Теория термодинамического равновесия. Локальное термодинамическое равновесие Что называют точкой термодинамического равновесия

Условия равновесия в процессах переноса теплоты (теплового равновесия) определяют сравнительно простыми измерениями температур соприкасающихся фаз. Механическое равновесие (при переносе импульса) обнаруживают по равенству непосредственно измеренных давлений в соприкасающихся фазах. Намного сложнее определение условия равновесия системы в процессах переноса массы. Поэтому здесь данному виду равновесия будет уделено основное внимание.

Процесс перехода массы из одной фазы в другую в изолированной замкнутой системе, состоящей из двух или большего числа фаз, возникает самопроизвольно и протекает до тех пор, пока между фазами при данных условиях (температуре и давлении) установится подвижное фазовое равновесие. Оно характеризуется тем, что в единицу времени из первой фазы во вторую переходит столько же молекул компонента, сколько из второй в первую (т.е. преимущественного перехода вещества из одной фазы в другую нет). Достигнув состояния равновесия, система может находиться в нем без количественных и качественных изменений сколь угодно долго, пока какое-либо внешнее воздействие не выведет ее из этого состояния. Таким образом, состояние изолированной системы при равновесии определяется только внутренними условиями. Поэтому градиенты интенсивных параметров и соответствующие им потоки должны быть равны нулю:

dT = 0; dP = 0; dm i = 0

где Т - температура; Р - давление; m i - химический потенциал i-гo компонента.

Эти выражения называют условиями соответственно термического, механического и химического (материального) равновесия. Все самопроизвольные процессы протекают в направлении достижения равновесия. Чем в большей степени состояние системы отклоняется от равновесия, тем выше скорость процесса переноса субстанций между фазами вследствие увеличения движущей силы, обусловливающей этот процесс. Поэтому для осуществления процессов переноса субстанций необходимо не допускать установления состояния равновесия, для чего к системе подводят вещество или энергию. На практике в открытых системах это условие обычно реализуется путем создания относительного движения фаз в аппаратах с противоточной, прямоточной или другими схемами движения потоков.

Из второго закона термодинамики следует, что в самопроизвольных процессах энтропия S системы возрастает и в условии равновесия достигает максимального значения, т.е. в этом случае dS = 0 .

Это условие, а также три предыдущих определяют условие равновесия системы.

Химический потенциал dm i определяется как приращение внутренней энергии U системы при добавлении к системе бесконечно малого количества молей i-гo компонента, отнесенное к этому количеству вещества, при постоянных объеме V, энтропии S и количествах молей каждого из остальных компонентов n j (где n = l, 2, 3, …, j).

В общем случае химический потенциал может быть определен как приращение любого из термодинамических потенциалов системы при различных постоянных параметрах: энергии Гиббса G – при постоянных давлении Р, температуре Т и n j ; энтальпии H – при постоянных S, P и n j .

Таким образом

Химический потенциал зависит не только от концентрации данного компонента, но и от вида и концентрации других компонентов системы. Для смеси идеальных газов m i зависит лишь от концентрации рассматриваемого компонента и температуры:

где -значение m i при стандартном состоянии (обычно при Р i = 0,1 МПа), зависит только от температуры; Р i - парциальное давление i-гo компонента смеси; – давление i-гo компонента в стандартном состоянии.

Химический потенциал характеризует способность рассматриваемого компонента к выходу из данной фазы (испарением, кристаллизацией и т.п.). В системе, состоящей из двух и более фаз, переход данного компонента может происходить самопроизвольно только из фазы, в которой его химический потенциал больше в фазу с меньшим химическим потенциалом. В условиях равновесия химический потенциал компонента в обеих фазах одинаков.

В общем случае химический потенциал может быть записан в виде:

где a i - активность i-гo компонента смеси; x i и g i соответственно мольная доля и коэффициент активности i-гo компонента.

Коэффициент активности g i является количественной мерой неидеальности поведения i-гo компонента в смеси. При g i > 1 отклонение от идеального поведения называют положительным, при g i < 1 - отрицательным. Для отдельных систем g i £ 1. Тогда а i = х i ‚ и уравнение принимает вид:

Для идеальных систем химический потенциал можно выразить также c помощью летучести f i компонента:

Где -летучесть i-гo компонента в стандартных условиях. Значения величин a i и f i находят в справочной литературе.

При проведении технологических процессов рабочие среды (газ, пар, жидкость) находятся в неравновесном состоянии, которое не может быть описано термодинамическими параметрами. Для описания неравновесного состояния систем вводят дополнительные неравновесные, или диссипативные, параметры, в качестве которых используют градиенты интенсивных термодинамических величин - температуры, давления, химического потенциала и плотности соответствующих диссипативных потоков, связанных с переносом энергии‚ массы и импульса.

