Теплообмен теплопроводностью. Способы теплопередачи. Три основных вида передачи тепла

СПОСОБЫ ТЕПЛОПЕРЕДАЧИ .

При осуществлении термической сушки различают два про­цесса:

1) испарение подлежащей удалению влаги;

2) отвод от поверхности материала образовавшегося пара.

Для испарения 1 кг влаги к области парообразования необ­ходимо подвести вполне определенное количество теплоты. По­этому теплопередача составляет основу рабочих процессов, про­исходящих в сушильных установках. На практике в боль­шей или меньшей степени реализуются все три основные формы теплопереноса: 1) теплопроводность; 2) конвекция; 3) из­лучение.

Кроме того, во многих сушильных установках большое зна­чение имеет особая разновидность теплопередачи, а именно, тепло­передача путем кратковременного контакта, которая наблюдается, например, в вальцовых сушилках, на нагревательных решетках вакуумных сушилок и в барабанных сушилках при взаимодей­ствии холодного материала с нагретыми элементами внутренних устройств.

Подход к проблемам теплопередачи в сушильной технике отличается от подхода в других отраслях машиностроения. В ма­шиностроении форма и размеры теплопередающих и тепловоспринимающих элементов в большинстве случаев хорошо известны (трубы, пластины и т. п.). В сушильных установках геометри­ческая форма большинства сельскохозяйственных продуктов, подвергаемых сушке, чрезвычайно разнообразна, поэтому ее трудно с достаточной степенью точности описать аналитическими зависимостями.

Другая сложность состоит в том, что зона испарения влаги в материале непрерывно перемещается и зависит от условий процесса. По этой причине в сушильных установках, более чем в какой-либо другой области техники, экспериментальные иссле­дования составляют основу для расчета и проектирования уст­ройств.

Основные законы теплопередачи, излагаемые ниже, будут представлены в объеме, необходимом для полного понимания процессов, происходящих в сушильных установках сельско­хозяйственного назначения.

Теплопроводность как способ теплопередачи

Теплопередача посредством теплопроводности происходит внутри твердых тел, неподвижной жидкости и газа благодаря переносу энергии в форме теплоты от одной элементарной частицы к другой. Теплота переносится из области с высокой температурой в область с более низкой. В установившемся режиме плотность теплового потока между двумя параллельными поверхностями тела зависит от температурного напора, толщины стенки и тепло-физической константы - теплопроводности К (рис. 3.13):

Рис. 3.13. Теплопроводность плоской стенки

q – плотность теплового потока, ккал/(м2·ч);

λ – теплопроводность, ккал/(м·ч·ºС);

U1, U2 – температура на первой и второй поверхностях, ºС;

s – толщина стенки, м

В случае гомогенного тела, ограничен­ного плоскими поверхностями, температура между ними при установившемся тепловом режиме падает по линейному закону. Для

тел сложной структуры процесс в слое бесконечно малой тол­щины ds описывается уравнением вида

где dυ - разность температур в слое бесконечно малой тол­щины, °С. Знак минус в уравнении указывает на то, что теп­ловой поток направлен в сторону меньшей температуры.

Чтобы на основании рассмотрения процесса в слое бесконечно малой толщины сделать выводы о процессе во всем теле, необ­ходимо провести интегрирование при определенных граничных условиях.

Конвекция (способ теплопередачи)

Теплопередача конвекцией по существу включает два процесса (рис. 3.17):

1) передача тепла теплопроводностью от поверхности твер­дого тела через ламинарный пограничный слой к окрестностям ядра турбулентного потока;

2) передача тепла путем турбулентного переноса от ламинар­ного пограничного слоя к ядру турбулентного потока.

Для сушки характерно обратное направление теплового по­тока: от сушильного агента к поверхности твердого тела. Уравне­ние теплопередачи связывает между собой разность температур потока и поверхности тела с плотностью теплового потока:

где - коэффициент теплопередачи, ккал/(м2 ч °С);

UL;U0 - температура на стенке и в ядре потока, °С.

Рис. 3.17. Профиль температур при пере­носе теплоты от турбулентного потока к поверхности твердого тела через лами­нарный пограничный слой:UL- температура в ядре потока;U0- температура на поверхности тела

Для уяснения процессов кон­вективного теплообмена необхо­димо различать элементарные процессы (обтекание единичных тел) и сложные процессы (теп­лообмен в слое сыпучих мате­риалов, противо - и прямоток и т. д.).

