Что лежит в основе электрохимических методов анализа. Электрохимические методы анализа. "Контрольно-измерительные приборы и оборудование", Волгоград

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. Различают две группы электрохимических методов:

1. Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.

2. Методы с наложением постороннего потенциала, основанные на измерении: а) электрической проводимости растворов - кондуктометрия ; б) количества электричества, прошедшего через раствор - кулонометрия ; в) зависимости величины тока от приложенного потенциала - вольт-амперометрия ; г) времени, необходимого для прохождения электрохимической реакции - хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия). В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.

Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент , в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода - индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом - электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами - потенциометрами.

В методах с наложением постороннего потенциала применяют электрохимическую ячейку , названную так потому, что на электродах ячейки под действием наложенного потенциала происходит электролиз - окисление или восстановление вещества. В кондуктометрическом анализе используют кондуктометрическую ячейку, в которой замеряют электрическую проводимость раствора. По способу применения электрохимические методы можно классифицировать на прямые, в которых концентрацию веществ измеряют по показанию прибора, и электрохимическое титрование, где индикацию точки эквивалентности фиксируют с помощью электрохимических измерений. В соответствии с этой классификацией различают потенциометрию и потенциометрическое титрование, кондуктометрию и кондуктометрическое титрование и т.д.

Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.

Потенциометрия объединяет методы, основанные на измерении эдс обратимых электрохимических цепей, когда потенциал рабочего электрода близок к равновесному значению.

Вольтамперометрия основана на исследовании зависимости тока поляризации от напряжения, прикладываемого к электрохимической ячейке, когда потенциал рабочего электрода значительно отличается от равновесного значения. Широко используется для определения веществ в растворах и расплавах (например, полярография, амперометрия).

Кулонометрия объединяет методы анализа, основанные на измерении количества вещества, выделяющегося на электроде в процессе электрохимической реакции в соответствии с законами Фарадея . При кулонометрии потенциал рабочего электрода отличается от равновесного значения.

Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению.

Диэлектрометрия объединяет методы анализа, основанные на измерении диэлектрической проницаемости вещества, обусловленной ориентацией в электрическом поле частиц (молекул, ионов), обладающих дипольным моментом. Диэлектрометрическое титрование используют для анализа растворов.

Курсовая работа

«ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

ИССЛЕДОВАНИЯ»



Введение

1. Теоретические основы электрохимических методов исследования

1.1 История возникновения метода

1.2 Описание электрохимических методов исследования

1.3 Потенциометрия

1.4 Кондуктометрия

1.5 Кулонометрия

1.6 Вольтамперометрия

1.7 Электрогравиметрия

2. Экспериментальная часть электрохимических методов исследования

2.1 Определение концентрации кислот методом кондуктометрического титрования

2.2 Потенциометрическое титрование

2.3 Электролиз

2.4 Определение потенциалов электродов

2.5 Определение ЭДС гальванического элемента

Заключение

Список используемой литературы


Введение


В современном мире всё сильнее наблюдается влияние научно-технического прогресса на все сферы нашей жизни. В связи с этим возникает необходимость более точных и быстрых методов анализа. Наиболее сильно удовлетворяют этим требованиям электрохимические методы исследования (ЭХМИ). Они являются основными физико-химическими методами исследования веществ.

ЭХМИ основаны на процессах, протекающих на электродах или межэлектродном пространстве. Являются одними из старейших физико-химических методов исследования (некоторые описаны в конце 19 века). Их достоинством является высокая точность и сравнительная простота. Высокая точность опpеделяется весьма точными закономеpностями используемыми в ЭМХИ, напpимеp, закон Фаpадея. Большим удобством является то, что в ЭХМИ используют электpические воздействия, и то, что pезультат этого воздействия (отклик) тоже получается в виде электрического сигнала. Это обеспечивает высокую скоpость и точность отсчета, откpывает шиpокие возможности для автоматизации. ЭХМИ отличаются хорошей чувствительностью и селективностью, в pяде случаев их можно отнести к микpоанализу, так как для анализа иногда достаточно менее 1 мл pаствоpа.

Оборудование, предназначенное для проведения электрохимических анализов, отличается относительной дешевизной, доступностью и простотой в использовании. Поэтому эти методы имеют широкое применение не только в специализированных лабораториях, но и на многих производствах.

Цель работы: изучение электрохимических методов исследования состава вещества.

Для достижения поставленной цели необходимо было решить следующие задачи:

рассмотреть электрохимические методы исследования, их классификацию и сущность;

изучить потенциометрическое и кондуктометрическое титрование, определение электродных потенциалов и электродвижущую силу (ЭДС) гальванического элемента, а также процесс электролиза на практике.

Объект исследования: применение электрохимических методов в анализе свойств и состава вещества.

Предмет исследования: механизмы электрохимических процессов, потенциометрия, кондуктометрия, кулонометрия, вольтамперометрия, электрогравиметрия.

электрохимический титрование гальванический


1.Теоретические основы электрохимических методов исследования


1 История возникновения метода


Систематические электрохимические исследования стало возможным проводить лишь после создания постоянного достаточно мощного источника электрического тока. Такой источник появился на рубеже 18-19 вв. в результате работ Л. Гальвани и А. Вольты. Занимаясь исследованием физиологических функций лягушки, Гальвани случайно создал электрохимическую цепь, состоящую из двух разных металлов и мышцы препарированной лапки лягушки. Когда к лапке, закрепленной с помощью медного держателя, прикасались железной проволочкой, также соединенной с держателем, мышца сокращалась. Аналогичные сокращения происходили и под действием электрического разряда. Гальвани объяснил данный феномен существованием «животного электричества». Иное толкование этим опытам дал Вольта, посчитавший, что электричество возникает в месте соприкосновения двух металлов, а сокращение мышцы лягушки - это результат прохождения через нее электрического тока. Ток возникал и в том случае, когда между двумя металлическими дисками, например цинковым и медным, помещали пропитанный соленой водой губчатый материал (сукно или бумагу) и замыкали цепь. Последовательно соединив 15-20 таких «элементов», Вольта в 1800 г. создал первый химический источник тока - «вольтов столб».

Влияние электричества на химические системы сразу заинтересовало многих ученых. Уже в 1800 г. У. Николсон и А. Карлейль сообщили, что вода разлагается на водород и кислород, когда через нее пропускают электрический ток с помощью платиновой и золотой проволочек, соединенных с «вольтовым столбом». Наиболее важными из ранних электрохимических исследований были работы английского химика Х.Дэви. В 1807 г. он выделил элемент калий, пропуская ток через слегка увлажненный твердый гидроксид калия. Источником напряжения служила батарея из 100 гальванических элементов. Аналогичным образом был получен металлический натрий. Позже Дэви, используя ртутный электрод, выделил с помощью электролиза магний, кальций, стронций и барий.

Ассистент Дэви М. Фарадей исследовал связь между количеством электричества (произведением силы тока на время), протекающего через границу раздела электрод/раствор, и вызванными им химическими изменениями. Был создан прибор (известный теперь как газовый кулонометр) для измерения количества электричества по объёму водорода и кислорода, выделившихся в электролитической ячейке, и было показано (1833), что количество электричества, необходимое для получения данного количества вещества, не зависит от размера электродов, расстояния между ними и числа пластин в питающей ячейку батарее. Кроме того, Фарадей обнаружил, что количество вещества, выделяющееся при электролизе, прямо пропорционально его химическому эквиваленту и количеству электричества, прошедшему через электролит. Эти два фундаментальных положения получили название законов Фарадея. Вместе со своим другом У. Уэвеллом, специалистом по классической филологии, Фарадей также разработал новую терминологию в электрохимии. Он назвал проводники, погруженные в раствор, электродами (ранее их называли полюсами); ввёл понятия «электролиз» (химические изменения, связанные с прохождением тока), «электролит» (проводящая жидкость в электрохимических ячейках), «анод» (электрод, на котором происходит реакция окисления) и «катод» (электрод, на котором происходит реакция восстановления). Носители заряда в жидкостях он назвал ионами (от греч. «странник», «скиталец»), причём ионы, движущиеся к аноду (положительному электроду), получили название «анионов», а к катоду - «катионов». Исследования Фарадея по электромагнитной индукции привели к созданию электрических генераторов, что позволило осуществлять электрохимические процессы в промышленных масштабах.

Способность растворов пропускать электрический ток Фарадей объяснял присутствием в них ионов, однако и он сам, и другие ученые, такие, как И. Гитторф и Ф. Кольрауш, считали, что ионы появляются под действием тока. В 1884 С.Аррениус высказал предположение, что на самом деле ионы образуются просто при растворении соли в воде. Работы С. Аррениуса, Я. Вант-Гоффа и В. Оствальда явились важной вехой в развитии теории электролитов и представлений о физико-химических свойствах растворов и их термодинамике. Соответствие теории и экспериментальных данных по ионной проводимости и равновесиям в растворе стало более полным после того, как в 1923 П. Дебай и Э. Хюккель учли дальние электростатические взаимодействия между ионами.

Первая попытка выяснить причины возникновения разности потенциалов между раствором и металлом была сделана в 1879 г. Г. Гельмгольцем, который показал, что эта разность потенциалов вызвана двойным электрическим слоем, положительная сторона которого находится на металле, отрицательная - в жидкости. Двойной слой Г. Гельмгольц рассматривал, таким образом, как плоский конденсатор. Эта модель двойного слоя долгое время оставалась вне поля зрения электрохимиков. Микромир на границе металл - раствор, где происходят электрохимические процессы, еще «ждал» своего времени.

Французский физик Ж. Гуи в 1910 г. и английский электрохимик Д. Чепмен в 1913 г. показали, что ионы электролита не располагаются в одной плоскости (как представлял Г. Гельмгольц), а образуют некоторую «диффузную» область (по мере удаления от поверхности металла концентрация ионов постепенно изменяется). Теория строения двойного слоя Гуи - Чепмена была далее развита немецким ученым О. Штерном. В 1924 г. он предложил учитывать размеры ионов и влияние адсорбции ионов и дипольных молекул растворителя при описании строения двойного электрического слоя. Изучение дифференциальной емкости двойного слоя с помощью новых методов исследования позволило советскому ученому, академику А.Н. Фрумкину в 1934-1935 гг. и американскому ученому Д. Грэму в 1941 г. установить границы применимости теории Гуи-Чепмена-Штерна. А.Н. Фрумкин предположил, что расхождение между теорией и экспериментальными данными связано с дискретным характером распределения зарядов в двойном слое. Эта идея, впервые высказанная в 1935 г., в 40-50-х годах получила дальнейшее развитие.

Серьезный вклад в электрохимическую термодинамику и конкретно в выяснение природы электрического потенциала (напряжения) в электрохимической ячейке и баланса между электрической, химической и тепловой энергией внесли Дж. Гиббс и В. Нернст. Моделированием кинетических процессов на электродах занимались Ю. Тафель (1905), Дж. Батлер (1924), М. Фольмер (1930), А.Н. Фрумкин (1930-1933).


2 Описание электрохимических методов исследования


Инстpументом для ЭХМИ служит электpохимическая ячейка, пpедставляющая собой сосуд с pаствоpом электpолита, в котоpый погpужены как минимум два электpода. В зависимости от решаемой задачи pазличными могут быть фоpма и матеpиал сосуда, число и пpиpода электpодов, pаствоpа, условия анализа (пpилагаемое напpяжение (ток) и регистрируемый аналитический сигнал, температура, перемешивание, продувка инертным газом и т.п.). Опpеделяемое вещество может входить как в состав электpолита, заполняющего ячейку, так и в состав одного из электpодов. Если окислительно-восстановительная реакция протекает на электродах ячейки самопроизвольно, то есть без приложения напряжения от внешнего источника, а только за счет разности потенциалов (ЭДС) её электродов, то такую ячейку называют гальваническим элементом. При необходимости ячейку можно подсоединить к внешнему источнику напряжения. В этом случае, приложив достаточное напряжение, можно изменить направление окислительно-восстановительной реакции и тока на противоположное тому, что имеет место в гальваническом элементе. Окислительно-восстановительную реакцию, протекающую на электродах под действием внешнего источника напряжения, называют электролизом, а электрохимическую ячейку, являющуюся потребителем энергии, необходимой для протекания в ней химической реакции, называют электролитической ячейкой.

ЭХМИ подразделяют на:

) кондуктометрию - измерение электропроводности исследуемого раствора;

) потенциометрию - измерение бестокового равновесного потенциала индикаторного электрода, для которого исследуемое вещество является потенциоопределяющим;

) кулонометрию - измерение количества электричества, необходимого для полного превращения (окисления или восстановления) исследуемого вещества;

) вольтамперометрию - измерение стационарных или нестационарных поляризационных характеристик электродов в реакциях с участием исследуемого вещества;

) электрогравиметрию - измерение массы вещества, выделенного из раствора при электролизе.

ЭХМИ можно подразделить по признаку применения электролиза. На принципах электролиза базируются кулонометрия, вольтамперометрия и электрогравиметрия; электролиз не используют в кондуктометрии и потенциометрии.

ЭХМИ имеют самостоятельное значение для прямого проведения химического анализа, но могут применяться как вспомогательные в других методах анализа. Например, использоваться в титриметрии для регистрации конца титрования не с помощью химического цветопеременного индикатора, а по изменению потенциала, электрической проводимости тока и т.д.

Рассмотрим подробнее процессы, происходящие при электрохимических исследованиях.

Электрод представляет собой систему, в простейшем случае состоящую из двух фаз, из которых твердая обладает электронной, а другая - жидкая - ионной проводимостью. Твердая фаза с электронной проводимостью считается проводником I рода, а жидкая фаза с ионной проводимостью - II рода. При соприкосновении этих двух проводников происходит образование двойного электрического слоя (ДЭС). Он может быть результатом обмена ионами между твердой и жидкой фазами, или результатом специфической адсорбции катионов или анионов на поверхности твердой фазы при погружении ее в воду или раствор.

