое в указанной степени даст нам заранее известную величину

\[\sqrt[n]{a}=b\Rightarrow {{b}^{n}}=a\]

Не спорю: зачастую эти корни легко считаются — мы видели несколько таких примеров выше. Но всё-таки в большинстве случаев, если вы загадаете произвольное число, а затем попробуете извлечь из него корень произвольной степени, вас ждёт жестокий облом.

Да что там! Даже самый простой и всем знакомый $\sqrt{2}$ нельзя представить в привычном нам виде — как целое число или дробушка. А если вы вобьёте это число в калькулятор, то увидите вот это:

\[\sqrt{2}=1,414213562...\]

Как видите, после запятой идёт бесконечная последовательность цифр, которые не подчиняются никакой логике. Можно, конечно, округлить это число, чтобы быстро сравнить с другими числами. Например:

\[\sqrt{2}=1,4142...\approx 1,4 \lt 1,5\]

Или вот ещё пример:

\[\sqrt{3}=1,73205...\approx 1,7 \gt 1,5\]

Но все эти округления, во-первых, довольно грубые; а во-вторых, работать с примерными значениями тоже надо уметь, иначе можно словить кучу неочевидных ошибок (кстати, навык сравнения и округления в обязательном порядке проверяют на профильном ЕГЭ).

Поэтому в серьёзной математике без корней не обойтись — они являются такими же равноправными представителями множества всех действительных чисел $\mathbb{R}$, как и давно знакомые нам дроби и целые числа.

Невозможность представить корень в виде дроби вида $\frac{p}{q}$ означает, что данный корень не является рациональным числом. Такие числа называются иррациональными, и их нельзя точно представить иначе как с помощью радикала, либо других специально предназначенных для этого конструкций (логарифмов, степеней, пределов и т.д.). Но об этом — в другой раз.

Рассмотрим несколько примеров, где после всех вычислений иррациональные числа всё же останутся в ответе.

\[\begin{align} & \sqrt{2+\sqrt{27}}=\sqrt{2+3}=\sqrt{5}\approx 2,236... \\ & \sqrt{\sqrt{-32}}=\sqrt{-2}\approx -1,2599... \\ \end{align}\]

Естественно, по внешнему виду корня практически невозможно догадаться о том, какие числа будут идти после запятой. Впрочем, можно, посчитать на калькуляторе, но даже самый совершенный калькулятор дат нам лишь несколько первых цифр иррационального числа. Поэтому гораздо правильнее записать ответы в виде $\sqrt{5}$ и $\sqrt{-2}$.

Именно для этого их и придумали. Чтобы удобно записывать ответы.

Почему нужны два определения?

Внимательный читатель уже наверняка заметил, что все квадратные корни, приведённые в примерах, извлекаются из положительных чисел. Ну, в крайнем случае из нуля. А вот кубические корни невозмутимо извлекаются абсолютно из любого числа — хоть положительного, хоть отрицательного.

Почему так происходит? Взгляните на график функции $y={{x}^{2}}$:

График квадратичной функции даёт два корня: положительный и отрицательный

Попробуем с помощью этого графика посчитать $\sqrt{4}$. Для этого на графике проведена горизонтальная линия $y=4$ (отмечена красным цветом), которая пересекается с параболой в двух точках:${{x}_{1}}=2$ и ${{x}_{2}}=-2$. Это вполне логично, поскольку

С первым числом всё понятно — оно положительное, поэтому оно и есть корень:

Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt{4}=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)

В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y , т.е. не принимает отрицательных значений.

Подобная проблема возникает у всех корней с чётным показателем:

  1. Строго говоря, корней с чётным показателем $n$ у каждого положительного числа будет сразу две штуки;
  2. Из отрицательных чисел корень с чётным $n$ вообще не извлекается.

Именно поэтому в определении корня чётной степени $n$ специально оговаривается, что ответ должен быть неотрицательным числом. Так мы избавляемся от неоднозначности.