Ламинарный пограничный слой, турбулентное ядро по­тока, теплопередача теплопро­водностью и турбулентным перемешиванием, так же как и массообмен в пограничном слое в прямом и обратном направлении, взаимосвязаны и оказывают друг на друга самые различные воздействия. Эти процессы можно описать с помощью балансовых уравнений обмена энергией и мас­сой. Для описания целесообразно ввести безразмерные критерии, которые связывают между собой многие физические и технологи­ческие параметры. Действительные физические зависимости с по­мощью таких критериев можно описать проще и нагляднее, отказавшись при этом от непосредственного использования фи­зических параметров, характеризующих процесс.

Излучение теплопередача излучением

Теплопередача излучением (например, при инфракрасном на­греве) происходит при переносе энергии. электромагнитными ко­лебаниями от одного тела другому. При этом в передаче энергии излучением не участвует ни твердый, ни жидкий, ни газообраз­ный носитель. В соответствии с законом Стефана-Больцмана энергия, излучаемая телом в окружающее пространство, про­порциональна его температуре (в градусах Кельвина) в четвертой степени:

q - плотность потока энергии излучения, каал/(м2·x);

С - коэффициент излучения тела;

Т - температура, К.

Если приблизить друг к другу два тела с разной температурой (рис. 3.21), то разность между поглощаемой и излучаемой энер­гией каждым из этих тел оценивается уравнением

Q = A1 С12[(Т 1 / 100)4 – (Т2 / 100)4] = A2 C21[(Т 1 / 100)4 – (Т2 / 100)4],

где Q - тепловой поток энергии излучения, ккал/ч; A1, A2 - излучающая поверхность тел 1 и 2; C12, C21 - коэффициенты излучения, ккал/[м2-ч (К/100)4]. Коэффициенты С12 или С21 исходя из представления коэффициен­тов излучения отдельных тел получа­ют из следующих уравнений:

1/С12 = 1/С1 + А1/А2 (1/С2 – 1/Сs) ;

1/С21 = 1/С2 + А2/А1 (1/С1 – 1/Сs) ;

Рис. 3.22. Плотность потока анергии из­лучения между телами, нагретыми до разной температуры (при С=4,0)

Рис 3.23. Распределение температур в керамической пластине при нагреве пото­ком инфракрасных лучей (по данным работы )

где Cs - коэффициент излучения абсолютно черного тела; Cs= 4,96 ккал/[м2-ч (К/100)4].

В таблицах нередко приводится значение относительной ха­рактеристики (табл. 3.10)

На рис. 3.22 показана зависимость плотности потока энергии излучения от температуры υ1 и υ2 в предположении, что С12 = С21 = 4 ккал/[м2-ч (К/100)4]. Из графиков видно, что при больших перепадах температур энергия излучения зависит лишь от температуры более горячего тела.

Особый интерес представляет процесс подвода теплоты с по­мощью излучения в сушильных установках, что обусловлено возможностью проникновения энергии излучения внутрь различ­ных сред. Глубина проникновения тепловых потоков при излу­чении зависит от вида материала и вида излучения. Для капил­лярно-пористых тел органического происхождения эта глубина равна 0,1-2 мм.

Вследствие того, что необходимая теплота высвобождается частично внутри тела, а не только на его поверхности, при опре­деленных условиях на поверхности плотность теплового потока может быть многократно увеличена.

Таблица 3.10 Степень черноты вещества по Шмидту

ВЕЩЕСТВО

Температура, °С

Степень черноты ε = C / Cs

Золото, серебро, медь полированные

полированная, слегка окисленная

обработанная наждаком

черненная (окисленная)

чисто отшлифованное

сильно окисленное

Глина обожженная

Лед гладкий, вода

Лед, шероховатая поверхность

По данным А. В. Лыкова плотность потока энергии, на­пример, можно увеличить с 750 ккал/(м2-ч) при конвекции до 22 500 ккал/(м2-ч) при излучении. На рис. 3.23 представлен в гра­фическом виде процесс нагрева тела с помощью энергии излуче­ния. Из графика отчетливо видно, что тепловая энергия вначале высвобождается только внутри тела, так как в противном случае максимум температуры должен был бы находиться на поверхности тела.