Правило фаз

Существование данной фазы в системе или равновесие фаз возможны лишь в определенных условиях. При изменении этих условий равновесие системы нарушается, происходит сдвиг фаз или переход вещества из одной фазы в другую. Возможное существование данной фазы в равновесии с другими определяется правилом фаз, или законом равновесия фаз Гиббса :

С + Ф = k + n

где C - число степеней свободы (давление, температура, концентрация) – минимальное число параметров, которые можно изменять независимо друг от друга, не нарушая равновесия данной системы; Ф - число фаз системы; k - число независимых компонентов системы; n - число внешних факторов, влияющих на положение равновесия в данной системе.

Для процессов переноса массы n = 2, так как внешними факторами в этом случае являются температура и давление. Тогда выражение принимает вид

С + Ф = k + 2

Отсюда С = k - Ф + 2 .

Таким образом, правило фаз позволяет определить число параметров, которое можно менять, не нарушая фазового равновесия системы. Например, для однокомпонентной равновесной системы «жидкость – пар» число степеней свободы будет:

C = 1 – 2 + 2 = 1

T.е., в этом случае произвольно может быть задан только один параметр - давление или температура. Таким образом, для однокомпонентной системы имеется однозначная зависимость между температурой и давлением в условиях равновесия. В качестве примера можно привести широко распространенные справочные данные - зависимости между температурой и давлением насыщенных паров воды.

Для однокомпонентной равновесной системы, состоящей из трех фаз «твердое тело – жидкость – пар», число степеней свободы равно нулю: С = 1 - 3 + 2 = 0.

Например, система «вода – лед – водяной пар» находится в равновесии при давлении 610,6 Па и температуре 0,0076 °C.

Для двухкомпонентной равновесной системы «жидкость – пар» число степеней свободы С = 2 - 2 + 2 = 2. В этом случае одной из переменных величин (например, давлением) задаются и получают однозначную зависимость между температурой и концентрацией или (при постоянной температуре) между давлением и концентрацией. Зависимость между параметрами (температура - концентрация, давление - концентрация) строят в плоских координатах. Такие диаграммы обычно называют фазовыми.

Таким образом, правило фаз определяет возможность сосуществования фаз, но не указывает количественных зависимостей переноса вещества между фазами .

Термодинамическое условие химического равновесия

Термодинамическим условием равновесия процесса, протекающего в изобарно-изотермических условиях, является равенство нулю изменения энергии Гиббса (D r G (Т )=0). При протекании реакции n а A + n b B = n с C + n d D

изменение стандартной энергии Гиббса равно˸

D r G 0 T =(n c ×D f G 0 C + n d ×D f G 0 D )–(n a ×D f G 0 A + n b ×D f G 0 B ).

Данное выражение соответствует идеальному процессу, в котором концентрации реагирующих веществ равны единице и неизменны в ходе реакции. В ходе реальных процессов концентрации реагентов меняются˸ концентрация исходных веществ уменьшается, а продуктов реакции увеличивается. С учетом концентрационной зависимости энергии Гиббса (см. п. 1. 3. 4) её изменение в ходе реакции равно˸

D r G T =–

=

=(n c ×D f G 0 C + n d ×D f G 0 D )–(n a ×D f G 0 A + n b ×D f G 0 B ) +

+ R ×T ×(n c ×lnC C + n d ×lnC D –n a ×lnC A –n b ×lnC B )

D r G T =D r G 0 T + R ×T × ,

где – безразмерная концентрация i -го вещества; X i – мольная доля i -го вещества; p i – парциальное давление i -го вещества; р 0 = =1,013×10 5 Па – стандартное давление; с i – молярная концентрация i -го вещества; с 0 =1 моль/л – стандартная концентрация.

В состоянии равновесия

D r G 0 T + R×T × = 0,

Величина К 0 называется стандартной (термодинамичской) константой равновесия реакции. Таким образом при определенной температуре Т в результате протекания прямой и обратной реакции в системе устанавливается равновесие при определенных концентрациях реагирующих веществ – равновесных концентрациях (С i ) р . Величины равновесных концентраций определяются значением константы равновесия, которая является функцией температуры, и зависит от энтальпии (D r Н 0) и энтропии (D r S 0) реакции˸

D r G 0 T + R ×T ×lnK 0 = 0,

поскольку D r G 0 T =D r Н 0 T – Т ×D r S 0 T ,

Если известны величины энтальпии (D r Н 0 T ) и энтропии (D r S 0 T ) или D r G 0 T реакции, то можно вычислить значение стандартной константы равновесия.