Зато для нечётных $n$ такой проблемы нет. Чтобы убедиться в этом, давайте взглянем на график функции $y={{x}^{3}}$:

Кубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа

Из этого графика можно сделать два вывода:

  1. Ветви кубической параболы, в отличие от обычной, уходят на бесконечность в обе стороны — и вверх, и вниз. Поэтому на какой бы высоте мы ни проводили горизонтальную прямую, эта прямая обязательно пересечётся с нашим графиком. Следовательно, кубический корень можно извлечь всегда, абсолютно из любого числа;
  2. Кроме того, такое пересечение всегда будет единственным, поэтому не нужно думать, какое число считать «правильным» корнем, а на какое — забить. Именно поэтому определение корней для нечётной степени проще, чем для чётной (отсутствует требование неотрицательности).

Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.

Да, я не спорю: что такое арифметический корень — тоже надо знать. И я подробно расскажу об этом в отдельном уроке. Сегодня мы тоже поговорим о нём, поскольку без него все размышления о корнях $n$-й кратности были бы неполными.

Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.

А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:

  1. Корень чётной степени существует лишь из неотрицательного числа и сам всегда является неотрицательным числом. Для отрицательных чисел такой корень неопределён.
  2. А вот корень нечётной степени существует из любого числа и сам может быть любым числом: для положительных чисел он положителен, а для отрицательных — как намекает кэп, отрицательный.

Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.

Основные свойства и ограничения

У корней много странных свойств и ограничений — об этом будет отдельный урок. Поэтому сейчас мы рассмотрим лишь самую важную «фишку», которая относится лишь к корням с чётным показателем. Запишем это свойство в виде формулы:

\[\sqrt{{{x}^{2n}}}=\left| x \right|\]

Другими словами, если возвести число в чётную степень, а затем из этого извлечь корень той же степени, мы получим не исходное число, а его модуль . Это простая теорема, которая легко доказывается (достаточно отдельно рассмотреть неотрицательные $x$, а затем отдельно — отрицательные). О ней постоянно талдычат учителя, её дают в каждом школьном учебнике. Но как только дело доходит до решения иррациональных уравнений (т.е. уравнений, содержащих знак радикала), ученики дружно забывают эту формулу.

Чтобы детально разобраться в вопросе, давайте на минуту забудем все формулы и попробуем посчитать два числа напролом:

\[\sqrt{{{3}^{4}}}=?\quad \sqrt{{{\left(-3 \right)}^{4}}}=?\]

Это очень простые примеры. Первый пример решит большинство людишек, а вот на втором многие залипают. Чтобы без проблем решить любую подобную хрень, всегда учитывайте порядок действий:

  1. Сначала число возводится в четвёртую степень. Ну, это как бы несложно. Получится новое число, которое даже в таблице умножения можно найти;
  2. И вот уже из этого нового числа необходимо извлечь корень четвёртой степени. Т.е. никакого «сокращения» корней и степеней не происходит — это последовательные действия.

Раберёмся с первым выражением: $\sqrt{{{3}^{4}}}$. Очевидно, что сначала надо посчитать выражение, стоящее под корнем:

\[{{3}^{4}}=3\cdot 3\cdot 3\cdot 3=81\]

Затем извлекаем корень четвёртой степени из числа 81:

Теперь сделаем то же самое со вторым выражением. Сначала возводим число −3 в четвёртую степени, для чего потребуется умножить его само на себя 4 раза:

\[{{\left(-3 \right)}^{4}}=\left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)\cdot \left(-3 \right)=81\]

Получили положительное число, поскольку общее количество минусов в произведении — 4 штуки, и они все взаимно уничтожится (ведь минус на минус даёт плюс). Дальше вновь извлекаем корень:

В принципе, эту строчку можно было не писать, поскольку и ежу понятно, что ответ получится один и тот же. Т.е. чётный корень из той же чётной степени «сжигает» минусы, и в этом смысле результат неотличим от обычного модуля:

\[\begin{align} & \sqrt{{{3}^{4}}}=\left| 3 \right|=3; \\ & \sqrt{{{\left(-3 \right)}^{4}}}=\left| -3 \right|=3. \\ \end{align}\]

Эти вычисления хорошо согласуются с определением корня чётной степени: результат всегда неотрицателен, да и под знаком радикала тоже всегда стоит неотрицательное число. В противном случае корень не определён.