Контактный теплообмен

Контактный теплообмен наблюдается, когда два тела, имеющих в начальный момент времени различную температуру, приходят в соприкосновение друг с другом, в результате чего температура этих тел стремится к некоторой общей для них средней темпера­туре . На практике теплообмен такого рода можно встретить на нагретых или нагреваемых поверхностях при пересыпании, вибрации, скольжении высушиваемого материала.

В первый момент времени после соприкосновения двух тел, которые первоначально имели различную температуру, на поверхности их касания устанавливается средняя температура, обозначаемая U0. Величина называется тепловой активностью тела. При этом:

Среднее значение приведенного коэффициента теплоотдачи, отнесенное. к промежутку времени t и температурному перепаду U0-U∞ (где - U∞ - начальная температура холодного тела), рассчитывают по формуле.

При кратковременном контакте среднее значение приведенного коэффициента теплоотдачи может быть достаточно высоким.

Теплообмен при нагреве в переменном электромагнитном поле.

Если две металлические пластины, удаленные друг от друга на определенное расстояние, поместить в переменное электромагнитное поле, то между ними возникнет переменный ток, зависящий от напряженности поля и емкости

Рис 3.25. Изменение диэлектрической проницаемости в и тангенса угла диэлектрических потерь tgδ в зависимости от частоты f переменного электромагнит­ного поля и влагосодержания сосновой древесины (по данным работы )

Если между конден­саторными пластинами поме­стить материал, то емкостный ток возрастет пропорционально диэлектрической проницаемо­сти ε материала. Вода, содер­жащаяся в сельскохозяйствен­ных продуктах, по сравнению с их сухой массой имеет высо­кое значение диэлектрической проницаемости (при темпера­туре 0° С ε = 80), поэтому кон­станту е можно использовать для измерения влагосодержа­ния материала.

Чисто емкостный ток не вы­зывает разогрева влажного ма­териала. Сдвинутые по фазе токи внутри материала имеют также активную составляющую. Величина, выражающаяся отношением активной и емкостной составляющих, называется тан­генсом угла диэлектрических потерь:

IR - активная составляющая силы тока, А; IС - емкостная составляющая силы тока, A; U - действующее напряжение, В; R - активное сопротивление, Ом; w - круговая частота, 1/с; С - емкость, Ф; ε - диэлектрическая проницаемость; f - частота, Гц.

Выделение теплоты в материале обусловливается лишь актив­ной составляющей тока:

Если выразить напряжение через напряженность поля Е (напряжение, приходящееся на каждый сантиметр разделяющего пластины расстояния), то можно получить выражение, характе­ризующее мощность объемного тепловыделения:

Q - тепловыделение, ккал/ч; V - объем конденсатора, см3; Е - напряженность электрического поля, В/см.

Потери, определяемые tgδ, и диэлектрическая проницаемость е в значительной степени зависят - от влагосодержания материала и частоты изменения электромагнитного поля (рис. 3.25) . Уже при сравнительно небольшом влагосодержании оба упомяну­тых параметра значительно возрастают. Благодаря этому соз­даются необходимые условия для так называемой диэлектриче­ской сушки. При этом тепловыделения становятся особенно большими там, где влаги содержится больше всего. В результате в таких местах влага испаряется быстрее. Кроме того, в данном случае материал обезвоживается сначала изнутри, что имеет большое значение для предотвращения его разрушения от уса­дочных напряжений (при сушке дерева), наблюдаемых при обыч­ных способах сушки, когда материал высыхает вначале снаружи, а потом уже внутри.

При атмосферном давлении температура внутри влажного материала поднимается примерно до 100° С и остается постоянной на этом уровне. Если влага испаряется в таком большом коли­честве, что материал оказывается в гигроскопической области, то температура будет повышаться и далее. Вследствие этого сердце­вина материала может обуглиться, в то время как его наружные слои будут оставаться еще влажными.

Диэлектрическая, или высокочастотная сушка мало распро­странена не только лишь из-за больших капиталовложений и за­трат на высококвалифицированное обслуживание, но и вследствие большой энергоемкости процесса. Тепловая энергия, необходимая для испарения влаги, получается в результате преобразования электрической энергии, при этом преобразование энергии сопря­жено с заметными потерями.