Константа равновесия реакции характеризует идеальные газовые смеси и растворы. Межмолекулярные взаимодействия в реальных газах и растворах приводят к отклонению расчетных величин констант равновесия от реальных. Для учета этого вместо парциальных давлений компонентов газовых смесей используется их фугитивность, а вместо концентрации веществ в растворах их активность. Фугитивность i -го компонента связана с ᴇᴦο парциальным давлением соотношением f i =g i ×p i , где g i – коэффициент фугитивности.Активность и концентрация компонента связаны соотношением а i =g i ×С i , где g i – коэффициент активности.

Необходимо отметить, что в достаточно широкой области давлений и температур газовые смеси можно считать идеальными и проводить расчёты равновесного состава газовой смеси, считая коэффициент фугитивности g i @ 1.В случае жидких растворов, особенно растворов электролитов, коэффициенты активности их компонентов могут значительно отличаться от единицы (g i ¹ 1) и для расчета равновесного состава необходимо использовать активности.

Термодинамическое условие химического равновесия - понятие и виды. Классификация и особенности категории "Термодинамическое условие химического равновесия" 2015, 2017-2018.

Макроскопические системы зачастую обладают «памятью», они как бы помнят свою историю. Например, если с помощью ложки организовать движение воды в чашке, то это движение будет некоторое время продолжаться но инерции. Сталь приобретает особые свойства после механической обработки. Однако со временем память угасает. Движение воды в чашке прекращается, внутренние напряжения в стали ослабевают вследствие пластической деформации, концентрационные неоднородности уменьшаются вследствие диффузии. Можно утверждать, что системы стремятся достичь относительно простых состояний, которые не зависят от предшествующей истории системы. В некоторых случаях достижение такого состояния происходит быстро, в некоторых - медленно. Однако все системы стремятся к состояниям, в которых их свойства определяются внутренними факторами, а не предшествующими возмущениями. Такие простые, предельные состояния являются по определению не зависящими от времени. Эти состояния называются равновесными. Возможны ситуации, когда состояние системы неизменно, но в ней имеют место потоки массы или энергии. В этом случае речь идет не о равновесном, а о стационарном состоянии.

Состояние термодинамической системы, характеризующееся при постоянных внешних условиях неизменностью параметров во времени и отсутствием в системе потоков, называется равновесным.

Равновесное состояние - предельное состояние, к которому стремится термодинамическая система, изолированная от внешних воздействий. Условие изолированности следует понимать в том смысле, что скорость процессов установления равновесия в системе гораздо выше скорости изменения условий на границах системы. В качестве примера можно привести процесс горения топлива в камере сгорания ракетного двигателя. Время пребывания элемента топлива в камере очень невелико (10 _3 - 1(Н с), однако при этом время установления равновесия составляет примерно 10~ 5 с. Другой пример - геохимические процессы в земной коре протекают очень медленно, однако время существования термодинамических систем такого рода исчисляется миллионами лет, поэтому и в данном случае модель термодинамического равновесия оказывается применимой.

Используя введенное понятие, можно сформулировать такой постулат: существуют особенные состояния простых систем - такие, которые полностью характеризуются макроскопическими значениями внутренней энергии U , объема V и числами молей п и п 2 > я, химических компонентов. Если рассматриваемая система имеет более сложные механические и электрические свойства, то число параметров, необходимое для того чтобы охарактеризовать равновесное состояние, растет (необходимо учесть наличие сил поверхностного натяжения, гравитационного и электромагнитного нолей и т.д.).

С практической точки зрения экспериментатор всегда должен установить, является ли исследуемая система равновесной. Для этого недостаточно отсутствия видимых изменений в системе! Например, два бруска стали могут иметь одинаковый химический состав, но совершенно разные свойства, обусловленные механической обработкой (ковка, прессование), термообработкой и т.д. одного из них. Если свойства исследуемой системы не удается описать с использованием математического аппарата термодинамики, это может означать, что система неравновесна.

В действительности лишь очень немногие системы достигают абсолютно равновесного состояния. В частности, в этом состоянии все радиоактивные материалы должны находиться в стабильной форме.

Можно утверждать, что система находится в равновесии, если ее свойства адекватно описываются с использованием аппарата термодинамики.

Полезно вспомнить, что в механике равновесие механической системы - состояние механической системы, находящейся иод действием сил, при котором все ее точки покоятся по отношению к рассматриваемой системе отсчета.