Замечание по поводу порядка действий

  1. Запись $\sqrt{{{a}^{2}}}$ означает, что мы сначала возводим число $a$ в квадрат, а затем извлекаем из полученного значения квадратный корень. Следовательно, мы можем быть уверены, что под знаком корня всегда сидит неотрицательное число, поскольку ${{a}^{2}}\ge 0$ в любом случае;
  2. А вот запись ${{\left(\sqrt{a} \right)}^{2}}$, напротив, означает, что мы сначала извлекаем корень из некого числа $a$ и лишь затем возводим результат в квадрат. Поэтому число $a$ ни в коем случае не может быть отрицательным — это обязательное требование, заложенное в определение.

Таким образом, ни в коем случае нельзя бездумно сокращать корни и степени, тем самым якобы «упрощая» исходное выражение. Потому что если под корнем стоит отрицательное число, а его показатель является чётным, мы получим кучу проблем.

Впрочем, все эти проблемы актуальны лишь для чётных показателей.

Вынесение минуса из-под знака корня

Естественно, у корней с нечётными показателями тоже есть своя фишка, которой в принципе не бывает у чётных. А именно:

\[\sqrt{-a}=-\sqrt{a}\]

Короче говоря, можно выносить минус из-под знака корней нечётной степени. Это очень полезное свойство, которое позволяет «вышвырнуть» все минусы наружу:

\[\begin{align} & \sqrt{-8}=-\sqrt{8}=-2; \\ & \sqrt{-27}\cdot \sqrt{-32}=-\sqrt{27}\cdot \left(-\sqrt{32} \right)= \\ & =\sqrt{27}\cdot \sqrt{32}= \\ & =3\cdot 2=6. \end{align}\]

Это простое свойство значительно упрощает многие вычисления. Теперь не нужно переживать: вдруг под корнем затесалось отрицательное выражение, а степень у корня оказалась чётной? Достаточно лишь «вышвырнуть» все минусы за пределы корней, после чего их можно будет умножать друг на друга, делить и вообще делать многие подозрительные вещи, которые в случае с «классическими» корнями гарантированно приведут нас к ошибке.

И вот тут на сцену выходит ещё одно определение — то самое, с которого в большинстве школ и начинают изучение иррациональных выражений. И без которого наши рассуждения были бы неполными. Встречайте!

Арифметический корень

Давайте предположим на минутку, что под знаком корня могут находиться лишь положительные числа или в крайнем случае ноль. Забьём на чётные/нечётные показатели, забьём на все определения, приведённые выше — будем работать только с неотрицательными числами. Что тогда?

А тогда мы получим арифметический корень — он частично пересекается с нашими «стандартными» определениями, но всё же отличается от них.

Определение. Арифметическим корнем $n$-й степени из неотрицательного числа $a$ называется такое неотрицательное число $b$, что ${{b}^{n}}=a$.

Как видим, нас больше не интересует чётность. Взамен неё появилось новое ограничение: подкоренное выражение теперь всегда неотрицательно, да и сам корень тоже неотрицателен.

Чтобы лучше понять, чем арифметический корень отличается от обычного, взгляните на уже знакомые нам графики квадратной и кубической параболы:

Область поиска арифметического корня — неотрицательные числа

Как видите, отныне нас интересуют лишь те куски графиков, которые расположены в первой координатной четверти — там, где координаты $x$ и $y$ положительны (или хотя бы ноль). Больше не нужно смотреть на показатель, чтобы понять: имеем мы право ставить под корень отрицательное число или нет. Потому что отрицательные числа больше в принципе не рассматриваются.

Возможно, вы спросите: «Ну и зачем нам такое кастрированное определение?» Или: «Почему нельзя обойтись стандартным определением, данным выше?»

Что ж, приведу всего одно свойство, из-за которого новое определение становится целесообразным. Например, правило возведения в степень:

\[\sqrt[n]{a}=\sqrt{{{a}^{k}}}\]

Обратите внимание: мы можем возвести подкоренное выражение в любую степень и одновременно умножить на эту же степень показатель корня — и в результате получится то же самое число! Вот примеры:

\[\begin{align} & \sqrt{5}=\sqrt{{{5}^{2}}}=\sqrt{25} \\ & \sqrt{2}=\sqrt{{{2}^{4}}}=\sqrt{16} \\ \end{align}\]

Ну и что в этом такого? Почему мы не могли сделать это раньше? А вот почему. Рассмотрим простое выражение: $\sqrt{-2}$ — это число вполне нормальное в нашем классическом понимании, но абсолютно недопустимо с точки зрения арифметического корня. Попробуем преобразовать его:

$\begin{align} & \sqrt{-2}=-\sqrt{2}=-\sqrt{{{2}^{2}}}=-\sqrt{4} \lt 0; \\ & \sqrt{-2}=\sqrt{{{\left(-2 \right)}^{2}}}=\sqrt{4} \gt 0. \\ \end{align}$

Как видите, в первом случае мы вынесли минус из-под радикала (имеем полное право, т.к. показатель нечётный), а во втором — воспользовались указанной выше формулой. Т.е. с точки зрения математики всё сделано по правилам.

