Провести полное исследование функций и построить графики. Общая схема исследования функции и построения графика

Одной из важнейших задач дифференциального исчисления является разработка общих примеров исследования поведения функций.

Если функция y=f(x) непрерывна на отрезке , а ее производная положительна или равна 0 на интервале (a,b), то y=f(x) возрастает на (f"(x)0). Если функция y=f(x) непрерывна на отрезке , а ее производная отрицательна или равна 0 на интервале (a,b), то y=f(x) убывает на (f"(x)0)

Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функции. Характер монотонности функции может изменяться только в тех точках ее области определения, в которой меняется знак первой производной. Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются критическими.

Теорема 1 (1-ое достаточное условие существования экстремума).

Пусть функция y=f(x) определена в точке х 0 и пусть существует окрестность δ>0 такое, что функция непрерывна на отрезке , дифференцируема на интервале (x 0 -δ,x 0)u(x 0 , x 0 +δ), причем ее производная сохраняет постоянный знак на каждом из этих интервалов. Тогда если на x 0 -δ,x 0) и (x 0 , x 0 +δ) знаки производной различны, то х 0 - точка экстремума, а если совпадают, то х 0 - не является точкой экстремума. При этом если при переходе через точку х0, производная меняет знак с плюса на минус (слева от х 0 выполняется f"(x)>0, то х 0 - точка максимума; если же производная меняет знак с минуса на плюс (справа от х 0 выполняется f"(x)<0, то х 0 - точка минимума.

Точки максимума и минимума называют точками экстремума функции, а максимумы и минимумы функции – ее экстремальными значениями.

Теорема 2 (необходимый признак локального экстремума).

Если функция y=f(x) имеет в токе x=x 0 экстремум, то либо f’(x 0)=0, либо f’(x 0) не существует.
В точках экстремума дифференцируемой функции касательная к ее графику параллельна оси Ox.

Алгоритм исследования функции на экстремум:

1)Найти производную функции.
2)Найти критические точки, т.е. точки, в которых функция непрерывна, а производная равна нулю или не существует.
3)Рассмотреть окрестность каждой из точек, и исследовать знак производной слева и справа от этой точки.
4)Определить координаты экстремальных точек, для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Пример 18. Исследовать на экстремум функцию у=х 3 -9х 2 +24х

Решение.
1) y"=3x 2 -18x+24=3(x-2)(x-4).
2) Приравняв производную нулю, находим x 1 =2, x 2 =4. В данном случае производная определена всюду; значит, кроме двух найденных точек, других критических точек нет.
3) Знак производной y"=3(x-2)(x-4) изменяется в зависимости от промежутка так, как показано на рисунке 1. При переходе через точку x=2, производная меняет знак с плюса на минус, а при переходе через точку x=4 - с минуса на плюс.
4) В точке x=2 функция имеет максимум y max =20, а в точке x=4 - минимум y min =16.

Теорема 3. (2-ое достаточное условие существование экстремума).

Пусть f"(x 0) и в точке х 0 существует f""(x 0). Тогда если f""(x 0)>0, то х 0 – точка минимума, а если f""(x 0)<0, то х 0 – точка максимума функции y=f(x).

На отрезке функция y=f(x) может достигать наименьшего (у наим) или наибольшего (у наиб) значения либо в критических точках функции, лежащих в интервале (а;b), либо на концах отрезка .

Алгоритм отыскания наибольшего и наименьшего значений непрерывной функции y=f(x) на отрезке :

1) Найти f"(x).
2) Найти точки, в которых f"(x)=0 или f"(x) - не существует, и отобрать из них те, которые лежат внутри отрезка .
3) Вычислите значение функции y=f(x) в точках, полученных в п.2), а так же на концах отрезка и выбрать из них наибольшее и наименьшее: они и являются соответственно наибольшим (у наиб) и наименьшим (у наим) значениями функции на отрезке .

Пример 19. Найти наибольшее значение непрерывной функции y=x 3 -3x 2 -45+225 на отрезке .