Рассмотрим два примера, поясняющие понятие равновесия в термодинамике. Если установить контакт между термодинамической системой и окружающей средой, то в общем случае начнется процесс, который будет сопровождаться изменением некоторых параметров системы. При этом часть параметров меняться не будет. Пусть система состоит из цилиндра, в котором находится поршень (рис. 1.9). В начальный момент времени поршень закреплен. Справа и слева от него находится газ. Давление слева от поршня равно р А, справа - р в, причем р А > р в Если удалить крепление, поршень освободится и начнет двигаться вправо, при этом объем подсистемы А начнет возрастать, а правой - убывать (-Д V B = Д V A). Подсистема А теряет энергию, подсистема В приобретает ее, давление р А падает, давление р в возрастает до тех пор, пока давления слева и справа от поршня не станут равными. При этом массы газа подсистем слева и справа от поршня не изменяются. Таким образом, в рассмотренном процессе происходит передача энергии из одной подсистемы в другую за счет изменения давления и объема. Независимыми переменными в рассмотренном процессе являются давление и объем. Эти параметры состояния через некоторое время после освобождения поршня примут постоянные значения и будут оставаться неизменными, пока на систему не оказывается влияния извне. Достигнутое состояние является равновесным.

Состояние равновесия - это конечное состояние процесса взаимодействия одной или нескольких систем с их окружением.

Как ясно из приведенного примера, параметры системы в состоянии равновесия зависят от исходного состояния системы (ее подсистем) и окружения. Следует отметить, что указанная взаимосвязь начального и конечного состояний является односторонней и не позволяет восстановить исходное неравновесное состояние на основании информации о параметрах равновесного состояния.

Рис. 1.9.

Термодинамическая система находится в равновесии, если се параметры состояния не изменяются после того, как система изолирована от других систем и окружающей среды.

Движущей силой рассмотренного процесса установления равновесия была разница давлений слева и справа от поршня, т.е. разница интенсивных параметров. В начальный момент Ар = р л -р в *0, в конечный момент Ар = 0, р" А =Рв-

В качестве другого примера рассмотрим систему, изображенную на рис. 1.10.

Рис. 1.10.

Оболочки систем А и В - недеформируемые и теплонепроницаемые (адиабатические). В начальный момент времени газ в системе В находится при комнатной температуре, вода в системе А нагрета. Давление в системе В измеряется манометром. В некоторый момент времени теплоизолирующий слой между А и В убирают (при этом стенка остается недеформи- руемой, но становится теплопроницаемой (диатермической)). Давление в системе В начинает расти, очевидно, что энергия передается из А в В, при этом никаких видимых изменений в системах не наблюдается, никаких механических перемещений нет. Забегая вперед, скажем, что данный механизм передачи энергии можно обосновать с помощью второго закона термодинамики. В предыдущем примере в процессе установления равновесия менялись две координаты - давление и объем. Можно предположить, что и во втором примере также должны изменяться две координаты, одной из которых является давление; изменение второй мы не могли наблюдать.

Опыт показывает, что по прошествии некоторого промежутка времени состояния систем Aw В перестанут меняться, установится состояние равновесия.

Термодинамика имеет дело с равновесными состояниями. Термин «равновесный» предполагает, что действие всех сил на систему и внутри системы сбалансировано. При этом движущие силы равны нулю, а потоки отсутствуют. Состояние равновесной системы не меняется, если система изолирована от окружающей среды.

Можно рассматривать отдельные виды равновесия: термическое (тепловое), механическое, фазовое и химическое.

В системе, находящейся в состоянии термического равновесия, температура одинакова в любой точке и не меняется со временем. В системе, находящейся в состоянии механического равновесия, давление постоянно, хотя величина давления может изменяться от точки к точке (столб воды, воздуха). Фазовое равновесие - равновесие между двумя или несколькими фазами вещества (пар - жидкость; лед - вода). Если в системе достигнуто состояние химического равновесия, в ней нельзя обнаружить изменения концентраций химических веществ.

Если термодинамическая система находится в равновесии, предполагается, что в ней достигнуто равновесие всех видов (термическое, механическое, фазовое и химическое). В противном случае система неравновесна.

Характерные признаки равновесного состояния:

  • 1) не зависит от времени (стационарность);
  • 2) характеризуется отсутствием потоков (в частности, тепла и массы);
  • 3) не зависит от «истории» развития системы (система «не помнит», как она попала в данное состояние);
  • 4) устойчиво по отношению к флуктуациям;
  • 5) в отсутствие полей не зависит от положения в системе в пределах фазы.

1. Экстремальные свойства термодинамических потенциалов.

2. Условия равновесия и устойчивости пространственно однородной системы.

3. Общие условия равновесия фаз в термодинамических системах.