При ионном механизме образования ДЭС, например в случае когда химический потенциал атомов на поверхности металла (твердой фазы) больше химического потенциала ионов в растворе, то атомы с поверхности металла будут переходить в раствор в виде катионов: Me ? Mez+ + ze-. Освободившиеся электроны при этом заряжают поверхность твердой фазы отрицательно и за счет этого притягивают к поверхности положительно заряженные ионы раствора. В результате на границе раздела фаз образуются два противоположно заряженных слоя, являющихся как бы обкладками своеобразного конденсатора. Для дальнейшего перехода заряженных частиц из одной фазы в другую им необходимо совершить работу, равную разности потенциалов обкладок этого конденсатора. В случае, если химический потенциал атомов на поверхности твердой фазы меньше химического потенциала ионов в растворе, то катионы из раствора переходят на поверхность твердой фазы, заряжая ее положительно: Mez+ + ze- ? Me. Как в первом, так и во втором случае указанные процессы протекают не бесконечно, а до установления динамического равновесия, которое можно изобразить обратимым редоксипереходом типа Мe - ze- ? Мez+ или в общем случае Ох + I0 ? Redz+.

Процессы, при которых отдача или присоединение электронов происходит на электродах, называются электродными.

Нернстом была получена формула, связывающая разность внутренних потенциалов ДЭС с активностями (концентрациями) частиц, участвующих в обратимом редоксипереходе:



где ? (Me) - потенциал заряженного слоя твердой фазы;

? (раствор) - потенциал прилегающего к твердой фазе слоя раствора;

??0 - стандартный электродный потенциал; - универсальная газовая постоянная (8,31 Дж/К моль); - температура, К; - число Фарадея (96 488 Кл/моль); - число электронов, участвующих в редоксипереходе;

a (Ох) и a (Red) - активности окисленной (Ох) и восстановленной (Red) форм вещества в редоксипереходе, моль/л.

Установить внутренние потенциалы отдельных фаз ? (Me) и ? (р - р), к сожалению, экспериментально нельзя. Любая попытка подключить раствор с помощью провода к измерительному устройству, вызывает появление новой поверхности соприкосновения фаз металл-раствор, то есть возникновение нового электрода со своей разностью потенциалов, влияющей на измеряемую.

Однако можно измерить разность ? (Me) - ? (р - р) с помощью гальванического элемента. Гальваническим элементом называется система, составленная из двух разных электродов, обладающая способностью самопроизвольно преобразовывать химическую энергию протекающей в нем окислительно-восстановительной реакции в электрическую энергию. Электроды, из которых составлен гальванический элемент, называются полуэлементами. Протекающая в гальваническом элементе окислительно-восстановительная реакция пространственно разделена. Полуреакция окисления протекает на полуэлементе, называемом анодом (отрицательно заряженном электроде), а полуреакция восстановления - на катоде.

Электродвижущая сила (ЭДС) гальванического элемента алгебраически складывается из разностей внутренних потенциалов составляющих его электродов. Поэтому, если в качестве одного полуэлемента взять электрод с известной величиной разности внутренних потенциалов ? (Me) - ? (раствор), то по измеренной величине ЭДС можно вычислить искомую разность потенциалов исследуемого электрода.

Для этой цели принято использовать стандартный (нормальный) водородный электрод (см. рис. 1). Он состоит из платиновой пластинки или проволоки, покрытой платиновой чернью (мелкодисперсной платиной), погруженной в раствор кислоты C=1моль/л, давление водорода над которым 0,1 МПа (1 атм). Под каталитическим влиянием платиновой черни в электроде осуществляется обратимый редоксипереход. Разность внутренних потенциалов для водородного электрода в соответствии с формулой Нернста равна:


Рисунок 1. Схема стандартного водородного электрода



так как = 1моль/л, а р (H2) = 1 атм, то


?(Me) - ?(р - р) = ??0(2H+/H2).


Решением международного союза теоретической и прикладной химии (IUPAC) условно принято считать величину ??0(2H+/H2) = 0,00 В. Очевидно, что в этом случае измеренная величина ЭДС гальванического элемента, в состав которого входит водородный электрод, равна разности внутренних потенциалов второго электрода. Эту ЭДС принято называть электродным потенциалом или редоксипотенциалом и обозначать буквой Е. Переход от внутренних потенциалов к редоксипотенциалам не меняет характера формулы Нернста:



Для большинства электродов величина электродного потенциала при единичных активностях окисленной и восстановленной форм (Е0) измерена и приведена в справочниках.

При нормальных условиях и переходе от натуральных к десятичным логарифмам предлогарифмический множитель становится равным 0,0591, и формула приобретает вид



Следует помнить, что формула Нернста связывает равновесный потенциал с активностями (концентрациями) редоксипары, т.е. потенциал, который приобретает изолированный электрод. Поэтому для аналитических цепей измерение потенциала электрода должно проводиться в условиях, максимально приближенных к равновесным: при отсутствии тока во внешней цепи гальванического элемента и через время, достаточное для достижения равновесия. Однако в реальных условиях ток может протекать через электроды. Например, ток протекает через электроды в гальваническом элементе, работа которого связана с переходом заряженных частиц через границу раздела «раствор-твердая фаза», а это направленное движение частиц есть ток. Ток протекает через электроды при электролизе, под которым подразумевают совокупность окислительно-восстановительных процессов, протекающих на электродах в растворах и расплавах электродах электролитов под действием внешнего электрического тока. При электролизе можно осуществить процессы, противоположные протекающим в гальваническом элементе.

При протекании тока (i) через электрод потенциал его изменяется и приобретает некую величину Еi, отличную от потенциала электрода в равновесных (изолированных) условиях Ер. Процесс смещения потенциала от Ер до Еi и разность Еi-Ep называют поляризацией


E=Ei-Ep. (5)


Процессам поляризации подвержены не все электроды. Электроды, потенциал которых не изменяется при протекании через них тока, называют не поляризуемыми, а электроды, для которых свойственна поляризация, называют поляризуемыми.

К не поляризуемым относятся, например, электроды II рода, к поляризуемым - все металлические и амальгамные.


1.3 Потенциометрия


Потенциометрия - электрохимический метод исследования и анализа веществ, основанный на зависимости равновесного электродного потенциала от активности концентраций определяемого иона, описываемая уравнением Нернста (1).

Зависимость электродных потенциалов от характера электродных процессов и активностей участвующих в них веществ позволяет использовать измерение ЭДС (потенциометрический метод) для нахождения коэффициентов активности электролитов, стандартных электродных потенциалов, констант равновесия, произведений растворимости, рН растворов и т. д. Преимуществами потенциометрического метода являются точность, объективность и быстрота.

Известно, что



является важной характеристикой раствора и определяет возможность и характер многих реакций.

Потенциометрическое определение рН основано на применении так называемых индикаторных электродов, в электродной реакции которых участвуют ионы водорода, а потенциал зависит от рН. Измеряя ЭДС элемента, содержащего индикаторный электрод с исследуемым раствором, можно рассчитать рН этого раствора. В качестве второго электрода должен быть взят электрод с известным потенциалом.

ЭДС элемента

H2 | исследуемый pacтвоp || KCl, Hg2Cl2 | Hg






Потенциометрический метод определения pH позволяет находить pH мутных и окрашенных сред. При использовании водородного электрода в качестве индикаторного можно определять pH растворов в широком интервале (от pH 1 до pH 14). Недостатком является необходимость длительного насыщения электрода водородом для достижения равновесия. Его нельзя применять в присутствии поверхностно-активных веществ и некоторых солей.

Схема элемента, используемого в данном случае, следующая:

| Hg2Cl2, KCl || исследуемый раствор + хингидрон | Рt,


его ЭДС равна



(10)


Потенциометрический метод определения pH раствора с использованием хингидронного электрода отличается большой простотой. Он применим для растворов с pH от 1 до 8. В щелочных средах, а также в присутствии окислителей или восстановителей хингидронный электрод непригоден.

В качестве индикаторного электрода часто используется так называемый стеклянный электрод. Он представляет собой тонкостенный стеклянный шарик, внутри которого помещен электрод сравнения, например хлорсеребряный. Стекло является переохлажденным раствором силикатов, содержащим катионы щелочных металлов и анионы типа. Стеклянный шарик предварительно выдерживается в крепком растворе кислоты, где происходит обмен катионами между стеклом и раствором и стекло насыщается ионами водорода. При определении pH в исследуемый раствор опускается стеклянный электрод и еще один электрод сравнения. В результате образуется следующая цепь:

Скачок потенциала?1 на границе стекла и раствора хлорида калия, входящего в сравнительный электрод, постоянен вследствие постоянства концентрации этого раствора. Скачок потенциала?2 зависит от концентрации исследуемого раствора и может быть записан


(11)


Где ?o и m - постоянные для данного стеклянного электрода. Учитывая скачки потенциалов на поверхности стекла, получаем


(12)



(13)


где . Отсюда


(14)


Постоянные для данного стеклянного электрода ?° и m определяют предварительной градуировкой. Для этого помещают стеклянный электрод в несколько буферных растворов с известным pH и измеряют ЭДС цепи. В дальнейшем по формуле (14) находят pH исследуемых растворов.

Перейдём к рассмотрению коэффициента активности электролита. Рассмотрим двойную концентрационную цепь без переноса, содержащую два раствора электролита:


Pt, H2 | HCl, AgCl | Ag | AgCl, HCl | H2, Pt

a 1 a 2


где a 1 и a 2 - средние ионные активности растворов HCl. Её можно использовать для определения коэффициента активности HCl. ЭДС этой цепи равна


(15)


Подстановка числовых значений R, F и Т = 298 К и переход к десятичным логарифмам даёт


(16)


Подставим в полученное уравнение


(17)


где m1 - средняя моляльность; ?1 - средний коэффициент активности электролита.

Перенесем в левую часть уравнения величины, определяемые опытным путем, и получим


(18)


Ввиду того что в предельном случае бесконечно разбавленного раствора он должен быть близок к идеальному, а ?1 ? 1, то В равна


(19)


Строим график зависимости (или, что более удобно, так как дает линию, близкую к прямой) и экстраполируем к. Таким образом определяем В графическим путем (рис. 2).


Рисунок 2. Определение коэффициента активности электролита


Коэффициент активности подсчитываем по уравнению


(20)


4 Кондуктометрия


Кондуктометрия - совокупность электрохимических методов анализа, основанных на измерении электропроводности жидких электролитов, которая пропорциональна их концентрации.

Измерения электрической проводимости (кондуктометрия) позволяют решать ряд теоретических и практических задач. Такие измерения могут осуществляться быстро и точно. При помощи кондуктометрии можно определить константу и степень диссоциации слабого электролита, растворимость и произведение растворимости труднорастворимых веществ, ионное произведение воды и другие физико-химические величины. На производстве кондуктометрические измерения используются для выбора растворов электролитов с достаточно высокой проводимостью, исключающей непроизводительные затраты электроэнергии, для быстрого и точного определения содержания растворенного вещества, для автоматического контроля за качеством различных жидкостей и т. п.

При кондуктометрическом титровании за ходом реакции следят по изменению электрической проводимости после каждого добавления титрующего реагента. Оно не требует применения индикаторов и может быть проведено в непрозрачных средах. В процессе кондуктометрического титрования происходит замена ионов титруемого вещества ионами добавляемого реагента. Точка эквивалентности определяется по резкому изменению электрической проводимости раствора, которое объясняется различной подвижностью указанных ионов.

На рис. 3 приведены кривые зависимости удельной электрической проводимости (х) от объема V приливаемого реагента. При титровании сильной кислоты сильным основанием или сильного основания сильной кислотой (кривая l) на кривой титрования образуется минимум, соответствующий замене ионов водорода или гидроксила на менее подвижные ионы образующейся соли. При титровании слабой кислоты сильным основанием илислабого основания сильной кислотой (кривая 2) в точке эквивалентности изменяется крутизна кривой, что объясняется более значительной диссоциацией образующейся соли по сравнению с диссоциацией исходного вещества. В случае титрования смеси сильной (а) и слабой (b) кислот сильным основанием (кривая 3) наблюдаются две точки эквивалентности.


Рисунок 3. Кривые кондуктометрического титрования.


С помощью таблиц ионных электрических проводимостей или путем измерений ? при разных концентрациях раствора и последующей экстраполяции к нулевой концентрации можно найти ?°. Если измерить электрическую проводимость раствора заданной концентрации, то по уравнению


(22)


получаем соотношение


(23)


Рисунок 4. Ориентация полярных молекул растворителя возле ионов электролита

Из уравнений


(24) и , (25)


полагая , получаем


(26)



(27)


Остается учесть, что величина ? обусловлена лишь данным электролитом и не включает электрическую проводимость растворителя, т. е.


5 Кулонометрия


Кулонометрия - электрохимический метод исследования, основанный на измерении количества электричества (Q), прошедшего через электролизер при электрохимическом окислении или восстановлении вещества на рабочем электроде. Согласно объединённому закону Фарадея, масса электрохимически превращённого вещества (Р) в г связана с Q в Кл соотношением:

(28)


где М - молекулярная или атомная масса вещества, n - число электронов, вовлеченных в электрохимическое превращение одной молекулы (атома) вещества (М/n - электрохимический эквивалент вещества), F - постоянная Фарадея.