WTF?! Как одно и то же число может быть и положительным, и отрицательным? Никак. Просто формула возведения в степень, которая прекрасно работает для положительных чисел и нуля, начинает выдавать полную ересь в случае с отрицательными числами.

Вот для того, чтобы избавиться от подобной неоднозначности, и придумали арифметические корни. Им посвящён отдельный большой урок, где мы подробно рассматриваем все их свойства. Так что сейчас не будем на них останавливаться — урок и так получился слишком затянутым.

Алгебраический корень: для тех, кто хочет знать больше

Долго думал: выносить эту тему в отдельный параграф или нет. В итоге решил оставить здесь. Данный материал предназначен для тех, кто хочет понять корни ещё лучше — уже не на среднем «школьном» уровне, а на приближенном к олимпиадному.

Так вот: помимо «классического» определения корня $n$-й степени из числа и связанного с ним разделения на чётные и нечётные показатели есть более «взрослое» определение, которое вообще не зависит от чётности и прочих тонкостей. Это называется алгебраическим корнем.

Определение. Алгебраический корень $n$-й степени из числа любого $a$ — это множество всех чисел $b$ таких, что ${{b}^{n}}=a$. Для таких корней нет устоявшегося обозначения, поэтому просто поставим чёрточку сверху:

\[\overline{\sqrt[n]{a}}=\left\{ b\left| b\in \mathbb{R};{{b}^{n}}=a \right. \right\}\]

Принципиальное отличие от стандартного определения, приведённого в начале урока, состоит в том, что алгебраический корень — это не конкретное число, а множество. А поскольку мы работаем с действительными числами, это множество бывает лишь трёх типов:

  1. Пустое множество. Возникает в случае, когда требуется найти алгебраический корень чётной степени из отрицательного числа;
  2. Множество, состоящее из одного-единственного элемента. Все корни нечётных степеней, а также корни чётных степеней из нуля попадают в эту категорию;
  3. Наконец, множество может включать два числа — те самые ${{x}_{1}}$ и ${{x}_{2}}=-{{x}_{1}}$, которое мы видели на графике квадратичной функции. Соответственно, такой расклад возможен лишь при извлечении корня чётной степени из положительного числа.

Последний случай заслуживает более подробного рассмотрения. Посчитаем парочку примеров, чтобы понять разницу.

Пример. Вычислите выражения:

\[\overline{\sqrt{4}};\quad \overline{\sqrt{-27}};\quad \overline{\sqrt{-16}}.\]

Решение. С первым выражением всё просто:

\[\overline{\sqrt{4}}=\left\{ 2;-2 \right\}\]

Именно два числа входят в состав множества. Потому что каждое из них в квадрате даёт четвёрку.

\[\overline{\sqrt{-27}}=\left\{ -3 \right\}\]

Тут мы видим множество, состоящее лишь из одного числа. Это вполне логично, поскольку показатель корня — нечётный.

Наконец, последнее выражение:

\[\overline{\sqrt{-16}}=\varnothing \]

Получили пустое множество. Потому что нет ни одного действительного числа, которое при возведении в четвёртую (т.е. чётную!) степень даст нам отрицательное число −16.

Финальное замечание. Обратите внимание: я не случайно везде отмечал, что мы работаем с действительными числами. Потому что есть ещё комплексные числа — там вполне можно посчитать и $\sqrt{-16}$, и многие другие странные вещи.

Однако в современном школьном курсе математики комплексные числа почти не встречаются. Их вычеркнули из большинства учебников, поскольку наши чиновники считают эту тему «слишком сложной для понимания».

На этом всё. В следующем уроке мы рассмотрим все ключевые свойства корней и научимся, наконец, упрощать иррациональные выражения.:)