4. Фазовые переходы I-го рода.

5. Фазовые переходы II-го рода.

6. Обобщение полуфеноменологической теории.

Вопросы устойчивости термодинамических систем рассматривались в предыдущей теме применительно к задаче химического равновесия. Поставим задачу теоретического обоснования сформулированных ранее условий (3.53) на основе II начала термодинамики, используя свойства термодинамических потенциалов.

Рассмотрим макроскопическое бесконечно малое изменение состояния системы: 1 -2, при котором все ее параметры относятся на бесконечно малую величину:

Соответственно:

Тогда в случае квазистатического перехода из обобщенной формулировки I и II начала термодинамики (2.16) следует:

В случае, если 1-2 является неквазистатическим, то выполняются следующие неравенства:

В выражении (4.3) величины со штрихом соответствуют неквазистатическому процессу, а величины без штриха - квазистатическому. Первое неравенство системы (4.3) характеризует полученный на основе обобщения многочисленных опытных данных принцип максимального поглощения тепла, а второе - принцип максимальной работы.

Записывая работу для неквазистатического процесса в виде и вводя аналогичным образом параметры и, получим:

Выражение (4.4) абсолютно эквивалентно неравенству Клаузиуса.

Рассмотрим основные следствия (4.4) для различных способов описания термодинамических систем:

1. Адиабатически изолированная система: (). Соответственно. Тогда:

Это означает, что если зафиксировать переменные состояния системы, то вследствие (4.5) ее энтропия будет возникать до тех пор, пока в системе, согласно нулевого начала термодинамики, не наступит состояния равновесия. То есть равновесия состояния соответствует максимуму энтропии:

Вариации в (4.6) производятся по тем параметрам, которые при указанных фиксированных параметрах системы могут принимать неравновесные значения. Это могут быть концентрация п , давление р , температура ит.д.

2. Система в термостате (). Соответственно что позволяет переписать (4.4) в виде:

Учитывая вид выражения для свободной энергии: и равенство, получаем:

Таким образом течение неравновесных процессов для системы, помещенной в термостат, сопровождается уменьшением ее свободной энергии. А равновесное значенте соответствует ее минимуму:

3. Система под поршнем (), т.е. .В этом случае соотношение (4.4) принимает вид:

Таким образом равновесие в системе под поршнем наступает при достижении минимального значения потенциала Гиббса:

4. Система с воображаемыми стенками (). Тогда. Тогда

что позволяет записать

Соответственно в системе с воображаемыми стенками неравновесные процессы направлены в сторону уменьшения потенциала, а равновесие достигается при условии:

Условие определяет само состояние равновесия системы и широко используется при исследовании многокомпонентных или многофазных систем. Условия минимума или максимума определяют критерии устойчивости этих равновесных состояний по отношению к самопроизвольным или искусственно создаваемым возмущениям системы.

Кроме того, наличие экстремальных свойств у термодинамических потенциалов позволяет использовать для их исследования вариационных методов по аналогии с вариационными принципами механики. Однако, в этих целях требуется использование статистического подхода.

Рассмотрим условия равновесия и устойчивости термодинамических систем на примере газа, помещенного в цилиндр над поршнем. Кроме того, для упрощения анализа пренебрежем внешними полями, полагая. Тогда переменными состояния являются ().

Ранее отмечалось, что на термодинамическую систему можно оказывать воздействия либо совершая работу над ней, либо сообщая ей некоторое количество тепла. Поэтому следует проанализировать равновесие и устойчивость по отношению к каждому из отмеченных воздействий.

Механическое воздействие связано со смещением незакрепленного поршня. В этом случае работа на систему равно

В качестве внутреннего параметра, который может изменяться и по которому следует осуществлять варьирование, выберем объем.

Представляя потенциал Гиббса через свободную энергию

и производя варьирование, запишем:

Из последнего равенства следует:

Выражение (4.13) следует рассматривать как уравнение относительно равновесного значения объема при заданных параметрах системы ().

Условия устойчивости равновесного состояния имеет вид:

Учитывая (4.13), последнее условие можно переписать в виде:

Условие (4.14) накладывает определенные требования на уравнение состояния. Так, изотермы идеального газа

всюду удовлетворяют условию устойчивости. В то же время, уравнение Ван-дер-Ваальса

или уравнения Дитериги

имеют участки на которых условия устойчивости не выполняются, и которые не соответствуют реальным равновесным состояниям, т.е. экспериментально реализуется.