1) Имеем y"=3x 2 -6x-45 на отрезке
2) Производная y" существует при всех х. Найдем точки, в которых y"=0; получим:
3x 2 -6x-45=0
x 2 -2x-15=0
x 1 =-3; x 2 =5
3) Вычислим значение функции в точках x=0 y=225, x=5 y=50, x=6 y=63
Отрезку принадлежит лишь точка x=5. Наибольшим из найденных значений функции является 225, а наименьшим – число 50. Итак, у наиб =225, у наим =50.

Исследование функции на выпуклости

На рисунке изображены графики двух функций. Первый из них обращен выпуклостью вверх, второй – выпуклостью вниз.

Функция y=f(x) непрерывна на отрезке и дифференцируема в интервале (а;b), называется выпуклой вверх (вниз) на этом отрезке, если при axb ее график лежит не выше (не ниже) касательной, проведенной в любой точке M 0 (x 0 ;f(x 0)), где axb.

Теорема 4. Пусть функция y=f(x) имеет вторую производную в любой внутренней точке х отрезка и непрерывна на концах этого отрезка. Тогда если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вниз на отрезке ; если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вверх на .

Теорема 5. Если функция y=f(x) имеет вторую производную на интервале (а;b) и если она меняет знак при переходе через точку x 0 , тогда M(x 0 ;f(x 0)) есть точка перегиба.

Правило нахождения точек перегиба:

1) Найти точки, в которых f""(x) не существует или обращается в нуль.
2) Исследовать знак f""(x) слева и справа от каждой найденной на первом шаге точки.
3) На основании теоремы 4 сделать вывод.

Пример 20. Найти точки экстремума и точки перегиба графика функции y=3x 4 -8x 3 +6x 2 +12.

Имеем f"(x)=12x 3 -24x 2 +12x=12x(x-1) 2 . Очевидно, что f"(x)=0 при x 1 =0, x 2 =1. Производная при переходе через точку x=0 меняет знак с минуса на плюс, а при переходе через точку x=1 не меняет знака. Значит, x=0 - точка минимума (у min =12), а в точке x=1 экстремума нет. Далее, находим . Вторая производная обращается в нуль в точках x 1 =1, x 2 =1/3. Знаки второй производной изменяются следующим образом: На луче (-∞;) имеем f""(x)>0, на интервале (;1) имеем f""(x)<0, на луче (1;+∞) имеем f""(x)>0. Следовательно, x= - точка перегиба графика функции (переход с выпуклости вниз на выпуклость вверх) и x=1 - так же точка перегиба (переход с выпуклости вверх на выпуклость вниз). Если x=, то y= ; если, то x=1, y=13.

Алгоритм отыскания асимптоты графика

I. Если y=f(x) при x → a , то x=a - есть вертикальная асимптота.
II. Если y=f(x) при x → ∞ или x → -∞ , тогда у=А - горизонтальная асимптота.
III. Для нахождения наклонной асимптоты используем следующий алгоритм:
1) Вычислить . Если предел существует и равен b, то y=b - горизонтальная асимптота; если , то перейти ко второму шагу.
2) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен k, то перейти к третьему шагу.
3) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен b, то перейти к четвертому шагу.
4) Записать уравнение наклонной асимптоты y=kx+b.

Пример 21: Найти асимптоту для функции

1)
2)
3)
4) Уравнение наклонной асимптоты имеет вид

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой и второй производных. Определить участки возрастания и убывания функции, найти направление выпуклости графика, точки экстремумов и точек перегиба.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пример 22: Построить по изложенной выше схеме график функции

Решение.
I. Областью определения функции является множество всех вещественных чисел, кроме x=1.
II. Так уравнение x 2 +1=0 не имеет вещественных корней, то график функции не имеет точек пересечения с осью Ох, но пересекает ось Оу в точке (0;-1).
III. Выясним вопрос о существовании асимптот. Исследуем поведение функции вблизи точки разрыва x=1. Так как y → ∞ при х → -∞, у → +∞ при х → 1+, то прямая x=1 является вертикальной асимптотой графика функции.
Если х → +∞(x → -∞), то у → +∞(y → -∞); следовательно, горизонтальной асимптоты у графика нет. Далее, из существования пределов

Решая уравнение x 2 -2x-1=0 получаем две точки возможного экстремума:
x 1 =1-√2 и x 2 =1+√2

V. Для нахождения критических точек вычислим вторую производную:

Так как f""(x) в нуль не обращается, то критических точек нет.
VI. Исследуем знак первой и второй производных. Точки возможного экстремума, подлежащие рассмотрению: x 1 =1-√2 и x 2 =1+√2, разделяют область существования функции на интервалы (-∞;1-√2),(1-√2;1+√2) и (1+√2;+∞).