Теория теплообмена изучает закономерности распространения и пе-реноса тепловой энергии. Обмен энергией в форме теплоты происходит при наличии разности температур между отдельными телами или частями одного и того же тела и продолжается до тех пор, пока температура обоих тел не сравняется. Поскольку температура является мерой внутренней энергии, следовательно, при теплообмене происходит увеличение внут-ренней энергии одного (холодного) тела за счет ее уменьшения у другого тела (горячего).

Процесс теплообмена является естественным и необратимым, т. е. он всегда протекает в одном направлении: от горячего тела к холодному.

Существует три способа переноса теплоты: теплопроводность, кон-векция и излучение.

Теплопроводность -процесс распространения теплоты в твердыхтелах и жидкостях, находящихся в состоянии покоя. В диэлектриках (в ма-териалах, непроводящих электричество) тепловая энергия передается ко-лебаниями кристаллической решетки, а в металлах - главным образом за счет движения свободных электронов в решетке. Теплопроводность в чис-том виде наблюдается только в твердых телах.

Конвекция -перенос теплоты при перемещении отдельных масс иобъемов жидких и газообразных тел.

Обычно происходит одновременно конвекция и теплопроводность. Такой процесс называется конвективным теплообменом . Перенос теплоты от одного тела к другому при конвекции и теплопроводности осуществля-ется только при их соприкосновении.

Излучение -теплообмен между телами на расстоянии в форме лу-чистой энергии. Носителями лучистой энергии являются электромагнит-ные волны (фотоны). При излучении тепловая энергия нагретого тела пе-реходит в лучистую, распространяется в окружающем пространстве, пада-ет на другое тело и вновь переходит в тепловую энергию.

Решение задач теплообмена всегда имеет конкретный характер, одно-значно определяемый условиями протекания процессов.

Эти условия включают:


– геометрические особенности поверхностей тел и окружающего их пространства (формы, размеры);

– особенности протекания процесса во времени;

– граничные особенности процесса теплообмена, т. е. значение и рас-пределение физических величин на границах раздела тел, участвующих в теплообмене;

– физические и химические свойства и параметры среды, в которой осуществляется перенос теплоты.

Не всегда, однако, эти условия однозначности позволяют получить аналитическое решение задач теории теплообмена. Поэтому для изучения процессов теплообмена исключительное значение имеют физические экс-перименты и обобщение их результатов.

Теплопроводность

Особенности явлений теплопроводности связаны с распределением температуры в телах. В общем случае температура тел может изменяться во всех точках пространства с течением времени. Совокупность мгновен-ных значений температуры во всех точках изучаемого пространства носит название температурного поля .

Температурное поле является однородным , если во всех точках про-странства температура одинакова, и неоднородным , если она различна. Поверхности, на которых расположены точки с одинаковой температурой, называются изотермическими , а сечение этих поверхностей - изотерма-ми (рис. 3.1).Вдоль изотермических поверхностей теплота не распростра-няется. Наиболее быстрое изменение температуры происходит в направле-нии по нормали к изотермическим поверхностям.

Рис. 3.1. Температурное поле


Предел отношения разности температур двух изотерм к расстоянию между ними по нормали, когда n стремится к нулю, называется градиен-

том температур и обозначаетсяgrad t .

Градиент - мера наибольшей интенсивности изменения температу-ры; он является векторной величиной. Положительным считается направ-ление, в котором температура возрастает. Количественно интенсивность теплообмена характеризуется плотностью теплового потока , то есть ко-личеством теплоты, проходящей через единицу поверхности в единицу времени. Согласно закону Фурье - основному закону теплопроводно-сти - плотность теплового потока, Вт/м 2 , определяется по формуле

где Q - количество теплоты, Дж; F - площадь, м 2 ; τ - время, ч.

Закон Фурье утверждает, что плотность теплового потока пропорцио-нальна градиенту температур

где λ - коэффициент теплопроводности, характеризующий интенсивность распространения теплоты, т. е. количество теплоты, проходящее вследст-вие теплопроводности в единицу времени через единицу поверхности теп-лообмена при падении температуры на 1 градус на единицу длины норма-ли к изотермической поверхности, Вт/м К.