Если же в некоторой точке изотермы, то для проверки устойчивости используют специальные методы математического анализа, т.е. проверяют выполнение условий:

Аналогичным образом требования устойчивости, предъявляемые к уравнению состояния, могут быть сформулированы и для других параметров системы. Рассмотрим в качестве примера зависимость химического потенциала. Введем плотность числа частиц. Тогда химический потенциал можно представить в виде.

Вычислим дифференциал в зависимости от переменных состояния:

При записи последнего выражения учтено, что и использовано термодинамическое тождество (3.8). Тогда

То есть условие устойчивости для химического потенциала принимает вид

В критической точке при наличии прогиба имеем:

Перейдем к анализу устойчивости системы к тепловому воздействию, связанного с передачей некоторого количества тепла. Тогда в качестве вариационного параметра рассмотрим энтропию системы S . Для учета именно теплового воздействия зафиксируем механические параметры. Тогда в качестве переменных термодинамического состояния удобно выбрать набор, а в качестве термодинамического потенциала свободную энергию.

Выполняя варьирование, находим:

Из условия равновесия получаем

Уравнения (4.21) следует рассматривать как уравнение для равновесного значения энтропии. Из положительности второй вариации свободной энергии:

Поскольку температура всегда принимает положительные значения из (4.22) следует:

Выражение (4.23) является искомым условием устойчивости термодинамической системы по отношению к нагреванию. Некоторые авторы рассматривают положительность теплоемкости как одно из проявлений принципа Ле-Шателье - Брауна. При сообщении термодинамической системе количества тепла:

Ее температура возникает, что, в соответствии со вторым началом термодинамики в формулировке Клаузиуса (1850г.), приводит к уменьшению количества теплоты, поступающего в систему. Иначе говоря, в ответ на внешние воздействия - сообщение количества теплоты - термодинамические параметры системы (температура) меняются таким образом, что внешние воздействия ослабляются.

Рассмотрим вначале однокомпонентную систему, находящуюся в двухфазном состоянии. Здесь и далее под фазой будем понимать однородное вещество в химическом и физическом отношении.

Таким образом, каждую фазу будем рассматривать как однородную и термодинамически устойчивую подсистему, характеризуемую общим значением давления (в соответствии с требованием отсутствия тепловых потоков). Исследуем условие равновесия двуфазной системы по отношению к изменению числа частиц и, находящихся в каждой из фаз.

С учетом сделанных допущений наиболее удобным является использование описания системы под поршнем с фиксацией параметров (). Здесь - общее число частиц в обеих фазах. Также для простоты “выключим” внешние поля (а =0).

В соответствии с выбранным способом описания условием равновесия является условие (4.10) минимума потенциала Гиббса:

которое дополняется условием постоянства числа частиц N :

Выполняя варьирование в (4.24а) с учетом (4.24б) находим:

Таким образом, общим критерием равновесия двуфазной системы является равенство их химических потенциалов.

Еси известны выражения химических потенциалов и, то решением уравнения (4.25) будет некоторая кривая

называемая кривой фазового равновесия или дискретной фазового равновесия.

Зная выражения для химических потенциалов, из равенства (2.юю):

мы можем найти удельные объемы для каждой из фаз:

То есть, (4.26) можно переписать в виде уравнений состояния для каждой из фаз:

Обобщим полученные результаты на случай n фаз и k химически нереагирующих компонент. Для произвольной i -й компоненты уравнение (4.25) примет вид:

Легко видеть, что выражение (4.28) представляет систему (n- 1) независимых уравнений. Соответственно из условий равновесия для k компонент получаем k (n -1) независимых уравнений (k (n -1) связей).

Состояние термодинамической системы в этом случае задается температурой, давлением p и k -1 значениями относительных концентраций компонент в каждой фазе. Таким образом состояние системы в целом задается параметром.

Учитывая наложенных связей, найдем число независимых параметров системы (степенной свободы).

Равенство (4.29) называют правилом фаз Гиббса.

Для однокомпонентной системы () в случае двух фаз () имеется одна степень свободы, т.е. мы произвольно можем изменять только один параметр. В случае же трех фаз () не имеется степеней свободы (), то есть сосуществование трех фаз в однокомпонентной системе возможно только в одной точке, называемой тройной точкой. Для воды тройная точка соответствует следующим значениям: .

Если система не однокомпонентна, возможны боле сложные случаи. Так, двуфазная () двукомпонентная система () обладает двумя степенями свободы. В этом случае вместо кривой фазового равновесия получим область в виде полосы, границы которой соответствуют фазовым диаграммам для каждой из чистых компонент, а внутренние области соответствуют различным значениям относительной концентрации компонент. Одна степень свободы в данном случае соответствует кривой сосуществования трех фаз, а соответствует четвертой точке сосуществования четырех фаз.