Кулонометрия - единственный физико-химический метод исследования, в котором не требуются стандартные образцы. Различают прямую кулонометрию и кулонометрическое титрование. В первом случае определяют электрохимически активное вещество, во втором случае - независимо от электрохимической активности определяемого вещества в испытуемый раствор вводят электрохимически активный вспомогательный реагент, продукт электрохимического превращения которого с большой скоростью и количественно химически взаимодействует с определяемым веществом. Оба варианта кулонометрии можно проводить при постоянном потенциале Е рабочего электрода (потенциостатический режим) или при постоянном токе электролиза Iэ (гальваностатический режим). Наиболее часто используются прямая кулонометрия при постоянном Е и кулонометрическое титрование при постоянном Iэ. Для кулонометрического исследования необходимо соблюдение следующих условий: электрохимическое превращение вещества должно протекать со 100%-ным выходом по току, т.е. должны отсутствовать побочные электрохимические и химические процессы; нужны надёжные способы определения количества электричества и установления момента завершения электрохимической или химической реакции. В прямой кулонометрии 100%-ный выход по току обеспечивается, если значение Е поддерживать постоянным в области предельного диффузионного тока Iпp на вольтамперограмме определяемого вещества. При этом в анализируемом растворе должны отсутствовать посторонние вещества, способные электрохимически превращаться в тех же условиях. Количество электричества определяют обычно с помощью электронных интеграторов тока. Иногда пользуются менее точными приборами - кулонометрами различного типа, а также планометрическим и расчетными методами. В последних двух случаях завершением электролиза считают момент, когда Iэ падает до значения фонового тока Iф, поэтому количествово электричества, необходимое для завершения электродной реакции, равно разности Qоб-Qф, где Qоб - общее количество электричества, Qф - кол-во электричества, измеренное в тех же условиях за то же время электролиза tэ, но в отсутствие определяемого вещества. Если электрохимическая реакция первого порядка, то


(29)

(30)


где It и Io - ток электролиза соответственно в момент времени t и при ?=0, - площадь поверхности электрода, - коэффициент диффузии электрохимически активного в-ва,

? - толщина диффузионного слоя, - объем раствора в ячейке.

Продолжительность электролиза не зависит от начальной концентрации вещества, но заметно сокращается с увеличением соотношения S/V и при интенсивном перемешивании раствора. Можно считать электролиз завершённым, когда Iэ станет равен 0,1 I0 или 0,01 I0 (в зависимости от требуемой точности анализа). В планометрическом способе для установления Q измеряют площадь под кривой I? - ?, т.к.


(31)


В расчетном способе решают последнее уравнение, подставляя в него выражение для I?. Для нахождения I0 и К" выражение для I? логарифмируют и по нескольким (5-7) точкам строят прямую lg I?-?, тангенс угла наклона которой равен К", а точка пересечения с осью ординат соответствует lg I0, т.е. для определения Q нет необходимости проводить электролиз до конца и измерять I0, значение которого плохо воспроизводится.

Установки для кулонометрического исследования состоят из потенциостата или гальваностата, регистрирующего потенциометра или интегратора тока, электролизера и индикационной системы (в случае использования физ.-хим. методов для установления конца химической реакции в кулонометрическом титровании).

Электролизеры представляют собой, как правило, стеклянные сосуды, катодные и анодные камеры в которых разделены диафрагмой (например, из пористого стекла). В качестве рабочих и вспомогательных (замыкающих цепь электролиза) электродов используют благородные металлы (Pt, Au), электроды второго рода и, реже, углеродные материалы (графит, стеклоуглерод и др.). Раствор, в который погружен рабочий электрод, перемешивают обычно магнитной мешалкой; при необходимости эксперимент проводят в атмосфере инертного газа.

Преимущества кулонометрического титрования: нет необходимости стандартизовать растворы титранта; титрант прибавляется очень малыми порциями (практически непрерывно); раствор не разбавляется; можно генерировать электрохимически неактивные титранты, например комплексон III, а также малоустойчивые сильные окислители и восстановители, в частности Mn(III), Pb(IV), Сr(II), V(II), Ti(III).


6 Вольтамперометрия


Вольтамперометрия - совокупность электрохимических методов исследования и анализа, основанных на изучении зависимости силы тока в электролитической ячейке от потенциала погруженного в анализируемый раствор индикаторного микроэлектрода, на котором реагирует исследуемое электрохимически активное (электроактивное) вещество.

В ячейку помещают помимо индикаторного вспомогательный электрод со значительно большей чувствительностью, чтобы при прохождении тока его потенциал практически не менялся (неполяризующийся электрод). Разность потенциалов индикаторного и вспомогательного электродов Е описывается уравнением



где U - поляризующее напряжение, - сопротивление раствора.

В анализируемый раствор вводят в большой концентрации индифферентный электролит (фон), чтобы, во-первых, уменьшить величину R и, во-вторых, исключить миграционный ток, вызываемый действием электрического поля на электроактивные вещества (устар. - деполяризаторы). При низких концентрациях этих веществ омическое падение напряжения IR в растворе очень мало. Для полной компенсации омического падения напряжения применяют потенциостатирование и трехэлектродные ячейки, содержащие дополнительно электрод сравнения. В этих условиях

В качестве индикаторных микроэлектродов используют стационарные и вращающиеся - из металла (ртуть, серебро, золото, платина), углеродных материалов (напр., графит), а также капающие электроды (из ртути, амальгам, галлия). Последние представляют собой капилляры, из которых по каплям вытекает жидкий металл. Вольтамперометрия с использованием капающих электродов, потенциал которых меняется медленно и линейно, называют полярографией (метод предложен Я. Гейровским в 1922 г.). Электродами сравнения служат обычно электроды второго рода, например каломельный или хлоросеребряный. Кривые зависимости I = f(E) или I = f(U) (вольтамперограммы) регистрируют специальными приборами - полярографами разных конструкций.


Рисунок 5. Вольтамперограмма, получаемая с помощью вращающегося дискового электрода


Вольтамперограммы, полученные с помощью вращающегося или капающего электрода при монотонном изменении (линейной развёртке) напряжения, имеют вид, схематически представленный на рисунке 5. Участок увеличения тока называют волной. Волны могут быть анодными, если электроактивное вещество окисляется, или катодными, если оно восстанавливается. Когда в растворе присутствуют окисленная (Ох) и восстановленная (Red) формы веществава, достаточно быстро (обратимо) реагирующие на микроэлектроде, на вольтамперограмме наблюдается непрерывная катодно-анодная волна, пересекающая ось абсцисс при потенциале, соответствующем окислит.-восстановит. потенциалу системы Ox/Red в данной среде. Если электрохимическая реакция на микроэлектроде медленная (необратимая), на вольтамперограмме наблюдаются анодная волна окисления восстановленной формы вещества и катодная волна восстановления окисленной формы (при более отрицательном потенциале). Образование площадки предельного тока на вольтамперограмме связано либо с ограниченной скоростью массопереноса электроактивного вещества к поверхности электрода путем конвективной диффузии (предельный диффузионный ток, Id), либо с ограниченной скоростью образования электроактивного вещества из определяемого компонента в растворе. Такой ток наз. предельным кинетическим, а его сила пропорциональна концентрации этого компонента.

Форма волны для обратимой электрохимической реакции описывается уравнением:


(33)


где R - газовая постоянная, Т - абсолютная температура, - потенциал полуволны, т.е. потенциал, соответствующий половине высоты волны. Значение характерно для данного электроактивного вещества и используется для его идентификации. Когда электрохимические реакции предшествует адсорбция определяемого вещества на поверхности электрода, на вольтамперограммах наблюдаются не волны, а пики, что связано с экстремальной зависимостью адсорбции от потенциала электрода. На вольтамперограммах, зарегистрированных при линейном изменении (развертке) потенциала со стационарным электродом или на одной капле капающего электрода, также наблюдаются пики, нисходящая ветвь которых определяется обеднением приэлектродного слоя раствора электроактивным веществом. Высота пика при этом пропорциональна концентрации электроактивного вещества. В полярографии предельный диффузионный ток (в мкА), усредненный по времени жизни капли, описывается уравнением Ильковича:


(34)


где n - число электронов, участвующих в электрохимической реакции, С - концентрация электроактивного вещества, D - его коэффициент диффузии, время жизни ртутной капли, m - скорость вытекания ртути.

Вольтамперометрию применяют: для количественного анализа неорганических и органических веществ в очень широком интервале содержаний - от 10-10 % до десятков %; для исследования кинетики и механизма электродных процессов, включая стадию переноса электрона, предшествующие и последующие химические реакции, адсорбцию исходных продуктов и продуктов электрохимических реакций и т. п.; для изучения строения двойного электрического слоя, равновесия комплексообразования в растворе, образования и диссоциации интерметаллических соединений в ртути и на поверхности твердых электродов; для выбора условий ампераметрического титрования и др.


7 Электрогравиметрия


Электрогравиметрия - электрохимический метод исследования, основанный на определении увеличения массы рабочего электрода вследствие выделения на нем определяемого компонента в результате электролиза. Как правило, определяемое вещество осаждают в виде металла (или оксида) на предварительно взвешенном платиновом катоде (или аноде). Момент завершения электролиза устанавливают с помощью специфической чувствительной качественной реакции на определяемый ион. Рабочий электрод промывают, высушивают и взвешивают. По разности масс электрода до и после электролиза определяют массу выделившегося металла или оксида.

Теоретический потенциал выделения металла на катоде можно рассчитать из величин стандартных электродных потенциалов Е0. Например, при определении Cu(II) в кислом растворе на платиновых катоде и аноде протекают соответствующие реакции:


В условиях электролиза потенциал катода при 25 °С описывается уравнением Нернста:


(35)


В начале электролиза, когда поверхность катода не покрыта медью, a (Cu) бесконечно малая величина; при наличии тока, достаточного для заполнения медью поверхности катода, a (Cu) приближается к единице. На практике для протекания электрохимических реакции с заметной скоростью необходимо более высокое напряжение, чем теоретически рассчитанный потенциал выделения Е. Это связано с перенапряжением кислорода на платиновом аноде и омическим падением напряжения в ячейке.

Электрогравиметрия - селективный метод: при равенстве исходных концентраций компонентов раздельное выделение на электроде возможно при разности их электродных потенциалов порядка 0,3 В (для однозарядных ионов) или 0,1 В (для двухзарядных ионов).

Электролиз можно проводить при постоянном напряжении между электродами, при постоянной силе тока или при контролируемом потенциале рабочего электрода. В случае электрогравиметрии при постоянном напряжении происходит смещение потенциала рабочего электрода в более отрицательную область за счет поляризации. Следствием этого является снижение селективности из-за протекания дополнительной реакции (выделение других металлов или газообразного Н2). Этот вариант электрогравиметрии пригоден для определения легко восстанавливающихся веществ в присутствии примесей, восстанавливающихся труднее, чем ионы Н+. В конце электролиза возможно выделение газообразного Н2. Хотя в отличие кулонометрии 100%-ный выход по току определяемого вещества не обязателен, выделение Н2 часто приводит к образованию осадков с неудовлетворительными физическими свойствами. Поэтому в анализируемый раствор рекомендуется вводить вещества, восстанавливающиеся легче ионов Н+ (гидразин, гидроксиламин) и предотвращающие таким образом выделение Н2.

Если проводить электролиз при постоянной силе тока, необходимо периодически увеличивать налагаемое на ячейку внешнее напряжение, чтобы скомпенсировать уменьшение тока, вызываемое концентрационной поляризацией. Вследствие этого анализ становится менее селективным. Иногда, однако, удаётся связывать мешающие катионы в прочные комплексные соединения, восстанавливающиеся при более отрицательном потенциале, чем определяемое вещество, или предварительно удалять мешающий ион в виде малорастворимого соединения. Метод применяют, например, для определения Cd в щелочном растворе его цианида, Со и Ni в аммиачно-сульфатном растворе, Сu в смеси серной и азотной кислот.

Электрогравиметрия известна с 1860-х гг. и применялась для определения металлов, используемых для чеканки монет, в различных сплавах и рудах. Это безэталонный метод, который можно рассматривать как простейший вариант кулонометрии. По точности и воспроизводимости результатов электрогравиметрия превосходит другие методы при определении таких металлов, как Сu, Sn, Pb, Cd, Zn. Несмотря на относительную длительность эксперимента, электрогравиметрию до сих пор применяют для анализа сплавов, металлов и растворов для электролитных ванн.


2.Экспериментальная часть электрохимических методов исследования


1 Определение концентрации кислот методом кондуктометрического титрования


Цель лабораторной работы: определение концентрации уксусной и соляной кислот методом кондуктометрического титрования.

Оборудование и реактивы: общелабораторный модуль, компьютер, бюретка, пипетки Мора на 5 и 10 мл; растворы: 0,1 н NaOH, растворы HCl и CH3COOH с неизвестной концентрацией.

Ход работы

При проведении кондуктометрического титрования проводится два опыта:

Опыт №1

Устанавливаем бюретку и стакан. В стаканчик, находящийся в датчике прибора, наливаем пипеткой Мора 10 мл раствора соляной кислоты. Уровень раствора в стакане должен быть на 3-5 мм выше верхнего электрода и датчика. Разбавляем раствор водой. Включаем магнитную мешалку. Заполняем бюретку раствором 0,1 н. NaOH. Производим измерение с помощью общелабораторного модуля подключённого к персональному компьютеру.

Химизм процесса

Обработка результатов

1)В ходе измерения компьютер производит замеры электропроводности данного раствора, которые сведены в таблицу 1.


Таблица 1. Зависимость электропроводности от объёма щёлочи, пошедшее на титрование хлороводородной кислоты.

V(NaOH), мл0246891010,51112131415L, мСм9,2929,329,2959,2899,2789,2719,269,259,2419,219,1359,2489,256

)Строим график зависимости электропроводности от объёма щёлочи, пошедшее на титрование хлороводородной кислоты (рисунок 6).


Рисунок 6. Зависимость электропроводности от объёма щёлочи, пошедшее на титрование хлороводородной кислоты.


Vэкв (NaOH) = 13 мл

4)Используя закон эквивалентов рассчитываем концентрацию хлороводородной кислоты:


отсюда (37)


Опыт №2

Опыт проводим с 5 мл раствора уксусной кислоты. Дальнейшие действия те же, что и в предыдущем опыте.

Химизм процесса

Обработка результатов

1)В ходе измерения компьютер производит замеры электропроводности данного раствора, которые сведены в таблицу 2.


Таблица 2. Зависимость электропроводности от объёма щёлочи, пошедшее на титрование уксусной кислоты.

V(NaOH), мл012344,555,5678910L, мСм6,63,84,65,76,67,08,08,38,58,99,09,19,2

)Строим график зависимости электропроводности от объёма щёлочи, пошедшее на титрование уксусной кислоты (рисунок 7).

Рисунок 7. Зависимость электропроводности от объёма щёлочи, пошедшее на титрование уксусной кислоты.