В каждом из этих интервалов производная сохраняет знак: в первом – плюс, во втором – минус, в третьем – плюс. Последовательность знаков первой производной запишется так: +,-,+.
Получаем, что функция на (-∞;1-√2) возрастает, на (1-√2;1+√2) убывает, а на (1+√2;+∞) снова возрастает. Точки экстремума: максимум при x=1-√2, причем f(1-√2)=2-2√2 минимум при x=1+√2, причем f(1+√2)=2+2√2. На (-∞;1) график направлен выпуклостью вверх, а на (1;+∞) - вниз.
VII Составим таблицу полученных значений

VIII По полученным данным строим эскиз графика функции

Провести полное исследование и построить график функции

y(x)=x2+81−x.y(x)=x2+81−x.

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя.

1−x=0,⇒x=1.1−x=0,⇒x=1.

Исключаем единственную точку x=1x=1 из области определения функции и получаем:

D(y)=(−∞;1)∪(1;+∞).D(y)=(−∞;1)∪(1;+∞).

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка x=1x=1 является разрывом второго рода, прямая x=1x=1 - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат OyOy, для чего приравниваем x=0x=0:

Таким образом, точка пересечения с осью OyOy имеет координаты (0;8)(0;8).

Найдем точки пересечения с осью абсцисс OxOx, для чего положим y=0y=0:

Уравнение не имеет корней, поэтому точек пересечения с осью OxOx нет.

Заметим, что x2+8>0x2+8>0 для любых xx. Поэтому при x∈(−∞;1)x∈(−∞;1) функция y>0y>0(принимает положительные значения, график находится выше оси абсцисс), при x∈(1;+∞)x∈(1;+∞) функция y<0y<0 (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых y′=0y′=0):

Получили три критические точки: x=−2,x=1,x=4x=−2,x=1,x=4. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При x∈(−∞;−2),(4;+∞)x∈(−∞;−2),(4;+∞) производная y′<0y′<0, поэтому функция убывает на данных промежутках.

При x∈(−2;1),(1;4)x∈(−2;1),(1;4) производная y′>0y′>0, функция возрастает на данных промежутках.

При этом x=−2x=−2 - точка локального минимума (функция убывает, а потом возрастает), x=4x=4 - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума (−2;4)(−2;4), точка максимума (4;−8)(4;−8).

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:

Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда x∈(−∞;1)x∈(−∞;1) выполняется y′′>0y″>0, то есть функция вогнутая, когда x∈(1;+∞)x∈(1;+∞) выполняется y′′<0y″<0, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида y=kx+by=kx+b. Вычисляем значения k,bk,b по известным формулам:


Получили, у что функции есть одна наклонная асимптота y=−x−1y=−x−1.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

y(−5)=5.5;y(2)=−12;y(7)=−9.5.y(−5)=5.5;y(2)=−12;y(7)=−9.5.

10) По полученным данным построим график, дополним его асимптотами x=1x=1(синий), y=−x−1y=−x−1 (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Задание 4: Геометрические, Экономические задачи(не имею понятия какие, тут примерная подборка задач с решением и формулами)

Пример 3.23. a

Решение. x и y y
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24.

Решение.
R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где
0 ≤ x ≤ a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S " (R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.


Похожая информация.


Инструкция

Найдите область определения функции. Например, функция sin(x) определена на всем интервале от -∞ до +∞, а функция 1/x - от -∞ до +∞ за исключением точки x = 0.