Знак «минус» в правой части указывает на противоположность на-правлений теплового потока и изменения температуры в теле. Коэффици-ент теплопроводности зависит от химического состава тел, их структуры, плотности, влажности, давления, температуры и составляет величину по-рядка от 0,01 до 400 Вт/(м·К).

Тела, имеющие λ <0,2 Вт/(м·К), называются теплоизоляторами . Хо-рошими проводниками теплоты являются тела, имеющие λ >20 Вт/(м·К).

Наименьшие значения коэффициента теплопроводности имеют газы (от 0,01 до 1 Вт/(м·К)), наибольшие - металлы (серебро - 410, медь -

360, алюминий - 200-300, сталь - 45-55 Вт/(м·К)).

Уравнение теплопроводности Фурье представляет собой математиче-ское описание процесса изменения температуры во времени в любом месте тела, вызываемого результирующим переносом теплоты.


Уравнения теплопроводности обычно аналитически решают для кон-кретных условий протекания процесса с привлечением известных условий однозначности.

На практике приходится встречаться с различными задачами тепло-проводности, которые условно делятся на три группы:

1) стационарная теплопроводность, когда распределение температур в теле сохраняется неизменным во времени и соответственно плотность теп-лового потока постоянна. Процессы теплообмена в нагревательных уст-ройствах и аппаратах, ограждающих конструкциях строительных соору-жений при длительных неизменных температурах наружной и внутренней среды могут рассматриваться не зависящими от времени;

2) нестационарная теплопроводность, когда происходит изменение температурного поля во времени. Нестационарная теплопроводность на-блюдается, например, при нагревании и охлаждении тел, когда до начала теплового воздействия во всей массе тела была одинаковая температура;

3) температурные волны в телах, подвергаемых периодическому теп-ловому воздействию. Например, годовые колебания температуры в по-верхностном слое земли, суточные колебания температуры наружного воз-духа и под их воздействием температуры поверхностей ограждающих кон-струкций.

Ниже дано частное решение уравнения Фурье для двух задач стацио-нарной теплопроводности.

1. Одномерное распределение теплоты в плоской стенке (рис. 3.2). Тепловой поток в плоской стенке равен

ностях F 1 и F 2 , °С.

Для многослойной стенки с толщинами слоев δ i и коэффициентами теплопроводности λ i уравнение теплового потока обобщается следующим образом:


где α - коэффициент конвективной теплоотдачи, характеризующий ин-тенсивность теплообмена конвекцией, Вт/(м 2 ·К); t ж - температура жидко-сти вдали от стенки, °С; t ст - температура поверхности стенки, °С; F -тепловоспринимающая поверхность тела,м 2 .

Одной из главных задач теории конвективного теплообмена является определение значения коэффициента теплоотдачи для конкретных условий протекания процесса.

На величину α оказывает влияние множество факторов, основными из которых являются характер конвекции, режим движения, физические свойства жидкости, геометрические особенности поверхности тел, участ-вующих в теплообмене.

Конвекция называется свободной , если она возникает за счет разности давлений (плотности), обусловленной неоднородностью температурного поля жидкости. Явление свободной конвекции можно наблюдать над по-верхностью нагретых тел, когда находящиеся вблизи этих поверхностей частицы воздуха, нагреваясь, поднимаются вверх, а на их место устремля-ются холодные массы воздуха (рис. 3.4).

Свободная конвекция возникает естественно во всяком объеме, где имеются тела с различной температурой, и протекает тем интенсивнее, чем выше разность температур.

Рис. 3.4. Свободная конвекция: а – вертикальная нагре-тая стенка; б – горизонтальная плита; в – горизонталь-ная плита, нагреваемая снизу

Вынужденной конвекцией называется теплообмен при движении жид-кости под действием внешних сил, например, создаваемых насосом, вен-тилятором, компрессором. Интенсивность теплообмена при этом тем вы-ше, чем больше скорость течения жидкости, омывающей поверхности тел.

Причина повышения интенсивности теплообмена при увеличении скорости течения заключается в изменении режима движения жидкости, переходе ламинарного движения в турбулентное (см. рис. 3.1).

В ламинарном потоке тепловая энергия переносится тепло-проводностью и поперечной диффузией масс. Интенсивность такого переноса энергии зависит от свойств среды, и тем меньше, чем больше толщи-на потока. В турбулентном потоке энергия переносится от жидкости к стенке перемешивающимися массами и лишь в пограничном слое - теп-лопроводностью. Поэтому интенсивность теплоотдачи в турбулентном по-токе выше, чем в ламинарном.