3)По графику находим точку эквивалентности:

Vэкв (NaOH) = 5 мл

)Используя закон эквивалентов рассчитываем концентрацию уксусной кислоты:

Вывод

В ходе данной работы мы определили методом кондуктометрического титрования концентрации хлороводородной и уксусной кислот:


2 Потенциометрическое титрование


Цель : познакомиться с методом потенциометрического титрования. Установить точки эквивалентности при титровании сильной кислоты сильным основанием, слабой кислоты сильным основанием.

Оборудование : рН-метр, стеклянный электрод, хлорсеребряный электрод, стакан на 100 мл; 0,1 н. раствор НС1; СН3СООН; 0,5 н. раствор КОН; бюретка, магнитная мешалка.

Ход работы

Опыт №1

В стакан при помощи пипетки наливаем 15 мл раствора 0,1 н. соляной кислоты, опускаем бегунок, устанавливаем стакан на магнитную мешалку и включаем её после опускания электродов (следить, чтобы стеклянный электрод не касался бегунка).

Отключённое положение рН-метра «-1-14» и «0-t» нажаты. Для изменения нажимаем кнопку «рН» и снимаем значение но нижней шкале. Затем приливаем раствор 0,1 н. щелочи по 1-3 мл и фиксируем величину рН. Устанавливаем микробюретки так, чтобы щёлочь вытекала каплями. При приближении к точке эквивалентности приливаем щёлочь очень малыми дозами. Стакан во время опыта находится на магнитной мешалке, и раствор постоянно перемешиваем.

После резкого изменения рН раствора прибавляем небольшое количество щелочи и постоянно фиксируем рН.

Химизм процесса

Обработка результатов

1)В результате проведения данного опыта мы получили следующие результаты:


Таблица 3. Зависимость водородного показателя от объёма щёлочи, пошедшее на титрование уксусной кислоты.

V(KOH), мл12345678910pH4,004,154,154,004,204,304,294,945,004,91

Продолжение табл. 3

V(KOH), мл1112131415161718192021pH5,075,105,125,205,355,407,307,608,048,409,00

)По полученным данным строим график зависимости pH от объёма щёлочи, пошедшего на титрование (рисунок 8).


Рисунок 8. Кривая титрования соляной кислоты


)По графику (рисунок 8) определяем точку эквивалентности.

Vэкв (NaOH) = 16.5 мл

Опыт №2

Проводим аналогичное титрование с 0,1 н. СН3СООН.

Химизм

Обработка результатов

1)В результате проведения данного опыта мы получили следующие данные:

Таблица 4. Зависимость водородного показателя от объёма щёлочи, пошедшее на титрование уксусной кислоты.

V(KOH), мл123456789101112131415pH4,465,345,375,485,635,705,735,876,006,106,236,406,606,409,60

)По полученным данным строим график зависимости pH от объёма щёлочи, пошедшего на титрование (рисунок 9).


Рисунок 9. Кривая титрования уксусной кислоты


)По графику (рисунок 9) определяем точку эквивалентности.экв (NaOH) = 14.2 мл

Вывод

В ходе данной работы мы определили точку эквивалентности растворов хлороводородной и уксусной кислот методом потенциометрического титрования.

Точка эквивалентности для раствора хлороводородной кислоты:

Vэкв (NaOH) = 16.5 мл

Точка эквивалентности для раствора уксусной кислоты:экв (NaOH) = 14.2 мл


3 Электролиз


Цель работы : определение электрохимического эквивалента меди.

Оборудование : выпрямитель, амперметр, ванна с электролитом и двумя медными электродами, секундомер, аналитические весы, 5% раствор CuSO4, провода для монтажа прибора.

Ход работы

Электрохимический эквивалент - количество вещества, претерпевшего химическое превращение на электроде при пропускании единицы количества электричества при условии, что все пропущенное электричество тратится только на превращение данного вещества.

(38)


где Э - электрохимический эквивалент,

? - молярная масса соединения,

?q - число электронов, которое необходимо для электрохимического превращения одной молекулы этого соединения.

Молярная масса эквивалента вещества, претерпевшего химическое превращение на электроде (Мэкв) равна:


(39)


гдеm - масса отложившегося вещества,

F - постоянная Фарадея,

I - сила тока,

t - время, в течении которого протекал ток.

Для определения электрохимического эквивалента Э собираем прибор, где ток от источника пропускаем через выпрямитель и ванну с электролитом, амперметр, соединённые последовательно. При включении на медном электроде, являющийся катодом, выделяется медь. Анод, также изготовленный из меди, растворяется. Для того, чтобы медь осаждалась на катоде, образовала плотный слой и не отшелушивалась в ходе опыта, искажая результаты, следует пользоваться током, не превышающим 0,05 А на 1 см2 поверхности катода. Для этого до начала опыта при помощи миллиметровой линейки определяют поверхность катода и вычисляют максимально допустимую силу тока.

Перед началом опыта катод на 1-2 секунд погружаем в 20-30% раствор азотной кислоты, а затем тщательно промываем дистиллированной водой.

Во время проведения работы важно не дотрагиваться до поверхности катода, погруженного в электролит, т.к. даже ничтожные следы жира ухудшают адгезию катодного осадка меди.

После этого катод закрепляем в вольтметре, который наполняем раствором CuSO4. Катод вынимаем из ванны с электролитом, промываем дистиллированной водой, просушиваем и взвешиваем на аналитических весах. После этого катод вновь устанавливаем в ванну с электролитом и приступаем к опыту. Одновременно включаем ток и пускаем в ход секундомер. Опыт продолжают 40-50 минут. Одновременно выключаем ток и останавливаем секундомер. Катод вынимаем из электролита, промываем дистиллированной водой, сушим и взвешиваем.

В ходе электролиза происходили следующие химические реакции:

)Диссоциация раствора сульфата меди (II):

2)Окислительно-восстановительные реакции на электродах:

Обработка результатов

1)В результате проведения данной лабораторной работы мы получили следующие данные (таблица 5):


Таблица 5. Данные по проведённой лабораторной работе.

Сила тока (I), А1.8Время, в течении которого протекал ток (t), с2527Вес катода до опыта, выраженный в массе, г24.42Вес катода после опыта, выраженный в массе, г25.81Вес отложившегося вещества, выраженный в массе (m), г1.392)Расчёт электрохимического эквивалента:

)Расчёт молярной массы эквивалента, абсолютной и относительной ошибки:

Вывод.

В ходе данной работы мы определили электрохимический эквивалент меди, молярную массу эквивалента меди, а также абсолютную и относительную ошибку.

2.4 Определение потенциалов электродов


Цель работы : измерить потенциал медного и цинкового электродов в растворах их солей различной активности. Сравнить измеренные значения потенциалов с расчётами по уравнению Нернста.

Оборудование : pH-метр, медный электрод, цинковый электрод, хлорсеребряный электрод, U-образная трубка с насыщенным раствором KCl, наждачная бумага, растворы CuSO4 и ZnSO4 с различной концентрацией.

Ход работы

Для измерения потенциалов 1 рода собираем цепь, состоящую из измерительного прибора, измеряемого электрода и электрода сравнения. Фактически мы измеряем ЭДС гальванического элемента

| AgCl, KCl || CuSO4 | Cu;

Zn | ZnSO4 || KCI, AgCl | Ag.


Потенциал хлорсеребряного электрода (электрод 2 рода) постоянен, зависит только от активности ионов Cl и равен Ag | AgCl (насыщенный раствор КС1) = 0,2 В. Он является электродом сравнения.

Для устранения диффузного потенциала используем мостики, заполненные насыщенным раствором KCl.

Для измерения потенциалов используем рН-метр. Хлорсеребряный электрод подсоединяем к специальному гнезду «электрод сравнения» (на ВСП панели прибора), а измерительный электрод через специальный штекер к гнезду «изм - 1», «изм - 2».

Химизм процессов

Для гальванического элемента Ag | AgCl, KCl || CuSO4 | Cu:


Для гальванического элемента Zn | ZnSO4 || KCI, AgCl | Ag:

Обработка результатов

1)В результате измерения потенциалов медного электрода при различной активности ионов Cu2+ мы получили следующие данные:

¾для медного электрода (таблица 6):


Таблица 6. Данные по проведённой лабораторной работе для медного электрода.

?изм, ВCн, моль * экв-1 * л-1?lg a?вычисл, В0,2100,10,38-1,72120,2862230,3510,20,36-1,44370,2944110,3600,50,25-1,20410,3014780,3611,00,23-0,93930,309291

¾для цинкового электрода (таблица 7):

Таблица 6. Данные по проведённой лабораторной работе для цинкового электрода.

?изм, ВCн, моль * экв-1 * л-1?lg a?вычисл, В-0,0650,10,25-1,9031-0,81914-0,0650,20,28-1,5528-0,80881-0,0290,50,38-1,0223-0,79316-0,0501,00,40-0,6990-0,78362

2)Строим график зависимости потенциала электрода от lg а(Cu2+).

¾для медного электрода (рисунок 10):


Рисунок 10. Зависимость потенциала электрода от логарифма активности ионов меди (II)


¾для цинкового электрода (рисунок 11):


Рисунок 11. Зависимость потенциала электрода от логарифма активности ионов цинка


.Вычисляем потенциалы электродов по уравнению Нернста (1):

¾для медного электрода:

¾для цинкового электрода:

Вывод : в ходе данной работы мы измерили потенциалы медного и цинкового электродов при различных концентрациях CuSO4 и ZnSO4 соответственно, а также рассчитали эти электродные потенциалы по уравнению Нернста, в следствие чего сделали вывод, что с увеличением концентрации электродные потенциалы у медного и цинкового электрода возрастают.


5 Определение ЭДС гальванического элемента


Цель: определить ЭДС гальванического элемента.

Оборудование : цинковый и медный электрод, растворы CuSO4 и ZnSO4, хлорсеребряный электрод, рН-метр, наждачная бумага, U-образная трубка с насыщенным раствором КС1, 0,1н. и 1н. раствор CuSO4, 0,1н. и 1н. раствор ZnSO4,

Ход работы

В два стакана наливаем наполовину растворы CuSO4 и ZnSO4. В первый помещаем электрод из меди, во второй - из цинка.

Электроды предварительно зачищаем наждачной бумагой и промываем. Провода подсоединяем к рН-метру на задней панели к входам «Изм.1» и «Эл. сравн». Внешнюю цепь замыкаем при помощи U-образной трубки, заполненной насыщенным раствором KCl в агар-агаре.

Перед измерением прибор прогревается в течении 30 минут. Когда собрана цепь приступаем к измерениям, нажимаем кнопку «mV» и смотрим показания прибора по нижней шкале «1-14». Для более точного определения ЭДС нажимаем кнопку нужного диапазона. Для перевода измеренных значений в вольты числитель значения умножаем на 0,1.

Для выполнения работы измеряем ЭДС элементов в растворах с концентрацией 1н. и 0,1н. и сравниваем эти данные с расчетами. Находим абсолютную и относительную ошибку.

Химизм процессов

Для данного гальванического элемента

| ZnSO4 || KCI, AgCl | Ag


характерны следующие реакции:

Суммарное уравнение реакции протекающей в медно-цинковом гальваническом элементе:

Обработка результатов

1)В результате проведения данной работы мы получили следующие результаты (таблица 6):


Таблица 6. Данные по проведённой лабораторной работе

Растворы?изм, В?вычисл, ВОтносительная ошибка, %0,1н. CuSO4 и 0,1н. ZnSO41,0871,0991,0921н. CuSO4 и 0,1н. ZnSO41,0821,0931,0061н. CuSO4 и 1н. ZnSO41,0601,070,935

)Проводим расчёт ЭДС:

Расчёт потенциалов проводим по уравнению Нернста (1). Стандартные электродные потенциалы взяты из справочных данных.

Для растворов 0,1н. CuSO4 и 0,1н. ZnSO4:

Для растворов 1н. CuSO4 и 0,1н. ZnSO4:

Для растворов 1н. CuSO4 и 1н. ZnSO4:

Вывод : в данной работе мы определили ЭДС гальванического элемента в растворах различной концентрации:

при концентрации 0,1н. CuSO4 и 0,1н. ZnSO4,

при концентрации 1н. CuSO4 и 0,1н. ZnSO4,

при концентрации 1н. CuSO4 и 1н. ZnSO4;

а также определили относительную ошибку: 1,092%, 1,006%, 0,935% соответственно. В следствии чего сделали вывод, что при увеличении концентрации растворов Э.Д.С. у гальванического элемента уменьшается.


Заключение


В данной работе мы рассмотрели основные методы электрохимических исследований, разобрали их классификацию, основные электрохимические процессы, а также доказали актуальность данных методов. Большая часть работы была отведена на описание электродных процессов. Подробно были изучены потенциометрия, кондуктометрия, кулонометрия, вольтамперометрия и электрогравиметрия.

В ходе практических исследований мы провели: определение концентрации неизвестных кислот методом кондуктометрического титрования, определение точки эквивалентности растворов хлороводородной и уксусной кислот методом потенциометрического титрования, определение электрохимического эквивалента меди, определение потенциалов медного и цинкового электродов, и определение ЭДС гальванического элемента.

Мы убедились быстроте и точности данных методов, но в тоже время на собственном опыте выявили некоторые существенные недостатки: для получения точных данных необходима очень точная настройка и калибровка приборов, полученные результаты зависят от различных внешних факторов (давление, температура и др.) и при других условиях могут существенно различаться, а также хрупкость и высокая стоимость приборов.

И всё же, это далеко не все известные методы электрохимических исследований. Все приведённые методы являются лишь малой частью электрохимических методов исследований используемых в науке и техники. А используются они настолько широко во всех отраслях промышленности, что без них невозможно ни существование, ни дальнейшее развитие цивилизации. Несмотря на солидный возраст, электрохимические методы исследований переживают бурное развитие с огромными перспективами на будущее. По прогнозам ряда ведущих учёных их роль будет стремительно возрастать.

Осталось лишь всячески способствовать развитию в этом направлении и возможно в будущем нам откроются такие тайны и области применения электрохимических методов исследования, о которых можно было только мечтать.


Список используемой литературы


Агасян П.К., Хамракулов T.К. Кулонометрический метод анализа. Mосква: Химия. 2010. 168 с.