Определите области непрерывности и точки разрыва. Обычно функция непрерывна в той же самой области, где она определена. Чтобы обнаружить разрывы, нужно вычислить при приближении аргумента к изолированным точкам внутри области определения. Например, функция 1/x стремится к бесконечности, когда x→0+, и к минус бесконечности, когда x→0-. Это значит, что в точке x = 0 она имеет разрыв второго рода.
Если пределы в точке разрыва конечны, но не равны, то это разрыв первого рода. Если же они равны, то функция считается непрерывной, хотя в изолированной точке она и не определена.

Найдите вертикальные асимптоты, если они есть. Здесь вам помогут вычисления предыдущего шага, поскольку вертикальная асимптота практически всегда находится в точке разрыва второго рода. Однако иногда из области определения исключены не отдельные точки, а целые интервалы точек, и тогда вертикальные асимптоты могут располагаться на краях этих интервалов.

Проверьте, обладает ли функция особыми свойствами: четностью, нечетностью и периодичностью.
Функция будет четной, если для любого x в области определения f(x) = f(-x). Например, cos(x) и x^2 - четные функции.

Периодичность - свойство, говорящее о том, что есть некое число T, называемое периодом, что для любого x f(x) = f(x + T). Например, все основные тригонометрические функции (синус, косинус, тангенс) - периодические.

Найдите точки . Для этого вычислите производную от заданной функции и найдите те значения x, где она обращается в ноль. Например, функция f(x) = x^3 + 9x^2 -15 имеет производную g(x) = 3x^2 + 18x, которая обращается в ноль при x = 0 и x = -6.

Чтобы определить, какие точки экстремума являются максимумами, а какие минимумами, отследите изменение знаков производной в найденных нулях. g(x) меняет знак с плюса в точке x = -6, а в точке x = 0 обратно с минуса на плюс. Следовательно, функция f(x) в первой точке имеет , а во второй - минимум.

Таким образом, вы нашли и области монотонности: f(x) монотонно возрастает на промежутке -∞;-6, монотонно убывает на -6;0 и снова возрастает на 0;+∞.

Найдите вторую производную. Ее корни покажут, где график заданной функции будет выпуклым, а где - вогнутым. Например, второй производной от функции f(x) будет h(x) = 6x + 18. Она обращается в ноль при x = -3, меняя при этом знак с минуса на плюс. Следовательно, график f(x) до этой точки будет выпуклым, после нее - вогнутым, а сама эта точка будет точкой перегиба.

У функции могут быть и другие асимптоты, кроме вертикальных, но только в том случае, если в ее область определения входит . Чтобы их найти, вычислите предел f(x), когда x→∞ или x→-∞. Если он конечен, то вы нашли горизонтальную асимптоту.

Наклонная асимптота - прямая вида kx + b. Чтобы найти k, вычислите предел f(x)/x при x→∞. Чтобы найти b - предел (f(x) – kx) при том же x→∞.

Постройте график функции по вычисленным данным. Обозначьте асимптоты, если они есть. Отметьте точки экстремума и значения функции в них. Для большей точности графика вычислите значения функции еще в нескольких промежуточных точках. Исследование завершено.

Для полного исследования функции и построения её графика рекомендуется использовать следующую схему:

1) найти область определения функции;

2) найти точки разрыва функции и вертикальные асимптоты (если они существуют);

3) исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты;

4) исследовать функцию на чётность (нечётность) и на периодичность (для тригонометрических функций);

5) найти экстремумы и интервалы монотонности функции;

6) определить интервалы выпуклости и точки перегиба;

7) найти точки пересечения с осями координат, если возможно и некоторые дополнительные точки, уточняющие график.

Исследование функции проводится одновременно с построением её графика.

Пример 9 Исследовать функцию и построить график.

1. Область определения: ;

2. Функция терпит разрывв точках
,
;

Исследуем функцию на наличие вертикальных асимптот.

;
,
─ вертикальная асимптота.

;
,
─ вертикальная асимптота.

3. Исследуем функцию на наличие наклонных и горизонтальных асимптот.

Прямая
─ наклонная асимптота, если
,
.

,
.

Прямая
─ горизонтальная асимптота.

4. Функция является четной т.к.
. Чётность функции указывает на симметричность графика относительно оси ординат.

5. Найдём интервалы монотонности и экстремумы функции.