Как было рассмотрено выше, химический потенциал можно представить в виде:

Соответственно первые производные от химического потенциала равны удельным значениям энтропии, взятой с обратным знаком, и объеме:

Если в точках, удовлетворяющих фазовому равновесию:

первые производные химического потенциала для разных фаз испытывают разрыв:

говорят, что термодинамическая система испытывает фазовый переход I-го рода.

Для фазовых переходов первого рода характерно наличие срытой теплоты фазового перехода, отличной от нуля, и скачок удельных объемов системы. Скрытая удельная теплота фазового перехода определяется из соотношения:

а скачок удельного объема равен:

Примерами фазовых переходов первого рода являются процессы кипения и испарения жидкостей. Плавления твердых тел, преобразования кристаллической структуры и т.д.

Рассмотрим две близлежащие точки на кривой фазового равновесия () и (), параметры которых различаются на бесконечно малые величины. Тогда уравнение (4.25) справедливо и для дифференциалов химических потенциалов:

отсюда следует:

Выполняя преобразования в (4.34), получим:

Выражение (4.35) получило название уравнения Клапейрона - Клаузиуса. Это уравнение позволяет получить вид кривой фазового равновесия по известным из эксперимента значениям теплоты фазового перехода и объемов фаз и без привлечения понятия химического потенциала, которое достаточно сложно определить как теоретически, так и экспериментально.

Большой практический интерес представляют так называемые метастабильные состояния. В этих состояниях одна фаза продолжает существовать в области устойчивости другой фазы:

Примерами достаточно устойчивых метастабильных состояний являются алмазы, аморфное стекло (наряду с кристаллическим горным хрусталем) и т.д. В природе и промышленных установках широко известны метастабильные состояния воды: перегретая жидкость и переохлажденный пар, а также переохлажденная жидкость.

Важным обстоятельством является то, что условием экспериментального осуществления этих состояний является отсутствие в системе новой фазы, примесей, загрязнений и т.д., т.е. отсутствие центра конденсации, парообразования и кристаллизации. Во всех этих случаях новая фаза возникает первоначально в малых количествах (капли, пузыри или кристаллы). Поэтому существенными становятся поверхностные эффекты, соизмеримые с объемными.

Для простоты ограничимся рассмотрением простейшего случая сосуществования двух пространственно неупорядоченных фазовых состояний - жидкости и пара. Рассмотрим жидкость, в которой находится небольшой пузырек насыщенного пара. При этом вдоль поверхности раздела действует сила поверхностного натяжения. Для ее учета введем параметры:

Здесь - площадь поверхности пленки,

Коэффициент поверхностного натяжения. Знак “-” во втором равенстве (4.36) соответствует тому, что пленка стягивается и работа внешней силы направлена на увеличение поверхности:

Тогда с учетом поверхностного натяжения потенциал Гиббса изменится на величину:

Вводя модель системы под поршнем и, учитывая равенство, запишем выражение для потенциала Гиббса в виде

Здесь и - удельные значения свободной энергии, и - удельные объемы каждой из фаз. При фиксированных значениях () величина (4.39) достигает минимума. При этом потенциал Гиббса можно проварьировать по. Эти величины связаны с помощью соотношения:

где R можно выразить через: . Выберем в качестве независимых параметров величины, тогда потенциал Гиббса (4.39) можно переписать в виде:

(здесь учтено)

Выполняя варьирование (4.40), запишем:

Учитывая независимость величин, сведем (4.41) к системе



Проанализируем полученное равенство. Из (4.42а) следует:

Его смысл в том, что давление в фазе 1 равно внешнему давлению.

Вводя выражения для химических потенциалов каждой из фаз и учитывая

запишем (4.42б) в виде:

Здесь - давление во II фазе. Отличие уравнения (4.44) от условия равновесия фаз (4.25) в том, что давление в (4.44) в каждой из фаз может быть различным.

Из равенства (4.42в) следует:

Сравнивая полученное равенство с (4.44) и выражением для химического потенциала, получим формулу для давления газа внутри сферического пузырька:

Уравнение (4.45) представляет собой известную из курса общей физики формулу Лапласа. Обобщая (4.44) и (4.45) запишем условия равновесия между жидкостью и пузырьком пара в виде:

В случае исследования задачи фазового перехода жидкость - твердое тело ситуация существенно осложняется в связи с необходимостью учета геометрических особенностей кристаллов, анизотропии направления преимущественного роста кристалла.