Брайнина Х.З., Нейман Е.Я. Твёрдофазные реакции в электроаналитической химии. Москва: Химия. 2009. 264 с.

Галюс З. Теоретические основы электрохимического анализа: перевод с польского. Москва: Мир. 1974. 552 с.

Гейровский Я., Кута Я. Основы полярографии: перевод с чешского. Под редакцией С.Г. Майрановского. Москва: Мир. 1965. 559 с.

Голиков Г.А. Руководство по физической химии: Учебное пособие для химико-технологических специализированных вузов. Москва: Высшая школа. 2008. 383 с.

Зозуля А.Н. Кулонометрический анализ, 2 издание, Ленинград: Химия. 1968. 160 с.

Кнорре Д.Г., Л.Ф. Крылова. В.С. Музыкантов. Физическая химия: Учебное пособие для биологических факультетов университетов и педагогических вузов. 2 издание. Москва: Высшая школа. 1990. 416 с.

Левин А.И. Теоретические основы электрохимии. Москва: Металлургиздат. 1963. 432 с.

Лопарин Б.А. Теоретические основы элетрохимических методов анализа. Москва: Высшая школа. 1975. 295 с.

Плембек Д. Электрохимические методы анализа: основы теории и применение. Москва: Мир. 2009. 496 с.

Соловьёв Ю.И. История химии: Развитие химии с древнейших времён до конца XIX в. Пособие для учителей. 2 издание. Москва: Просвещение. 2007. 368 с.

Фигуровский Н.А. История химии: Учебное пособие для студентов педагогических институтов по химическим и биологическим специальностям. Москва: Просвещение. 1979. 311 с.

Физическая химия: программа дисциплины и учебно-методические рекомендации / составители А.Н. Козлов, Н.П. Ускова. Рязань: Рязанский государственный университет имени С.А.Есенина. 2010. 60 с.

Физическая химия. Теоретическое и практическое руководство. Учебное пособие для ВУЗов / Под редакцией академика Б.П. Никольского. 2 издание. Ленинград: Химия, 1987, 880 с.

Харнед Г. Оуэр Б. Физическая химия растворов электролитов. Москва: ИИН. 2011. 629 с.

Юинг Г. Инструментальные методы химического анализа. Москва: Мир. 2011. 620 с.

Книга: многотомное издание

Методы измерения в электрохимии / редакторы Э.Егер и А.Залкинд, перевод с английского кандидатами физико-математических наук В.С. Маркина и В.Ф. Пастушенко, под редакцией доктора химических наук Ю.А. Чизмаджева. Москва: Мир, 1977. Т. 1-2.

Скуг Д., Уэст Д. Основы аналитической химии. Москва: Мир, 1979. Т. 2

Эткинс П. Физическая химия. Москва: Мир, 1980. Т. 1-2.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Поиск по сайту:

2. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и поддающийся правильному измерению, может служить аналитическим сигналом.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом , т.е. используют зависимость измеряемого параметра от объема титранта .

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

2.1. Потенциометрический метод анализа

2.1.1. Основные законы и формулы

Потенциометрические методы основаны на измерении разности потенциалов индикаторного электрода и электрода сравненияили, точнее, электродвижущих сил (ЭДС) различных цепей, поскольку экспериментально измеряется именно ЭДС, являющаяся разностью потенциалов.

Равновесный потенциал индикаторного электрода связан с активностью и концентрацией веществ, участвующих в электродном процессе, уравнением Нернста :

Е = Е ° + R T /(n F ) ln (а окис /а восст )

Е = Е ° + R T /(n F ) ln ([ окисл ] ү окисл /([ восст ] ү восст)),

R - универсальная газовая постоянная, равная 8,31 Дж/(моль. К); Т - абсолютная температура; F - постоянная Фарадея (96500 Кл/моль); n - число электронов, принимающих участие в электродной реакции; а окис , а восст - активности соответственно окисленной и восстановленной форм редокс-системы ; [ окисл ] и [ восст ] - их молярные концентрации; ү окис, ү восст - коэффициенты активности; Е ° - стандартный потенциал редокс-системы .

Подставляя Т = 298,15 К и числовые значения констант в уравнение, получаем:

Е = Е ° + (0,059 / n ) lg (а окис /а восст )

Е = Е ° + (0,059 / n ) lg ([ окисл ] ү окисл / ([ восст ] ү восст))

Методы прямой потенциометрии основаны на применении уравнения Нернста для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу электрода. Наибольшее распространение среди прямых потенциометрических методов получил метод определения рН , но создание в последнее время надежно работающих ионоселективных электродов значительно расширило практические возможности прямых методов. Показатель рН измеряют и методом потенциометрического титрования.

Для определения рН чаще всего используют стеклянный электрод. Основными достоинствами стеклянного электрода являются простота работы, быстрое установление равновесия и возможность определения рН в окислительно-восстановительных системах. К недостаткам относятся хрупкость материала электрода и сложность работы при переходе к сильнощелочным и сильнокислым растворам.

Кроме концентрации ио нов водорода, прямым потенциометрическим методом с ионоселективными электродами можно определить содержание нескольких десятков различных ионов.

Потенциометрическое титрование основано на определении точки эквивалентности по результатам потенциометрических измерений. Вблизи точки эквивалетности происходит резкое изменение (скачок) потенциала индикаторного электрода. Так же, как и в других титриметрических методах, реакции потенциометрического титрования должны протекать строго стехиометрически , иметь высокую скорость и идти до конца.

Для потенциометрического титрования собирают цепь из индикаторного электрода в анализируемом растворе и электрода сравнения. В качестве электродов сравнения чаще всего используют каломельный или хлорсеребряный электроды.

Тип применяемого индикаторного электрода при потенциометрическом титровании зависит от свойств титриметрической смеси и ее взаимодействия с электродом. В кислотно-основном титровании используют стеклянный электрод, в окислительно-восстановительном - инертный (платиновый) электрод или электрод, обратимый по отношению к одному из ионов, содержащихся в титриметриметрической смеси; в осадительном - серебряный электрод; в комплексонометрическом - металлический электрод, обратимый к титруемому иону металла.

Для нахождения точки эквивалентности часто строят дифференциальную кривую в координатах D Е / D V - V . На точку эквивалентности указывает максимум полученной кривой, а отсчет по оси абсцисс, соответствующий этому максимуму, дает объем титранта , израсходованного на титрование до точки эквивалентности. Определение точки эквивалентности до дифференциальной кривой значительно точнее, чем по простой зависимости Е - V .

Основными достоинствами метода потенциометрического титрования являются высокая точность и возможность проводить определения в разбавленных растворах, в мутныхи окрашенных средах, а также определять несколько веществ в одном растворе без предварительного разделения. Значительно расширяется область практического применения потенциометрического титрования при использовании неводных растворителей. Они позволяют анализировать многокомпонентные системы, которые в водном растворе определить не удается, провести анализ веществ, нерастворимых или разлагающихся в воде, и т. д. Потенциометрическое титрование легко может быть автоматизировано. Промышленность выпускает несколько типов автотитраторов , использующих потенциометрические датчики.

К недостаткам потенциометрического титрования можно отнести не всегда быстрое установление потенциала после добавления титранта и необходимость во многих случаях проводить при титровании большое количество отсчетов.

В потенциометрическом анализе основными измерительными приборами являются потенциометры различных типов. Они предназначены для измерения ЭДС электродной системы. Так как ЭДС зависит от активности соответствующих ионов в растворе, многие потенциометры позволяют непосредственно измерять также величину рХ - отрицательныйлогарифм активности иона Х. Такие потенциометры в комплекте с соответствующим ионоселективным электродом носят название иономеров . Если потенциометр и электродная система предназначены для измерения активности только водородных ионов, прибор называется рН-метром .

А.А. Виxaрев, С.А. Зуйкoвa, Н.А. Чeмepис, Н.Г. Дoминa

Физико-химические методы анализа (ФХМА) основаны на использовании зависимости между измеряемыми физическими свойствами веществ и их качественным и количественным составом. Поскольку физические свойства веществ измеряются с помощью различных приборов – «инструментов», то эти методы анализа называют также инструментальными методами.

Наибольшее практическое применение среди ФХМА имеют:

- электрохимические методы – основаны на измерении потенциала, силы тока, количества электричества и других электрических параметров;

- спектральные и другие оптические методы – основаны на явлениях поглощения или испускания электромагнитного излучения (ЭМИ) атомами или молекулами вещества;

- хроматографические методы – основаны на сорбционных процессах, протекающих в динамических условиях при направленном перемещении подвижной фазы относительно неподвижной.

К достоинствам ФХМА можно отнести высокую чувствительность и низкий предел обнаружения – массовый до 10-9 мкг и концентрационный до 10-12 г/мл, высокую селективность (избирательность), позволяющую определять компоненты смесей без их предварительного разделения, а также экспрессность проведения анализов, возможность их автоматизации и компьютеризации.

В аналитической химии широко применяются электрохимические методы. Выбор метода анализа конкретного объекта анализа определяется многими факторами, в том числе, в первую очередь, нижним пределом определения элемента.

Данные о нижнем пределе обнаружения различных элементов некоторыми методами представлены в таблице.

Пределы определения (мкг/мл) элементов различными методами

Элемент МАС ААС ПТП ИВА Ионо- метрия Ампером.титров.
Ag 0,1– дитизон 0,07 0,2 0.00001 0.02 0.05
As 0,05 - молибд.синь 0,2 0,04 0,02 - 0,05
Au 0,04-метил.фиол. 0,3 0,005 0,001 - 0,05
Bi 0,07-дитизон 0,005 0,00001 - 0,5
Cd 0,04-дитизон 0,05 0,002 0,00001 0,03 0,5
Cr 0,04-дифе-нилкарбазид 0,2 0,02 - -
Cu 0,03-дитизон 0,2 0,002 0,00002 0,01 0,05
Hg 0,08-дитизон - 0,00005
Pb 0,08-дитизон 0,6 0,003 0,00002 0,03
Sb 0,08-родамин 0,004 0,00004 - 0,5
Fe 0,1-роданид 0,2 0,003 0,0002 0,3 0,5
Se 0,08-диами-нофталин 0,3 0,2 0,00002 - 0,5
Sn 0,07-фенил-флуриом 0,4 0,003 0,00004 - 0,5
Te 0,1-висмутол 0,7 0,02 - -
Tl 0,06-родамин 0,6 0,01 0,00002 - 0,5
Zn 0,02-дитизон 0,02 0,003 0,0003 - 0,5
F - - - - - 0,02 5-10
NH 4 + ,NO 3 - - - - - 0,1 1-5

МАС - молекулярная абсорбционная спекрометрия (фотометрия);

ААС - атомно-абсорбционная спектрометрия (пламенная фотометрия);

ПТП - переменно-токовая полярография;

ИВА - инверсионная вольтамперометрия.

Погрешности определений в ФХМА составляют около 2-5%, проведение анализов требует применения сложной и дорогостоящей аппаратуры.

Различают прямые и косвенные методы физико-химического анализа. В прямых методах используют зависимость величины измеряемого аналитического сигнала от концентрации определяемого компонента. В косвенных методах аналитический сигнал измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, то есть используют зависимость измеряемого параметра от объѐматитранта.

Электрохимические методы анализа основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, электрический ток, количество электричества и др.), функционально связанный с концентрацией определяемого компонента и поддающийся правильному измерению, может служить аналитическим сигналом.

По природе измеряемого аналитического сигнала электрохимические методы анализа разделяют на потенциометрию, вольтамперометрию, кулонометрию и ряд других методов:

Характеристическая зависимость электрохимического сигнала от независимой переменной

Метод Измеряемый сигнал Зависимость сигнала от независимой переменной
Потенциометрия, ионометрия потенциал E = f(C) С-концентрация анализируемого вещества
Потенциометрическое титрование потенциал E = f(V), V- объем реагента-титранта
полярография, вольтамперометрия ток I = f(E), E – потенциал поляризации электрода
инверсионная вольтамперометрия ток I n = f(E)
хронопотенциометрия потенциал E =f(t), t – время поляризации электрода при I=const.
амперометрическое титрование с одним индикаторным электродом ток I = f(V), V – объем реагента-титранта
амперометрическое титрование с двумя индикаторными электродами ток I = f(V) V – объем реагента-титранта
кулонометрия Q = f(C), С – количество вещества
кондуктометрия G = f(C), С – концентрация ионов в растворе
кондуктометрическое титрование электропроводность G = f(V), V – объем реагента-титранта

Потенциометрия

В основе потенциометрических измерений лежит зависимость равновесного потенциала электрода от активности (концентрации) определяемого иона. Для измерений необходимо составить гальванический элемент из подходящего индикаторного электрода и электрода сравнения, а также иметь прибор для измерения потенциала индикаторного электрода (ЭДС гальванического элемента), в условиях близких к термодинамическим, когда индикаторный электрод имеет равновесный (или близкий к нему) потенциал, то есть без отвода заметного тока от гальванического элемента при замыкании цепи. При этом нельзя использовать обычный вольтметр, а следует применять потенциометр - электронный прибор с большим входным сопротивлением (1011 - 1012 Ом), что исключает протекание электродных электрохимических реакций и возникновение тока в цепи.

Индикаторный электрод – это электрод, потенциал которого зависит от активности (концентрации) определяемого иона в анализируемом растворе.

Электрод сравнения – это электрод, потенциал которого в условиях проведения анализа остается постоянным. По отношению к электроду сравнения измеряют потенциал индикаторного электродаЕ (ЭДС гальванического элемента).

В потенциометрии используют два основных класса индикаторных электродов – электронообменные и ионообменные.

Электронообменныеэлетроды – это электроды, на поверхности которых протекают электродные реакции с участием электронов. К таким электродам относятся электроды первого и второго рода, окислительно-восстановительные электроды.

Электроды первого рода – это электроды, обратимые по катиону, общему с материалом электрода, например, металл М, погруженный в раствор соли того же металла. На поверхности такого электрода протекает обратимая реакция M n+ + ne ↔ M и его реальный потенциал зависит от активности (концентрации) катионов металла в растворе в соответствии с уравнением Нернста:

Для температуры 250С (298 K) и для условий, когда активность ионов приблизительно равна концентрации (γ → 1):

Электроды первого рода могут быть изготовлены из различных металлов, например, Ag (серебряный), Cu (медный), Zn (цинковый), Pb (свинцовый) и др.