Найдём критические точки, т.е. точки в которых производная равна 0 или не существует:
;
. Имеем три точки
;

. Эти точки разбивают всю действительную ось на четыре промежутка. Определим знакина каждом из них.

На интервалах (-∞; -1) и (-1; 0) функция возрастает, на интервалах (0; 1) и (1 ; +∞) ─ убывает. При переходе через точку
производная меняет знак с плюса на минус, следовательно, в этой точке функция имеет максимум
.

6. Найдём интервалы выпуклости, точки перегиба.

Найдём точки, в которых равна 0, или не существует.

не имеет действительных корней.
,
,

Точки
и
разбивают действительную ось на три интервала. Определим знак на каждом промежутке.

Таким образом, кривая на интервалах
и
выпуклая вниз, на интервале (-1;1) выпуклая вверх; точек перегиба нет, т. к. функция в точках
и
не определена.

7. Найдем точки пересечения с осями.

С осью
график функции пересекается в точке (0; -1), а с осью
график не пересекается, т.к. числитель данной функции не имеет действительных корней.

График заданной функции изображён на рисунке 1.

Рисунок 1 ─ График функции

Применение понятия производной в экономике. Эластичность функции

Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции.

Определение. Эластичностью функции
называется предел отношения относительного приращения функциик относительному приращению переменнойпри
, . (VII)

Эластичность функции показывает приближённо, на сколько процентов изменится функция
при изменении независимой переменнойна 1%.

Эластичность функции применяется при анализе спроса и потребления. Если эластичность спроса (по абсолютной величине)
, то спрос считают эластичным, если
─ нейтральным, если
─ неэластичным относительно цены (или дохода).

Пример 10 Рассчитать эластичность функции
и найти значение показателя эластичности для = 3.

Решение: по формуле (VII) эластичность функции:

Пусть х=3, тогда
.Это означает, что если независимая переменная возрастёт на 1%, то значение зависимой переменной увеличится на 1,42 %.

Пример 11 Пусть функция спроса относительно ценыимеет вид
, где─ постоянный коэффициент. Найти значение показателя эластичности функции спроса при цене х = 3 ден. ед.

Решение: рассчитаем эластичность функции спроса по формуле (VII)

Полагая
ден.ед., получим
. Это означает, что при цене
ден.ед. повышение цены на 1% вызовет снижение спроса на 6%, т.е. спрос эластичен.

Сегодня мы предлагаем вместе с нами исследовать и построить график функции. После внимательного изучения данной статьи вам не придется долго потеть над выполнением подобного рода задания. Исследовать и построить график функции нелегко, работа объемная, требующая максимального внимания и точности вычислений. Для облегчения восприятия материала мы будем поэтапно изучать одну и ту же функцию, объясним все наши действия и вычисления. Добро пожаловать в удивительный и увлекательный мир математики! Поехали!

Область определения

Для того чтобы исследовать и построить график функции, необходимо знать несколько определений. Функция является одним из основных (базовых) понятий в математике. Она отражает зависимость между несколькими переменными (двумя, тремя и более) при изменениях. Так же функция показывает зависимость множеств.

Представьте, что у нас есть две переменные, которые имеют определенный диапазон изменения. Так вот, у - это функция от х, при условии, что каждому значению второй переменной соответствует одно значение второй. При этом переменная у - зависима, ее и называют функцией. Принято говорить, что переменные х и у находятся в Для большей наглядности данной зависимости строят график функции. Что такое график функции? Это множество точек на координатной плоскости, где каждому значению х соответствует одно значение у. Графики могут быть разные - прямая линия, гипербола, парабола, синусоида и так далее.

График функции невозможно построить без исследования. Сегодня мы научимся проводить исследование и построим график функции. Очень важно в ходе исследования на наносить пометки. Так справиться с задачей будет намного проще. Наиболее удобный план исследования:

  1. Область определения.
  2. Непрерывность.
  3. Четность или нечетность.
  4. Периодичность.
  5. Асимптоты.
  6. Нули.
  7. Знакопостоянство.
  8. Возрастание и убывание.
  9. Экстремумы.
  10. Выпуклость и вогнутость.