Ламинарное и турбулентное течения жидкости могут наблюдаться как при вынужденном, так и при свободном движении. Однако в последнем случае эти режимы создаются исключительно условиями теплового воз-действия, тогда как при вынужденном движении используются искусст-венные способы воздействия на течение жидкости.

Интенсивность конвективной теплоотдачи зависит также от физиче-ских свойств жидкости, характеризуемых значением коэффициентов теп-лопроводности и температуропроводности, теплоемкости, коэффициентов объемного расширения и кинематической вязкости.

Геометрические условия конвективного теплообмена определяются формой тела, его размерами, характером поверхности, обтекаемой жидко-стью.

По геометрическим условиям различают теплообмен при внутреннем течении жидкости в трубах, каналах (внутренняя задача) и внешнем омы-вании поверхностей потоком (внешняя задача). При внешнем обтекании поток может быть продольным по отношению к наибольшему размеру по-верхности или поперечным (например, при обтекании пучка труб, располо-женных перпендикулярно направлению потока).

Во всех случаях геометрические условия оказывают существенное влияние на распределение скоростей и температур в потоке, на режим движения, изменяя интенсивность теплообмена. Для учета этих факторов необходимо задаваться характерными размерами и формой тела.

Значения коэффициентов теплоотдачи в различных задачах конвек-тивного теплообмена определяют путем решения критериальных уравне-ний, при помощи которых обобщаются данные экспериментальных иссле-дований, так, например, для свободной конвекции используется уравнение вида

где Nu l -критерий Нуссельта; α -коэффициент конвективной теп-

Грасгофа; g - ускорение силы тяжести, м/с 2 ; β - коэффициент объемного

Рейнольдса; С , n , m - опытные коэффициенты, - скорость жидкости, м/с.


Электротермические процессы связаны с преобразованием электрической энергии в тепловую с переносом тепловой энергии внутри тела (твердого, жидкого, газообразного) или из одного объема в другой по законам теплопередачи.

Теплопередачей (теплообменом) называется переход тепла из одной части пространства к другой, от одного тела к другому или внутри тела от одной его части к другой. Непременным условием теплообмена является наличие разности температур отдельных тел или участков тел .

Различают стационарный и нестационарный теплообмен (рис. 2.1).

Существуют три вида теплообмена, три различных способа передачи тепла (рис. 2.2).

Теплопроводность обусловлена тепловым движением и энергетическим взаимодействием микрочастиц (молекул, атомов, электронов), частицы с большей энергией (более нагретые и, следовательно, более подвижные) отдают часть своей энергии менее нагретым (менее подвижным). Скорость теплопередачи в этом случае зависит от физических свойств вещества, в частности от его плотности. У плотных тел (металл) скорость теплопередачи больше, у пористых (пенопласт) – меньше.



Тепловой поток через плоскую стенку при установившемся режиме (определяется по закону Фурье) пропорционален разнице температур поверхности стенки и обратно пропорционален термическому сопротивлению стенки.

При передаче теплоты излучением энергия передается в форме электромагнитных волн. Этот вид теплопередачи может иметь место лишь в прозрачной для этих лучей среде.

Каждое непрозрачное нагретое тело, находящееся в прозрачной среде, излучает во все стороны лучистую энергию, распространяющуюся со скоростью света. При встрече с другими полностью или частично непрозрачными телами эта лучистая энергия вновь превращается (полностью или частично) в тепло, нагревая эти тела. Следовательно, лучистый теплообмен сопровождается двойным превращением энергии – тепловой энергии в лучистую и затем вновь лучистой в тепловую.

Если температуры тел, между которыми осуществляется лучистый теплообмен, различны, то в результате теплообмена между ними тепло будет передаваться от более нагретого тела к менее нагретому, одно из них будет нагреваться, а другое – снижать свою температуру.

При излучении нагретого тела в неограниченное пространство (при односторонней теплопередаче) лучистый тепловой поток пропорционален постоянному коэффициенту излучения абсолютно черного тела, степени черноты тела, численно равной его поглощающей способности, и абсолютной температуре нагретого тела.