Схематически электроды первого рода записывают как М | M n + , где вертикальной линией показана граница твердой (электрод) и жидкой (раствор) фаз. Например, серебряный электрод, погруженный в раствор нитрата серебра изображают следующим образом – Ag | Ag+; при необходимости указывают концентрацию электролита – Ag | AgNO 3 (0,1 M).

К электродам первого рода относится и газовый водородный электрод Pt(H 2) | H+ (2Н + + ↔ Н 2 , Е 0 = 0):

Электроды второго рода – это электроды, обратимые по аниону, например, металл, покрытый малорастворимой солью этого металла, погруженный в раствор, содержащий анион этой малорастворимой соли M, MA | А n- . На поверхности такого электрода протекает обратимая реакция MА + ne ↔ M + А n- и его реальный потенциал зависит от активности (концентрации) аниона в растворе в соответствии с уравнением Нернста (приТ = 298 K и γ → 1):

Примерами электродов второго рода служат хлорсеребряный (AgCl + e ↔ Ag + Cl -) и каломельный (Hg 2 Cl 2 + 2e ↔ 2Hg + 2Cl -) электроды:

Окислительно-восстановительные электроды – это электроды, которые состоят из инертного материала (платина, золото, графит, стеклоуглерод и др.), погруженного в раствор, содержащий окисленную (Ок) и восстановленную (Вос) формы определяемого вещества. На поверхности такого электрода протекает обратимая реакция Ок + ne ↔ Вос и его реальный потенциал зависит от активности (концентрации) окисленной и восстановленной форм вещества в растворе в соответствии с уравнением Нернста (приТ = 298 K и γ → 1):

Если в электродной реакции участвуют ионы водорода, то их активность (концентрацию) учитывают в соответствующих уравнениях Нернста для каждого конкретного случая.

Ионообменные электроды – это электроды, на поверхности которых протекают ионообменные реакции. Такие электроды называют также ионселективными или мембранными. Важнейшей составной частью таких электродов является полупроницаемая мембрана – тонкая твердая или жидкая пленка, отделяющая внутреннюю часть электрода (внутренний раствор) от анализируемого и обладающая способностью пропускать только ионы одного вида Х (катионы или анионы). Конструктивно мембранный электрод состоит из внутреннего электрода сравнения (обычно хлорсеребряный) и внутреннего раствора электролита с постоянной концентрацией потенциалопределяющего иона, отделенных от внешнего (исследуемого) раствора чувствительной мембраной.

Реальный потенциал ионселективных электродов, измеренный относительно какого-либо электрода сравнения, зависит от активности тех ионов в растворе, которые сорбируются мембраной:

где const – константа, зависящая от природы мембраны (потенциал асимметрии ) и разности потенциалов внешнего и внутреннего электродов сравнения, n иа n ±) – заряд и активность потенциалопределяющего иона. Если потенциал ионселективного электрода измерен относительно стандартного водородного электрода, то константа является стандартным электродным потенциалом Е 0.

Для мембранных электродов значение крутизны электродной функции может отличаться от теоретической нернстовской величины (0,059 В); в этом случае реальное значение электродной функции θ определяют как тангенс угла наклона градуировочного графика. Тогда:

Потенциал мембранного электрода в растворе, содержащем кроме определяемого иона Х посторонний ион В, влияющий на потенциал электрода, описывается уравнением Никольского (модифицированное уравнение Нернста):

где z – заряд постороннего (мешающего) иона, K Х/В – коэффициент селективности мембранного электрода.

Коэффициент селективности K Х/В характеризует чувствительность мембраны электрода к определяемым ионам Х в присутствии мешающих ионов В. Если K Х/В <1, то электрод селективен относительно ионов Х и, чем меньше числовое значение коэффициента селективности, тем выше селективность электрода по отношению к определяемым ионам и меньше мешающее действие посторонних ионов. Если коэффициент селективности равен 0,01, то это означает, что мешающий ион В оказывает на величину электродного потенциала в 100 раз меньшее влияние, чем определяемый ион той же молярной концентрации.

Рассчитывают коэффициент селективности как отношение активностей (концентраций) определяемого и мешающего ионов, при которых электрод приобретает одинаковый потенциал в растворах этих веществ, с учѐтом их зарядов:

Зная значение коэффициента селективности можно рассчитать концентрацию мешающего иона, влияющую на потенциал ионселективного электрода (пример).

Пример. Какую концентрацию нитратных ионов нужно создать в 1∙10-3 М растворе фторида натрия, чтобы ионселективный фторидный электрод был одинаково чувствителен к обоим ионам, если его коэффициент селективности электрода?

Решение.

Так как, то

Это означает, что концентрация нитратных ионов в анализируемом растворе свыше 0,5 моль/л оказывает значительное влияние на определение фторид-иона в его миллимо-лярных растворах.

Классическим примером ионселективного электрода с твердой мембраной является стеклянный электрод с водородной функцией, служащий для измерения концентрации ионов водорода в растворе (стеклянный рН-электрод). Для таких электродов мембраной служит специальное стекло определѐнного состава, а внутренним электролитом – 0,1 М раствор хлороводородной кислоты:

Ag, AgCl | 0,1 M HCl | стеклянная мембрана | исследуемый раствор

На поверхности стеклянной мембраны происходит ионообменный процесс:

SiO-Na+ (стекло) + Н+ (раствор) → -SiO-H+ (стекло) + Na+ (раствор)

в результате чего устанавливается динамическое равновесие между ионами водорода в стекле и растворе Н+ (стекло) ↔ Н+ (раствор), что приводит к возникновению потенциала:

E = const + θ lga (H+) = const θ pH

Стеклянный электрод с повышенным содержанием в мембране Al2O3 измеряет ак-тивность ионов натрия в растворе (стеклянный Na-электрод, натрийселективныйэлек-трод). В этом случае внутренним раствором служит 0,1 М раствор хлорида натрия:

Ag, AgCl | 0,1 M NaCl | стеклянная мембрана | исследуемый раствор

На поверхности стеклянной мембраны натрийселективного электрода устанавливается равновесие между ионами натрия в стекле и растворе Na+ (стекло) ↔ Na+ (раствор), что приводит к возникновению потенциала:

E = const + θ lga (Na+) = const θ pNa

Наиболее совершенным электродом с кристаллической мембраной является фторидселективный электрод, мембрана которого выполнена из пластинки монокристалла фторида лантана (LaF3), активированного для увеличения проводимости фторидом европия (EuF 2):

Ag, AgCl | 0,1 M NaCl, 0,1 M NaF | LaF 3 (EuF 2) | исследуемый раствор

Потенциал фторидного электрода определяется ионообменным процессом на его поверхности F- (мембрана) ↔ F- (раствор):

E = const – θ lga (F-) = const + θ pF

Значения константы и крутизны электродной функции θ для ионселективных электродов определяют из градуировочного графикаЕ ÷ рХ как отрезок на оси ординат и тангенс угла наклона прямой соответственно. Для стеклянного рН-электрода эта операция заменяется настройкой приборов (рН-метров) по стандартным буферным растворам с точно известными значениями рН.

Схематический вид стеклянного и фторидселективного электродов приведены на рисунках:

В паре с индикаторным электродом для измерения его потенциала (ЭДС гальванической ячейки) используют электрод сравнения с известным и устойчивым потенциалом, не зависящим от состава исследуемого раствора. Наиболее часто в качестве электрода сравнения применяют хлорсеребряный и каломельный электроды. Оба электрода относятся к электродам второго рода и характеризуются высокой стабильностью в работе.

Потенциалы хлорсеребряного и каломельного электродов зависят от активности (концентрации) хлорид-ионов (приТ = 298 K и γ → 1):

В качестве электродов сравнения чаще всего применяют электроды с насыщенным раствором хлорида калия – при 250С потенциал насыщенного хлорсеребряного электрода сравнения равен +0,201 В, а насыщенного каломельного +0,247 В (относительно стандартного водородного электрода). Потенциалы для хлорсеребряных и каломельных электродов сравнения, содержащих 1 М и 0,1 М растворы хлорида калия, можно найти в справочных таблицах.

Схематический вид насыщенных хлорсеребряного и каломельного электродов срав-нения приведены на рисунке:

Электроды сравнения хлорсеребряный (а) и каломельный (б)

1 - асбестовое волокно, обеспечивающее контакт с анализируемым раствором

2 - раствор KCl (насыщенный)

3 - отверстие для контакта

4 - раствор KCl (насыщенный), AgCl (тв.)

5 - отверстие для ввода раствора KCl

6 - паста из смеси Hg2Cl2, Hg и КС1 (насыщенный)

Потенциометрический анализ широко применяют для непосредственного определения активности (концентрации) ионов в растворе путем измерения равновесного потенциала индикаторного электрода (ЭДС гальванического элемента) – прямая потенциометрия (ионометрия) , а также для индикации конечной точки титрования (ктт ) по изменению потенциала индикаторного электрода в процессе титрования (потенциометрическое титрование).

Во всех приемахпрямой потенциометрии используется зависимость индикаторного электрода от активности (концентрации) определяемого иона, которая описывается уравнением Нернста. Результаты анализа подразумевают определение концентрации вещества, а не его активности, что возможно при значении коэффициентов активности ионов равных единице (γ → 1) или их постоянном значении (постоянной ионной силе раствора), поэтому в дальнейших рассуждениях используются только концентрационные зависимости.

Концентрация определяемого иона может быть рассчитана по экспериментально найденному потенциалу индикаторного электрода, если для электрода известны постоянная составляющая (стандартный потенциал Е 0) и крутизна электродной функции θ . В этом случае составляется гальванический элемент, состоящий из индикаторного электрода и электрода сравнения, измеряется его ЭДС, рассчитывается потенциал индикаторного электрода (относительно СВЭ) и концентрация определяемого иона.

В методеградуировочного графика готовят серию стандартных растворов с известной концентрацией определяемого иона и постоянной ионной силой, измеряют потенциал индикаторного электрода относительно электрода сравнения (ЭДС гальванического элемента) в этих растворах и по полученным данным строят зависимость Е ÷ рС (А) (градуировочный график). Затем измеряют потенциал индикаторного электрода в анализируемом растворе Е х (в тех же условиях) и по графику определяют рС х(А) и рассчитывают концентрацию определяемого вещества в анализируемом растворе.

В методе стандарта (сравнения) измеряют потенциал индикаторного электрода в анализируемом растворе (Е х) и в стандартном растворе определяемого вещества (Е ст). Расчет концентрации определяемого иона проводят исходя из уравнений Нернста для анализируемой пробы и стандартного образца. Крутизна электродной функции для индикаторного электрода θ

При использовании метода добавок сначала измеряют потенциал индикаторного электрода в анализируемом растворе (Е х), затем добавляют к нему определенный объём стандартного раствора определяемого вещества и измеряют потенциал электрода в полученном растворе с добавкой (Е х+д). Расчет концентрации определяемого иона проводят исходя из уравнений Нернста для анализируемой пробы и пробы с добавкой. Крутизна электродной функции для индикаторного электрода θ должна быть известна или определена заранее по градуировочному графику.

При потенциометрическом титровании измеряют и записывают ЭДС электрохимической ячейки (потенциал индикаторного электрода) после добавления каждой порции титранта. Затем по полученным результатам строят кривые титрования – интегральную в координатах E ÷ V(а) и дифференциальную в координатах ∆E /∆V ÷ V (б) , и определяют конечную точку титрования (ктт) графическим способом:

В потенциометрическом титровании используют все основные типы химических реакций – кислотно-основные, окислительно-восстановительные, осаждения и комплексообразования. К ним предъявляются те же требования, что и в визуальной титриметрии, дополненные наличием подходящего индикаторного электрода для фиксации изменения концентрации потенциалопределяющих ионов в ходе титрования.

Погрешность определения при проведении потенциометрического титрования составляет 0,5-1%, что существенно ниже, чем при прямых потенциометрических измерениях (2-10%), однако, при этом наблюдаются более высокие пределы обнаружения – больше 10 -4 моль/л.

Кулонометрия

Кулонометрия объединяет методы анализа, основанные на измерении количества электричества, затраченного на электрохимическую реакцию. Электрохимическая реакция приводит к количественному электропревращению (окислению или восстановлению) определяемого вещества на рабочем электроде (прямая кулонометрия) или к получению промежуточного реагента (титранта), который стехиометрически реагирует с определяемым веществом (косвенная кулонометрия, кулонометрическое титрование).

В основе кулонометрических методов лежит закон Фарадея , который устанавливает связь между количеством электропревращенного (окисленного или восстановленного) вещества и количеством израсходованного при этом электричества:

где m – масса электропревращенного вещества,г; Q – количество электричества, затраченного на электропревращение вещества, Кл; F – число Фарадея, равное количеству электричества, необходимого для электропревращения одного моль-эквивалента вещества, 96500 Кл/моль; М – молярная масса вещества, г/моль; n – число электронов, участвующих в электрохимической реакции.

Необходимым условием проведения кулонометрического анализа является практически полное расходование электричества на превращение определяемого вещества, то есть электрохимическая реакция должна протекать без побочных процессов со 100% вы-ходом по току.

На практике кулонометрический анализ реализуется в двух вариантах – при постоянном потенциале (потенциостатическаякулонометрия ) и при постоянной силе тока(амперостатическаякулонометрия ).

Потенциостатическуюкулонометрию применяют для прямых кулонометрических измерений, когда электролизу подвергается непосредственно определяемое вещество. При этом потенциал рабочего электрода с помощью потенциостатов поддерживается постоянным и его значение выбирают на основе поляризационных кривых в области предельного тока определяемого вещества. В процессе электролиза при постоянном потенциале сила тока уменьшается в соответствии с уменьшением концентрации электроактивного вещества по экспоненциальному закону:

где Ι – сила тока в момент времени t , А; Ι 0 – сила тока в начальный момент электролиза, А; k – константа, зависящая от условий электролиза.