Фазовые переходы наблюдаются и в более сложных случаях, при которых разрыв терпят только вторые производные химического потенциала по температуре и давлению. В этом случае кривая фазового равновесия определяется не одним, а тремя условиями:

Фазовые переходы, удовлетворяющие уравнениям (4.47), получили название фазовых переходов II рода. Очевидно, скрытая теплота фазового перехода и изменение удельного объема в этом случае равно нулю:

Для получения дифференциального уравнения кривой фазового равновесия использовать уравнение Клапейрона - Клаузиуса (4.35) нельзя, т.к. при непосредственной подстановке в выражение (4.35) значений (4.48), получается неопределенность. Учтем, что при движении вдоль кривой фазового равновесия сохраняется условие и. Тогда:

Вычислим производные в (4.49)

Подставляя полученные выражения в (4.49), находим:

Система линейных уравнений (4.51), записанная относительно и является однородной. Поэтому ее нетривиальное решение существует только в том случае, если определитель, составленный из коэффициентов равен нулю. Поэтому запишем

Учитывая полученное условие и выбирая из системы (4.51) любое уравнение, получаем:

Уравнения (4.52) для кривой фазового равновесия в случае фазового перехода II рода получили название уравнений Эренфеста. В этом случае кривая фазового равновесия может быть определено по известным характеристикам скачков теплоемкости, коэффициента теплового расширения, коэффициента упругости.

Фазовые переходы второго рода встречаются значительно ранее фазовых переходов I рода. Это очевидно даже из условия (4.47), которое значительно жестче уравнения кривой фазового равновесия (4.юю) с условиями (4.31). Примерами таких фазовых переходов может служить переход проводника из сверхпроводящего состояния в нормальное при отсутствии магнитного поля.

Кроме того, встречаются фазовые переходы с равной нулю скрытой теплотой, для которых при переходе наблюдается наличие сингулярности в калорическом уравнении (теплоемкость терпит разрыв второго рода). Такой тип фазовых переходов носит название фазового перехода типа. Примерами таких переходов являются переход жидкого гелия из сверхтекучего состояния в нормальное, переход в точке Кюри для ферромагнетиков, переходы из неупругого состояния в упругое для сплавов и т.д.

) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия. На практике условие изолированности означает, что процессы установления равновесия протекают гораздо быстрее, чем происходят изменения на границах системы (то есть изменения внешних по отношению к системе условий), и осуществляется обмен системы с окружением веществом и энергией . Иными словами, термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).

В реальных процессах часто реализуется неполное равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:

  1. равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы - локальное равновесие,
  2. неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе - частичное равновесие,
  3. имеют место как локальное, так и частичное равновесие.

В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.

Устойчивость термодинамического равновесия

Состояние термодинамического равновесия называется устойчивым, если в этом состоянии не происходит изменения макроскопических параметров системы.

Критерии термодинамической устойчивости различных систем:

  • Изолированая (абсолютно не взаимодействующая с окружающей средой) система - максимум энтропии .
  • Замкнутая (обменивается с термостатом только теплом) система - минимум свободной энергии .
  • Система с фиксированными температурой и давлением - минимум потенциала Гиббса .
  • Система с фиксированными энтропией и объёмом - минимум внутренней энергии .
  • Система с фиксированными энтропией и давлением - минимум энтальпии .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Термодинамическое равновесие" в других словарях:

    - (см. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ … Физическая энциклопедия

    См. Равновесие термодинамическое … Большой Энциклопедический словарь

    ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ - (2) … Большая политехническая энциклопедия

    термодинамическое равновесие - состояние термодинамического равновесия Отсутствие перегретой жидкости и переохлаждённого пара. [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы состояние термодинамического равновесия EN heat… … Справочник технического переводчика

    См. Равновесие термодинамическое. * * * ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ, см. Равновесие термодинамическое (см. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ) … Энциклопедический словарь

    ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ - – состояние системы, в которой ее макроскопические параметры не меняются со временем. В таком состоянии системы отсутствуют процессы, сопровождающиеся рассеянием энергии, например, потоки тепла или химические реакции. С микроскопической точки… … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

    термодинамическое равновесие - termodinaminė pusiausvyra statusas T sritis chemija apibrėžtis Nekintanti termodinaminės sistemos būsena, kurioje nevyksta medžiagos arba energijos pernaša. atitikmenys: angl. thermodynamic equilibrium rus. термодинамическое равновесие … Chemijos terminų aiškinamasis žodynas

    термодинамическое равновесие - termodinaminė pusiausvyra statusas T sritis fizika atitikmenys: angl. thermodynamic equilibrium vok. thermodynamisches Gleichgewicht, n rus. термодинамическое равновесие, n pranc. équilibre thermodynamique, m … Fizikos terminų žodynas