Начнем с первого пункта. Найдем область определения, то есть на каких промежутках существует наша функция: у=1/3(х^3-14х^2+49х-36). В нашем случае, функция существует при любых значениях х, то есть область определения равна R. Записать это можно следующим образом хÎR.

Непрерывность

Сейчас мы с вами будем исследовать функцию на разрыв. В математике термин «непрерывность» появился в результате изучения законов движения. Что является бесконечным? Пространство, время, некоторые зависимости (примером может служить зависимость переменных S и t в задачах на движение), температура нагреваемого объекта (воды, сковороды, термометра и так далее), непрерывная линия (то есть та, которую можно нарисовать, не отрывая от листа карандаш).

Непрерывным считается график, который не разрывается в некоторой точке. Одним из самых наглядных примеров такого графика является синусоида, которую вы можете увидеть на картинке в данном разделе. Функция непрерывна в некоторой точке х0, если соблюден ряд условий:

  • в данной точке определена функция;
  • правый и левый предел в точке равны;
  • предел равен значению функции в точке х0.

При несоблюдении хотя бы одного условия говорят, что функция терпит разрыв. А точки, в которых разрывается функция, принято называть точками разрыва. Примером функции, которая при графическом отображении будет «разрываться», может служить: у=(х+4)/(х-3). При этом у не существует в точке х=3 (так как на нуль делить нельзя).

В функции, которую исследуем мы (у=1/3(х^3-14х^2+49х-36)) оказалось все просто, так как график будет являться непрерывным.

Четность, нечетность

Теперь исследуйте функцию на четность. Для начала немного теории. Четной называют ту функцию, которая удовлетворяет условию f(-x)=f(x) при любом значении переменной х (из области значений). Примерами могут служить:

  • модуль х (график похож на галку, биссектриса первой и второй четверти графика);
  • х в квадрате (парабола);
  • косинус х (косинусоида).

Обратите внимание на то, что все эти графики симметричны, если рассматривать это относительно оси ординат (то есть у).

А что же тогда называют нечетной функцией? Таковыми являются те функции, которые удовлетворяют условию: f(-х)=-f(х) при любом значении переменной х. Примеры:

  • гипербола;
  • кубическая парабола;
  • синусоида;
  • тангенсоида и так далее.

Обратите внимание на то, что данные функции имеют симметрию относительно точки (0:0), то есть начала координат. Исходя из того, что было сказано в данном разделе статьи, четная и нечетная функция должна обладать свойством: х принадлежит множеству определения и -х тоже.

Исследуем функцию на четность. Мы можем заметить, что она не подходит ни под одно из описаний. Следовательно, наша функция не является ни четной, ни нечетной.

Асимптоты

Начнем с определения. Асимптота - это кривая, которая максимально приближена к графику, то есть расстояние от некоторой точки стремится к нулю. Всего выделяют три вида асимптот:

  • вертикальные, то есть параллельные оси у;
  • горизонтальные, то есть параллельные оси х;
  • наклонные.

Что касается первого вида, то данные прямые стоит искать в некоторых точках:

  • разрыв;
  • концы области определения.

В нашем случае функция непрерывна, а область определения равна R. Следовательно, вертикальные асимптоты отсутствуют.

Горизонтальная асимптота есть у графика функции, который отвечает следующему требованию: если х стремится к бесконечности или минус бесконечности, а предел равен некоторому числу (например, а). В данном случае у=а - это и есть горизонтальная асимптота. В исследуемой нами функции горизонтальных асимптот нет.

Наклонная асимптота существует только в том случае, если соблюдены два условия:

  • lim (f(x))/x=k;
  • lim f(x)-kx=b.

Тогда ее можно найти по формуле: у=kx+b. Опять же, в нашем случае наклонных асимптот нет.

Нули функции

Следующим этапом нам необходимо исследовать график функции на нули. Очень важно отметить и то, что задание, связанное с нахождением нулей функции, встречается не только при исследовании и построении графика функции, но и как самостоятельное задание, и как способ решения неравенств. От вас могут потребовать найти нули функции на графике или использовать математическую запись.