Рис. 2.2. Классификация теплообмена по способу передачи тепла

Аналитическое решение задач, связанных с конвективным теплообменом, представляет значительные трудности, поскольку этот процесс описывается сложной системой дифференциальных уравнений. Поэтому задачи конвективного теплообмена решают с использованием экспериментально полученных констант и величин. Тепловой поток конвективного теплообмена определяют на основании закона Ньютона – Рихмана. По этому закону тепловой поток прямо пропорционален поверхности омывания, режиму движения теплоносителя (коэффициент теплоотдачи) и разности температур стенки и газа или жидкости.

Сегодня мы попытаемся найти ответ на вопрос “Теплопередача - это?..”. В статье рассмотрим, что представляет собой процесс, какие его виды существуют в природе, а также узнаем, какова связь между теплопередачей и термодинамикой.

Определение

Теплопередача - это физический процесс, суть которого заключается в передаче Обмен происходит между двумя телами или их системой. При этом обязательным условием будет передача тепла от более нагретых тел к менее нагретым.

Особенности процесса

Теплопередача - это тот самый вид явления, который может происходить и при прямом контакте, и при наличии разделяющих перегородок. В первом случае все ясно, во втором же в качестве преград могут быть использованы тела, материалы, среды. Теплопередача будет происходить в случаях, если система, состоящая из двух или более тел, не находится в состоянии теплового равновесия. То есть, один из объектов имеет большую или меньшую температуру по сравнению с другим. Вот тогда происходит передача тепловой энергии. Логично предположить, что она завершится тогда, когда система придет в состояние термодинамического, или теплового равновесия. Процесс происходит самопроизвольно, о чем нам может рассказать

Виды

Теплопередача - это процесс, который можно разделить на три способа. Они будут иметь основную природу, поскольку внутри них можно выделить настоящие подкатегории, имеющие свои характерные особенности наравне с общими закономерностями. На сегодняшний день принято выделять три Это теплопроводность, конвекция и излучение. Начнем с первой, пожалуй.

Способы

Так называется свойство того или иного материального тела совершать перенос энергии. При этом она переносится от более нагретой части к той, что холоднее. В основе этого явления лежит принцип хаотичного движения молекул. Это так называемое броуновское движение. Чем больше температура тела, тем активнее в нем двигаются молекулы, поскольку они обладают большей кинетической энергией. В процессе теплопроводности участвуют электроны, молекулы, атомы. Осуществляется она в телах, разные части которых имеют неодинаковую температуру.

Если вещество способно проводить тепло, мы можем говорить о наличии количественной характеристики. В данном случае ее роль играет коэффициент теплопроводности. Эта характеристика показывает, какое количество теплоты пройдет через единичные показатели длины и площади за единицу времени. При этом температура тела изменится ровно на 1 К.

Ранее считалось, что обмен теплом в различных телах (в том числе и теплопередача ограждающих конструкций) связана с тем, что от одной части тела к другой перетекает так называемый теплород. Однако признаков его действительного существования никто так и не нашел, а когда молекулярно-кинетическая теория развилась до определенного уровня, про теплород все и думать забыли, поскольку гипотеза оказалось несостоятельной.

Конвекция. Теплопередача воды

Под этим способом обмена тепловой энергией понимается передача при помощи внутренних потоков. Давайте представим себе чайник с водой. Как известно, более нагретые воздушные потоки поднимаются наверх. А холодные, более тяжелые, опускаются вниз. Так почему же с водой все должно быть иначе? С ней все абсолютно так же. И вот в процессе такого цикла все слои воды, сколько бы их ни было, нагреются до наступления состояния теплового равновесия. В определенных условиях, конечно.

Излучение

Этот способ заключается в принципе электромагнитного излучения. Оно возникает благодаря внутренней энергии. Сильно вдаваться в теорию не станем, просто отметим, что причина здесь заключается в устройстве заряженных частиц, атомов и молекул.

Простые задачи на теплопроводность

Сейчас поговорим о том, как на практике выглядит расчет теплопередачи. Давайте решим простенькую задачу, связанную с количество теплоты. Допустим, что у нас есть масса воды, равная половине килограмма. Начальная температура воды - 0 градусов по Цельсию, конечная - 100. Найдем количество теплоты, затраченное нами для нагревания этой массы вещества.