Электролиз ведут до достижения остаточного тока Ι , величина которого определяется требуемой точностью – для допустимой погрешности 0,1% электролиз можно считать завершенным при Ι = 0,001Ι 0 . Для сокращения времени электролиза следует применять рабочий электрод большой поверхности при интенсивном перемешивании анализируемого раствора.

Общее количество электричества Q , необходимое для электропревращения определяемого вещества, определяется уравнением:

Определить количество электричества можно измерением площади под кривой «ток – время» с помощью механических или электронных интеграторов, либо с помощью химических кулонометров. Кулонометр – это электролитическая ячейка, в которой со 100% выходом по току протекает электрохимическая реакция известной стехиометрии. Кулонометр включают последовательно с исследуемой кулонометрической ячейкой, поэтому за время электролиза через обе ячейки протекает одинаковое количество электричества. Если по окончании электролиза измерить количество (массу) образовавшегося в кулонометре вещества, то по закону Фарадея можно рассчитать количество электричества. Чаще всего применяют серебряный, медный и газовые кулонометры.

Амперостатическую кулонометрию применяют для кулонометрического титрования при постоянном токе, в процессе которого определяемое вещество реагирует с титрантом, образующимся в результате электрохимической реакции на рабочем электроде, а потому, называемый электрогенерированным титрантом .

Для обеспечения 100%-ного выхода по току необходим значительный избыток вспомогательного вещества, из которого генерируется титрант, что исключает протекание конкурирующих реакций на рабочем электроде. При этом титрант генерируется в количестве, эквивалентном определяемому веществу, и по количеству электричества, затраченного на генерацию титранта, можно рассчитать содержание определяемого вещества.

Количество электричества Q в кулонометрии при постоянной силе тока Ι рассчитывают по формуле:

где t – время электролиза, для определения которого пригодны практически все способы установления конечной точки в титриметрии (визуальные – индикаторы, инструментальные – потенциометрия, амперометрия, фотометрия). При силе тока в амперах и времени электролиза в секундах получаем количество электричества в кулонах (пример).

Пример. На кулонометрическое титрование раствора аскорбиновой кислоты иодом, генерируемым из иодида калия током силой 5,00 мА, потребовалось 8 мин 40 с. Рассчитать массу аскорбиновой кислоты в анализируемом растворе. Предложить способ фиксирования конечной точки титрования.

Решение. Количество электричества, затраченное на окисление иодида и, соответственно, аскорбиновой кислоты равно:

Q = Ι·t = 5,00∙10 -3 ∙520 = 2,60 Кл.

Аскорбиновая кислота окисляется иодом до дегидроаскорбиновой кислоты с отдачей двух электронов (С 6 Н 8 О 6 – 2е → С 6 Н 6 О 6 + 2Н +), тогда по закону Фарадея:

Конечная точка титрования определяется по появлению избытка иода в растворе. Следовательно, фиксировать ее можно визуально с помощью крахмала, добавленного в анализируемый раствор (появление синей окраски), амперометрически с ртутным капающим или платиновым микроэлектродом по появлению предельного тока иода, потенциометрически по резкому увеличению потенциала платинового электрода.

Вольтамперометрия

Вольтамперометрический метод анализа основан на использовании явления поляризации микроэлектрода, получении и интерпретации вольтамперных (поляризационных) кривых, отражающих зависимость силы тока от приложенного напряжения. Вольтамперная кривая (вольтамперограмма) позволяет одновременно получить качественную и количественную информацию о веществах, восстанавливающихся или окисляющихся на микроэлектроде (деполяризаторах), а также о характере электродного процесса. Современная вольтамперометрия – высокочувствительный и экспрессный метод определения веществ, пригодный для анализа различных объектов неорганической и органической природы, в том числе и фармацевтических препаратов. Минимально определяемая концентрация в вольтамперометрии достигает значений 10 -8 моль/л при погрешности метода менее 5%. Вольтамперометрия при оптимальных условиях эксперимента позволяет в анализируемом растворе определять несколько компонентов одновременно.

В вольтамперометрии используют два электрода – рабочий поляризуемый электрод с малой поверхностью (индикаторный микроэлектрод) и вспомогательный неполяризуемый электрод с большой поверхностью (электрод сравнения). Рабочими электродами служат микроэлектроды из ртути (ртутный капающий электрод, РКЭ), платины (ПЭ) и токопроводящих углеродных материалов (графит, стеклоуглерод).

При прохождении постоянного тока через электролитическую ячейку процесс характеризуется соотношением (закон Ома для раствора электролита):

Е = Ea – Eк + IR

Где Е – приложенное внешнее напряжение; Еа – потенциал анода; Ек – потенциал катода; I – ток в цепи; R – внутреннее сопротивление электролитической ячейки.

При вольтамперометрических измерениях анализируемый раствор содержит индифферентный (фоновый) электролит большой концентрации (в 100 раз и более превышающей концентрацию определяемого вещества – сопротивление раствора мало), а ток в вольтамперометрии не превышает 10 -5 А, поэтому падением напряжения в ячейке IR можно пренебречь.

Поскольку в вольтамперометрии один из электродов (вспомогательный) не поляризуется и для него потенциал остается постоянным (его можно принять равным нулю), подаваемое на ячейку напряжение проявляется в изменении потенциала только рабочего электрода и тогда Е = Ea для рабочего микроанода (анодная поляризация ) и Е = - для рабочего микрокатода (катодная поляризация ). Таким образом, регистрируемая вольтамперная кривая отражает электрохимический процесс, происходящий только на рабочем электроде. Если в растворе присутствуют вещества, способные электрохимически восстанавливаться или окислятся, то при наложении на ячейку линейно изменяющегося напряжения вольтамперограмма имеет форму волны 1 (в отсутствии электрохимической реакции зависимость тока от напряжения линейна 2 в соответствии с законом Ома):

Раздел вольтамперометрии, в котором рабочим микроэлектродом служит РКЭ называют полярографией , в честь чешского электрохимика Я.Гейровского, предложившего этот метод в 1922 году. Вольтамперограммы, полученные в ячейке с ртутным капающим электродом, называют полярограммами.

Для регистрации классических полярограмм ячейку с РКЭ (рабочий электрод) и насыщенным каломельным электродом (вспомогательный электрод, электрод сравнения) присоединяют к источнику постоянного напряжения и изменяют потенциал со скоростью 2-5 мВ/с.

Ртутный капающий электрод является практически идеально поляризуемым в широком диапазоне потенциалов, ограниченном в анодной области электродными реакциями окисления ртути (+0,4 В), а в катодной реакциями восстановления ионов водорода (от -1 до -1,5 Вв зависимости от кислотности среды) или катионов фона (от -2 В для катионов щелочных металлов до -2,5 В для R 4 N +). Это позволяет изучать и определять на РКЭ вещества, восстанавливающиеся при очень высоких отрицательных потенциалах, что невозможно на электродах из других материалов. Следует отметить, что здесь и далее значения потенциалов приведены относительно насыщенного каломельного электрода и при необходимости могут быть пересчитаны по отношению к другому электроду сравнения, например, насыщенному хлорсеребряному.

Перед регистрацией полярограммы на РКЭ необходимо удалить растворенный кислород, поскольку он электроактивен в отрицательной области потенциалов, давая две волны восстановления при -0,2 и -0,9 В. Сделать это можно, насыщая раствор инертным газом (азот, аргон, гелий). Из щелочных растворов кислород удаляют с помощью сульфита натрия (O 2 + 2Na 2 SO 3 → 2Na 2 SO 4).

Классическая полярограмма (полярографическая волна) в идеализированном виде представлена ниже:

Основными характеристиками полярографической волны являются величина диффузионного тока (I д, мкА), потенциал полуволны (Е 1/2 , В) – потенциал, при котором ток равен половине диффузионного, и наклон восходящего участка (0,059/n – крутизна электродной функции). Эти параметры позволяют использовать полярографию как метод анализа (сила тока пропорциональна концентрации) и исследования (потенциал полуволны и электродная функция зависят от природы вещества).

На начальном участке полярографической волны (А-Б) ток с изменением потенциала возрастает очень медленно – это так называемый остаточный ток (I ост). Основной вклад в остаточный ток вносит формирование двойного электрического слоя (ток заряжения ), который невозможно исключить и величина которого возрастает с увеличением потенциала. Вторым слагаемым остаточного тока является ток, обусловленный электроактивными примесями, который можно уменьшить применяя чистые реактивы и воду.

При достижении точки Б (потенциал выделения – при восстановлении на катоде потенциал выделения называют потенциалом восстановления Е вос, при окислении на аноде – потенциалом окисления Е ок) на электроде начинается электрохимическая реакция, в которую вступает электроактивное вещество (деполяризатор), в результате чего ток резко возрастает (участок Б-В) до некоторого предельного значения, оставаясь затем практически постоянным (участок В-Г). Ток, соответствующий этому участку называют предельным током (I пр), а разность между предельным и остаточным током составляет диффузионный ток (I д = I пр – I ост). На участке В-Г при увеличении потенциала предельный и остаточный токи незначительно возрастают, а значение диффузионного тока остается постоянным. Подъем тока в точке Г обусловлен новой электрохимической реакцией (например, восстановлением катионов фонового электролита).

Диффузионный ток получил свое название вследствие того, что в данной области потенциалов в результате электрохимической реакции в приэлектродном слое наблюдается практически полное отсутствие деполяризатора и его обогащение веществом происходит за счет диффузии деполяризатора из глубины раствора, где его концентрация остается постоянной. Поскольку скорость диффузии в данных конкретных условиях остается постоянной, то и диффузионный ток сохраняет постоянство своего значения.

Зависимость величины диффузионного тока от концентрации деполяризатора для р.к.э. выражается уравнением Ильковича:

I d = 605nD 1/2 m 2/3 t 1/6 c

где D – коэффициент диффузии электроактивного иона; n – число электронов, участвующих в реакции; m 2/3 t 1/6 – характеристика капилляра, из которого вытекает ртуть; с - концентрация определяемого вещества (деполяризатора).

При работе с одним и тем же капилляром и деполяризатором значение 605nD 1/2 m 2/3 t 1/6 = const, поэтому между высотой волны и концентрацией вещества имеется линейная зависимость

На этой линейной зависимости основан количественный полярографический анализ. Взаимосвязь между потенциалом электрода и возникающим током описывается уравнением полярографической волны (уравнение Ильковича-Гейровского):

где Е и I – соответственно потенциал и величина тока для данной точки полярографической кривой; I d - величина диффузионного тока; Е 1/2 – потенциал полуволны.

Е 1/2 - это потенциал, при котором достигается величина тока, равная половине I d . Он не зависит от концентрации деполяризатора. Е 1/2 очень близки к нормальному редокс-потенциалу системы (Ео), то есть является качественной характеристикой, определяющейся только природой восстанавливающихся ионов и по которым можно установить качественный состав анализируемого раствора.

Полярограмма (вольтамперограмма) содержит ценную аналитическую информацию – потенциал полуволны Е 1/2 является качественной характеристикой деполяризатора (качественный аналитический сигнал), в то время как диффузионный ток I д линейно связан с концентрацией определяемого вещества в объёме анализируемого раствора (количественный аналитический сигнал) – I д = .

Величина Е 1/2 может быть рассчитана из уравнения полярографической волны или определена графически:

Найденное значение Е 1/2 с учетом использованного фонового электролита позволяет на основании табличных данных идентифицировать деполяризатор. Если в анализируемом растворе находится несколько веществ, потенциалы полуволн которых различаются более чем на 0,2 В, то на полярограмме будет не одна волна, а несколько – по числу электроактивных частиц. При этом следует иметь в виду, что восстановление (окисление) многозарядных частиц может происходить ступенчато, давая несколько волн.

Для исключения перемещения вещества к электроду за счет тепловой и механической конвекции (перемешивания) измерение осуществляется в термостатированном растворе и в отсутствии перемешивания. Устранению электростатического притяжения деполяризатора полем электрода (миграции) способствует большой избыток электронеактивного фонового электролита, ионы которого экранируют заряд электрода, уменьшая движущую силу миграции практически до нуля.

При использовании ртутного капающего электрода на полярограмме наблюдаются осцилляции тока (его периодическое небольшое увеличение и уменьшение). Каждая такая осцилляция соответствует возникновению, росту и отрыву капли ртути от капилляра микроэлектрода. В полярографах предусмотрены устройства для устранения осцилляций.

Полярограммы могут быть искажены за счет полярографических максимумов – резкого возрастания тока выше его предельного значения с последующим спадом:

Появление максимумов обусловлено перемешиванием раствора в результате движения поверхности капли ртути из-за неравномерного распределения заряда, а, соответственно, и поверхностного натяжения (максимумы I рода), а также появлений завихрений при вытекании ртути из капилляра (максимумы II рода). Максимумы искажают полярограмму и затрудняют еѐ расшифровку. Для удаления максимумов I рода вводят поверхностно-активное вещество (например, агар-агар, желатин, камфару, фуксин, синтетические ПАВ), которое, адсорбируясь на поверхности ртутной капли, выравнивает поверхностное натяжение и устраняет движение поверхностных слоѐв ртути. Для удаления максимумов II рода достаточно уменьшить давление ртути в капилляре, снизив высоту ртутного столба.

Вольтамперометрия с твердыми рабочими электродами отличается от полярографии с использованием РКЭ другим диапазоном поляризации микроэлектрода. Как было показано выше, ртутный капающий электрод вследствие высокого перенапряжения водорода на нём можно использовать в области высоких отрицательных потенциалов, но из-за анодного растворения ртути при +0,4 В он не может быть применѐн для исследований в области положительных потенциалов. На графите и платине разряд ионов водорода протекает значительно легче, поэтому область их поляризации ограничена значительно более низкими отрицательными потенциалами (-0,4 и -0,1 В соответственно). В то же время в области анодных потенциалов платиновый и графитовый электроды пригодны до потенциала +1,4 В (далее начинается электрохимическая реакция окисления кислорода воды 2Н 2 О – 4е → О 2 + 4Н +), что делает их пригодными для исследований в диапазоне положительных потенциалов.