Нахождение данных значений поможет вам более точно составить график функции. Если говорить простым языком, то нуль функции - это значение переменной х, при которой у=0. Если вы ищите нули функции на графике, то стоит обратить внимание на точки, в которых происходит пересечение графика с осью абсцисс.

Чтобы найти нули функции, необходимо решить следующее уравнение: у=1/3(х^3-14х^2+49х-36)=0. После проведения необходимых вычислений, мы получаем следующий ответ:

Знакопостоянство

Следующий этап исследования и построения функции (графика) - это нахождение промежутков знакопостоянства. Это значит, что мы должны определить, на каких промежутках функция принимает положительное значение, а на каких - отрицательное. Это нам помогут сделать найденные в прошлом разделе нули функции. Итак, нам нужно построить прямую (отдельно от графика) и в правильном порядке распределить по ней нули функции от меньшего к большему. Теперь нужно определить, какой из полученных промежутков имеет знак «+», а какой «-».

В нашем случае, функция принимает положительное значение на промежутках:

  • от 1 до 4;
  • от 9 до бесконечности.

Отрицательное значение:

  • от минус бесконечности до 1;
  • от 4 до 9.

Это определить достаточно просто. Подставьте любое число из промежутка в функцию и посмотрите с каким знаком получился ответ (минус или плюс).

Возрастание и убывание функции

Для того чтобы исследовать и построить функцию, нам необходимо узнать, где график будет возрастать (идти вверх по Оу), а где будет падать (ползти вниз по оси ординат).

Функция возрастает только в том случае, если большему значению переменной х соответствует большее значение у. То есть х2 больше х1, а f(х2) больше f(x1). И совершенно обратное явление мы наблюдаем у убывающей функции (чем больше х, тем меньше у). Для определения промежутков возрастания и убывания необходимо найти следующее:

  • область определения (у нас уже есть);
  • производную (в нашем случае: 1/3(3х^2-28х+49);
  • решить уравнение 1/3(3х^2-28х+49)=0.

После вычислений мы получаем результат:

Получаем: функция возрастает на промежутках от минуса бесконечности до 7/3 и от 7 до бесконечности, а убывает на промежутке от 7/3 до 7.

Экстремумы

Исследуемая функция y=1/3(х^3-14х^2+49х-36) является непрерывной и существует при любых значениях переменной х. Точка экстремума показывает максимум и минимум данной функции. В нашем случае таковых не имеется, что значительно упрощает задачу построения. В противном случае так же находятся при помощи производной функции. После нахождения не забывайте отмечать их на графике.

Выпуклость и вогнутость

Продолжаем далее исследовать функцию y(x). Сейчас нам нужно проверить ее на выпуклость и вогнутость. Определения этих понятий достаточно тяжело воспринять, лучше все проанализировать на примерах. Для теста: функция выпуклая, если является неубывающей функции. Согласитесь, это непонятно!

Нам нужно найти производную от функции второго порядка. Мы получаем: у=1/3(6х-28). Теперь приравняем правую часть к нулю и решим уравнение. Ответ: х=14/3. Мы нашли точку перегиба, то есть место, где график меняет выпуклость на вогнутость или наоборот. На промежутке от минус бесконечности до 14/3 функция выпукла, а от 14/3 до плюс бесконечности - вогнута. Очень важно отметить и то, что точка перегиба на графике должна быть плавной и мягкой, никаких острых углов присутствовать не должно.

Определение дополнительных точек

Наша задача - исследовать и построить график функции. Мы закончили исследование, построить график функции теперь не составит труда. Для более точного и детального воспроизведения кривой или прямой на координатной плоскости можно найти несколько вспомогательных точек. Их вычислить довольно просто. Например, мы возьмем х=3, решаем полученное уравнение и находим у=4. Или х=5, а у=-5 и так далее. Дополнительных точек вы можете брать столько, сколько вам необходимо для построения. Минимум их находят 3-5.

Построение графика

Нам необходимо было исследовать функцию (x^3-14х^2+49х-36)*1/3=у. Все необходимые пометки в ходе вычислений были нанесены на координатной плоскости. Все что осталось сделать - построить график, то есть соединить все точки между собой. Соединять точки стоит плавно и аккуратно, это дело мастерства - немного практики и ваш график будет идеальным.