Для этого нам потребуется формула Q = cm(t 2 -t 1), где Q - количество теплоты, c - удельная m - масса вещества, t 1 - начальная, t 2 - конечная температура. Для воды значение c носит табличный характер. Удельная теплоемкость будет равна 4200 Дж/кг*Ц. Теперь подставляем эти значения в формулу. Получим, что количество теплоты будет равно 210000 Дж, или 210 кДж.

Первое начало термодинамики

Термодинамика и теплопередача связаны между собой некоторыми законами. В их основе - знание о том, что изменения внутренней энергии внутри системы можно достичь при помощи двух способов. Первый - совершение механической работы. Второй - сообщение определенного количества теплоты. На этом принципе базируется, кстати, первый закон термодинамики. Вот его формулировка: если системе было сообщено некоторое количество теплоты, оно будет потрачено на совершение работы над внешними телами или на приращение ее внутренней энергии. Математическая запись: dQ = dU + dA.

Плюсы или минусы?

Абсолютно все величины, которые входят в математическую запись первого закона термодинамики, могут быть записаны как со знаком “плюс”, так и со знаком “минус”. Причем выбор их будет диктоваться условиями процесса. Допустим, что система получает некоторое количество теплоты. В таком случае тела в ней нагреваются. Следовательно, происходит расширение газа, а значит, совершается работа. В итоге величины будут положительными. Если же количество теплоты отнимают, газ охлаждается, над ним совершается работа. Величины примут обратные значения.

Альтернативная формулировка первого закона термодинамики

Предположим, что у нас есть некий периодически действующий двигатель. В нем рабочее тело (или же система) совершают круговой процесс. Его принято называть циклом. В итоге система вернется к первоначальному состоянию. Логично было бы предположить, что в таком случае изменение внутренней энергии будет равным нулю. Получается, что количество теплоты станет равно совершенной работе. Эти положения позволяют сформулировать первый закон термодинамики уже по-другому.

Из него мы можем понять, что в природе не может существовать вечный двигатель первого рода. То есть, устройство, которое совершает работу в большем количестве по сравнению с полученной извне энергией. При этом действия должны совершаться периодически.

Первое начало термодинамики для изопроцессов

Рассмотрим для начала изохорический процесс. При нем объем остается постоянным. А значит, изменение объема будет равно нулю. Следовательно, работа так же будет равна нулю. Выкинем это слагаемое из первого начала термодинамики, после чего получим формулу dQ = dU. Значит, при изохорическом процессе все тепло, подведенное к системе, уходит на увеличение внутренней энергии газа или смеси.

Теперь поговорим об изобарическом процессе. Постоянной величиной в нем остается давление. При этом внутренняя энергия будет изменяться параллельно совершению работы. Вот первоначальная формула: dQ = dU + pdV. Мы можем легко вычислить совершаемую работу. Она будет равна выражению uR(T 2 -T 1). Кстати, это есть физический смысл универсальной газовой постоянной. При наличии одного моля газа и разнице температур, составляющей один Кельвин, универсальная газовая постоянная будет равна работе, совершаемой при изобарическом процессе.

Теплообмен - это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Теплообмен всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой .
Когда температуры тел выравниваются, теплообмен прекращается.
Теплообмен может осуществляться тремя способами:

  1. теплопроводностью
  2. конвекцией
  3. излучением

Теплопроводность

Теплопроводность - явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Наибольшей теплопроводностью обладают металлы - она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец , но и здесь теплопроводность в десятки раз больше, чем у воды.
При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.
Нагревание кастрюли на электрической плитке происходит через теплопроводность.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью .
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность .
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь .
Теплопроводность у различных веществ различна.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Конвекция

Конвекция - это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Пример явления конвекции : небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.
Различают два вида конвекции:

  • естественная (или свободная)
Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.
  • вынужденная
Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д.
Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Излучение

Излучение - электромагнитное излучение, испускаемое за счет внутренней энергии веществом, находящимся при определенной температуре.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно черного тела, описывается законом Стефана - Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Передача энергии излучением отличается от других видов теплопередачи: она может осуществляться в полном вакууме .
Излучают энергию все тела: и сильно нагретые, и слабо, например тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передает оно путем излучения. При этом энергия частично поглощается этими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. В то же время тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в темном.