В отличие от РКЭ во время регистрации вольтамперограммы поверхность твердого микроэлектрода не возобновляется и легко загрязняется продуктами электродной реакции, что приводит к понижению воспроизводимости и точности результатов, поэтому перед регистрацией каждой вольтамперограммы следует проводить очистку поверхности микроэлектрода.

Стационарные твердые электроды не нашли широкого применения в вольтамперометрии из-за медленного установления предельного тока, что приводит к искажению формы вольтамперограммы, однако, на вращающихся микроэлектродах в приэлектродном слое возникают условия для стационарной диффузии, поэтому сила тока устанавливается быстро и вольтамперограмма имеет ту же форму, что и в случае РКЭ.

Величина предельного диффузионного тока на вращающемся дисковом электроде (не зависимо от материала) описывается уравнением конвективной диффузии (Левича):

I d = 0.62nFSD 2/3 w 1/2 n -1/6 c

где n - число электронов, участвующих в электродном процессе;

F – число Фарадея (96500 кулонов);

S - площадь электрода;

D – коэффициент диффузии деполяризатора;

w - угловая скорость вращения электрода;

n - кинематическая вязкость исследуемого раствора;

с - концентрация деполяризатора, моль/л.

При затруднениях в расшифровке полярограмм применяют метод «свидетеля» – после регистрации полярограммы анализируемого раствора, к нему в электролитическую ячейку поочередно добавляют стандартные растворы предполагаемых соединений. Если предположение было верным, то увеличивается высота волны соответствующего вещества, при неверном предположении появится дополнительная волна при другом потенциале.

Определить концентрацию деполяризатора в анализируемом растворе можно методами градуировочного графика, методом стандарта (сравнения) и методом добавок. При этом во всех случаях следует использовать стандартные растворы, состав которых максимально приближен к составу анализируемого раствора, а условия регистрации полярограмм должны быть одинаковы. Методы применимы в интервале концентраций, где строго соблюдается прямо пропорциональная зависимость диффузионного тока от концентрации деполяризатора. На практике при количественных определениях, как правило, не фиксируют величину диффузионного тока в мкА, а измеряют высоту полярографической волны h , как указано на предыдущем рисунке, которая также является линейной функцией от концентрации h = KC.

По методу градуировочного графика регистрируют полярограммы серии стандартных растворов и строят градуировочный график в координатах h ÷ C (или I д ÷ С ), по которому для найденного значения h x в анализируемом растворе находят концентрацию определяемого вещества в нѐм С х.

В методе стандарта (сравнения) в одних и тех же условиях записывают полярограммы анализируемого и стандартного растворов определяемого вещества с концентрациями С х и С ст, тогда:

При использовании метода добавок сначала записывают полярограмму анализируемого раствора объемомV x с концентрацией С х и измеряют высоту волны h x. Затем в электролитическую ячейку к анализируемому раствору добавляют определенный объѐм стандартного раствора определяемого вещества V д с концентрацией С д (предпочтительно, чтобы V x>>V д и С х<С д), записывают полярограмму раствора с концентрацией С х+д и из-меряют высоту полученной волны h х+д. Несложные преобразования позволяют по этим данным позволяют рассчитать концентрацию определяемого вещества в анализируемом растворе (пример).

Пример. При полярографировании 10,0 мл раствора никотинамида получена волна высотой 38 мм. После добавления к этому раствору 1,50 мл стандартного раствора, содержащего 2,00 мг/мл никотинамида, волна увеличилась до 80,5 мм. Рассчитать содержание препарата (мг/мл) в анализируемом растворе.

Решение. Высота волны никотинамида в анализируемом растворе h x в соответствии с уравнением Ильковича равна:

а после добавки стандартного раствора (h х+д):

Если первое уравнение почленно разделить на второе, то получим:

Решая уравнение относительно С х и подставив значения величин из условия задачи.

КУРСОВАЯ РАБОТА

По дисциплине: _________________

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

_______ Потенциометрия и потенциометрическое титрование ________

(Ф.И.О.) (подпись)

ОЦЕНКА: _____________

Дата: ___________________

ПРОВЕРИЛ

Руководитель проекта: Цыбизов А.В. /________________/

(Ф.И.О.) (подпись)

Санкт-Петербург

Кафедра металлургии цветных металлов

КУРСОВАЯ РАБОТА

По дисциплине _________ Физико-химические методы анализа веществ __________

(наименование учебной дисциплины согласно учебному плану)

ЗАДАНИЕ

Студенту группы: ОНГ-10-1 Фандофан А.А. (шифр группы) (Ф.И.О.)

1. Тема проекта : Потенциометрия и потенциометрическое титрование.

3. Перечень графического материала : Представление результатов в виде графиков, таблиц, рисунков.

4. Срок сдачи законченного проекта 10.12.12

Руководитель проекта: Цыбизов А.В. /________________/

(Ф.И.О.) (подпись)

Дата выдачи задания: 24.10.12


Аннотация

Данная пояснительная записка представляет собой отчет о выполнении курсового проекта. Целью работы является научиться ориентироваться в основном потоке информации по аналитической химии, работать с классической и периодической литературой в области аналитической химии цветных металлов, технически грамотно понимать и оценивать предлагаемые методы и методики анализа.

Страниц 17, рисунков 0.

The Summary

This explanatory note is a report on the implementation of a course project. The aim is to learn to navigate the mainstream media in analytical chemistry, to work with classical literature and periodicals in the field of analytical chemistry of non-ferrous metals, technically competent to understand and evaluate the proposed methods and analysis techniques.



Pages 17, figures 0.


Аннотация.. 3

Введение. 5

Краткая характеристика электрохимических методов анализа.. 6

Потенциометрия.. 7.

Прямая потенциометрия.. 10

Потенциометрическое титрование. 13

Заключение. 16

Список литературы.. 17


Введение

Цель работы - научиться ориентироваться в основном потоке информации по аналитической химии, работать с классической и периодической литературой в области аналитической химии цветных металлов, технически грамотно понимать и оценивать предлагаемые методы и методики анализа.

С учётом особенностей аналитического контроля в цветной металлургии (множество определяемых элементов, в том числе элементов пустой породы, элементов-спутников; сложные сочетания элементов в минералах; очень широкий диапазон концентраций элементов и др.) к числу методов физико-химического анализа, получивших наиболее распространение в заводских и исследовательских лабораториях, следует отнести такие классические методы, как титриметрия (в том числе комплексонометрия), гравиметрия (для больших концентраций элементов и арбитражного анализа) и особенно интенсивно развивающиеся в последнее время оптические методы анализа (спектрофотометрия, экстракционно-фотометрический метод, атомно-абсорбционный анализ, рентгеноспектральный анализ) и электрохимические (потенциометрия, вольтамперометрия).

Многообразие видов сырья представляет нам широкий круг металлов и элементов, которые необходимо количественно определять: основные металлы цветной и чёрной металлургии (медь, никель, свинец, цинк, олово, алюминий, магний, титан, сурьма, мышьяк, железо, кадмий, серебро, хром и др.), породообразующие элементы (кремний, кальций, натрий, хлор, фтор, сера, фосфор и др.) и редкие металлы (литий, рубидий, цезий, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений, галлий, индий, таллий, германий, селен, теллур и др.).


Краткая характеристика электрохимических методов анализа

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и поддающийся правильному измерению, может служить аналитическим сигналом.

Большим удобством является то, что в электрохимических методах используют электрические воздействия, и то, что результат этого воздействия (отклик) тоже получается в виде электрического сигнала. Это обеспечивает высокую скорость и точность отсчета, открывает широкие возможности для автоматизации. Электрохимические методы анализа отличаются хорошей чувствительностью и селективностью, в ряде случаев их можно отнести к микроанализу, так как для анализа иногда достаточно менее 1 мл раствора.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор. Определяемое вещество может входить как в состав электролита, заполняющего ячейку, так и в состав одного из электродов. Если аналитическая окислительно-восстановительная реакция протекает на электродах ячейки самопроизвольно, то есть без приложения напряжения от внешнего источника, а только за счет разности потенциалов (ЭДС) ее электродов, то такую ячейку называют гальваническим элементом.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

По разновидностям аналитического сигнала ЭМА подразделяют на: 1) кондуктометрию - измерение электропроводности исследуемого раствора; 2) потенциометрию - измерение бестокового равновесного потенциала индикаторного электрода, для которого исследуемое вещество является потенциоопределяющим; 3) кулонометрию - измерение количества электричества, необходимого для полного превращения (окисления или восстановления) исследуемого вещества; 4) вольтамперометрию - измерение стационарных или нестационарных поляризационных характеристик электродов в реакциях с участием исследуемого вещества;

5) электрогравиметрию - измерение массы вещества, выделенного из раствора при электролизе.


Потенциометрия

Потенциометрия (от лат. potentia-сила, мощность и греч. metreo- измеряю) – это электрохимический метод определения различных физико-химических величин, основанный на измерении равновесного электродного потенциала индикаторного электрода, погружённого в исследуемый раствор. Потенциал индикаторного электрода, определяющийся активностью компонентов электрохи-мической реакции, измеряется по отношению к электроду сравнения. Потенциометрию широко применяют в аналитической химии для определения концентрации веществ в растворах (потенциометрическое титрование), для измерения концентрации ионов водорода (рН-метрия), а также других ионов (ионометрия).

Потенциометрия основана на зависимости равновесного электродного потенциала Е от термодинамической активности а компонентов электрохимической реакции:

aА + bВ + ... + n е m М + р P + …

Эта зависимость описывается уравнением Нернста:

Е = Е ° + R T /(n F ) ln (а окис /а восст)

Е = Е ° + R T /(n F ) ln ([окисл] ү окисл /([восст] ү восст)), где

R - универсальная газовая постоянная, равная 8,31 Дж/(моль. К); Т - абсолютная температура; F - постоянная Фарадея (96500 Кл/моль); n - число электронов, принимающих участие в электродной реакции; а окис, а восст - активности соответственно окисленной и восстановленной форм редокс-системы; [окисл] и [восст] - их молярные концентрации; ү окис, ү восст - коэффициенты активности; Е ° - стандартный потенциал редокс-системы.

Подставляя Т = 298,15 К и числовые значения констант в уравнение, получаем:

Е = Е ° + (0,059 / n ) lg (а окис /а восст)

Е = Е ° + (0,059 / n ) lg ([окисл] ү окисл /([восст] ү восст))

При потенциометрических измерениях составляют гальванический элемент с индикаторным электродом, потенциал которого зависит от активности хотя бы одного из компонентов электрохимической реакции, и электродом сравнения и измеряют электродвижущую силу (эдс) этого элемента.

В потенциометрии используют гальванические элементы без переноса, когда оба электрода помещают в один и тот же исследуемый раствор, и с переносом, когда электроды находятся в разных растворах, имеющих между собой электролитический контакт. Последний осуществляют таким образом, что растворы могут смешиваться друг с другом только путем диффузии. Обычно их разделяют пористой керамической или пластмассовой перегородкой или прочно пришлифованной стеклянной муфтой. Элементы без переноса используют в основном для измерения констант равновесия хим. реакций, констант диссоциации электролитов. констант устойчивости комплексных соединений, произведений растворимости, стандартных электродных потенциалов, а также активностей и коэффициентов активности ионов. Элементы с переносом используют для определения "кажущихся" констант равновесия (поскольку при этом не учитывают жидкостной потенциал), активностей и коэффициентов активности ионов, а также в потенциометрических методах анализа.


Прямая потенциометрия

Методы прямой потенциометрии основаны на применении уравнения Нернста для нахождения активности или концентрации участника электродной реакции по экспериментально измеренной ЭДС цепи или потенциалу электрода. Прямая потенциометрия применяется для непосредственного определения а ионов (например, Ag + в растворе AgNO 3) по значению ЭДСсоответствующего индикаторного электрода (например, серебряного); при этом электродный процесс должен быть обратимым. Исторически первыми методами прямой потенциометрия были способы определения водородного показателя рН. Для определения рН чаще всего используют стеклянный электрод. Основными достоинствами стеклянного электрода являются простота работы, быстрое установление равновесия и возможность определения рН в окислительно-восстановительных системах. К недостаткам относятся хрупкость материала электрода и сложность работы при переходе к сильнощелочным и сильнокислым растворам.

Появление мембранных ионоселективных электродовпривело к возникновению ионометрии (рХ-метрии), где рХ = - lg а х, а х - активность компонента X электрохимической реакции. Иногда рН-метрию рассматривают как частный случай ионометрии. Градуировка шкал приборов потенциометров по значениям рХ затруднена из-за отсутствия соответствующих стандартов. Поэтому при использовании ионоселективных электродов активности (концентрации) ионов определяют, как правило, с помощью градуировочного графика или методом добавок. Применение таких электродов в неводных растворах ограничено из-за неустойчивости их корпуса и мембраны к действию органических растворителей.

К прямой потенциометрии относится также редоксметрия - измерение стандартных и реальных окислительно-восстановительных потенциалов и констант равновесия окислительно-восстановительных реакций. Окислительно-восстановительный потенциал зависит от активностей окисленной (О и восстановленной (a вос) форм вещества. Редоксметрию применяют также для определения концентрации ионов в растворах. Методом прямой потенциометрии с использованием металлических электродов изучают механизм и кинетику реакций осаждения и комплексообразования.

Также используют метод градуировочного графика. Для этого заранее строят градуировочный график в координатах ЭДС - lgС ан с использованием стандартных растворов анализируемого иона, имеющих одинаковую ионную силу paствора.

В этом случае f ан (коэффициент активности) и Е диф (диффузионный потенциал) остаются постоянными и график становится линейным. Затем по той же ионной силе измеряют ЭДС цепи с анализируемым раствором и по графику определяют концентрацию раствора. Пример определения приведен на рис. 1.

Рис.1. Градуировочный график для определения концентрации методом прямой потенциометрии

Прямая потенциометрия обладает важными достоинствами. В процессе измерений состав анализируемого раствора не меняется. При этом, как правило, не требуется предварительного отделения определяемого вещества. Метод можно легко автоматизировать, что позволяет использовать его для непрерывного контроля технологических процессов.