Для возникновения существования электрического тока необходимо. Электрический ток. Условия существования тока. Основные понятия. Электрический ток в разных средах

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Основные понятия.

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока , S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A - полная работа сторонних и кулоновских сил, q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая электрические свойства участка цепи.

где ρ - удельное сопротивление проводника, l - длина участка проводника, S - площадь поперечного сечения проводника.

Проводимостью называется величина, обратная сопротивлению

где G - проводимость.

Законы Ома.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U - напряжение на участке, R - сопротивление участка.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где φ 1 - φ 2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи, r - электрическое сопротивление внутреннего участка цепи.

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R .

Если к полюсам источника тока подсоединить проводник с сопротивлением R << r , то тогда только ЭДС источника тока и его сопротивление будут определять значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания.

Электродвижущая сила. Любой источник тока характеризуется электродвижущей силой, или, сокращенно, ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит? Соедините проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис.15.7 ). Но этот ток будет очень кратковременным. Заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет.

Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока ), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис.15.8 ). Одно лишь электрическое поле заряженных частиц (кулоновское поле ) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами. Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет еще очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают ее затем проводникам электрической цепи. Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д. При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис.15.8 ). Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы - это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике. В гальваническом элементе, например элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток в замкнутой электрической цепи. Электродвижущая сила. Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС). Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда :

Электродвижущую силу, как и напряжение, выражают в вольтах. Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого источника равна нулю. Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

Включим в электрическую цепь в качестве нагузки (потребителей тока) две лампы накаливания, каждая из которых обладает каким-то определенным сопротивлением, и каждую из которых можно заменить проводником с таким же сопротивлением.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи при последовательном соединении сопротивлений:

1. сила тока во всех последовательно соединенных участках цепи одинакова 2. напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке 3.сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка

4. работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках

А = А1 + А2 5. мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участка

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ

Расчет параметров электрической цепи при параллельном соединении сопротивлений:

1. сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках

3. при параллельном соединении сопротивлений складываются величины, обратные сопротивлению:

(R - сопротивление проводника, 1/R - электрическая проводимость проводника)

Если в цепь включены параллельно только два сопротивления, то:

(при параллельном соединении общее сопротивление цепи меньше меньшего из включенных сопротивлений )

4. работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2 5. мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2

Для двух сопротивлений: т.е. чем больше сопротивление, тем меньше в нём сила тока.

Закон Джоуля-Ленца - физический закон, который позволяет определить тепловое дествие тока в цепи, по этому закону: , где I - сила тока в цепи, R - сопротивление, t - время. Данная формула была вычесленена путём создания цепи: гальванический эллемент (батарейка), резистор и амперметр. Резистор окунали в жидкость, в которую вставляли термометр и мерили темпиратуру. Вот так они и вывели свой закон и навсегда себя впечатали в историю, но даже без их опытов можно было вывести этот же закон:

U=A/q A=U*q=U*I*t=I^2*R*t но даже не смотря на это честь и хвала этим людям.

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения.

РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы: I = q/t ..... и..... U = A/q можно вывести формулу для расчета работы электрического тока: Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ: [ A ] = 1 Дж = 1A. B . c

НАУЧИСЬ, ПРИГОДИТСЯ! При расчетах работы электрического тока часто применяется внесистемная кратная единица работы электрического тока: 1 кВт.ч (киловатт-час).

1 кВт.ч = ...........Вт.с = 3 600 000 Дж

В каждой квартире для учета израсходованной электроэнергии устанавливаются специальные приборы-счетчики электроэнергии, которые показывают работу электрического тока, совершенную за какой-то отрезок времени при включении различных бытовых электроприборов. Эти счетчики показывают работу электрического тока (расход электроэнергии) в "кВт.ч".

Необходимо научиться рассчитывать стоимость израсходованной электроэнергии! Внимательно разбираемся в решении задачи на странице 122 учебника (параграф 52) !

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N , в электротехнике - буквой Р ) так как А = IUt , то мощность электрического тока равна:

или

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А. B

Законы Кирхгофа правила, которые показывают, как соотносятся токи и напряжения в электрических цепях. Эти правила были сформулированы Густавом Кирхгофом в 1845 году. В литературе часто называют законами Кирхгофа, но это не верно, так как они не являются законами природы, а были выведены из третьего уравнения Максвелла при неизменном магнитном поле. Но все же, первое более привычное для них название, поэтому и мы будет их называть, как это принято в литературе – законы Кирхгофа.

Первый закон Кирхгофа – сумма токов сходящихся в узле равна нулю.

Давайте разбираться. Узел это точка, соединяющая ветви. Ветвью называется участок цепи между узлами. На рисунке видно, что ток i входит в узел, а из узла выходят токи i 1 и i 2 . Составляем выражение по первому закона Кирхгофа, учитывая, что токи, входящие в узел имеют знак плюс, а токи, исходящие из узла имеют знак минус i-i 1 -i 2 =0. Ток i как бы растекается на два тока поменьше и равен сумме токов i 1 и i 2 i=i 1 +i 2 . Но если бы, например, ток i 2 входил в узел, тогда бы ток I определялся как i=i 1 -i 2 . Важно учитывать знаки при составлении уравнения.

Первый закон Кирхгофа это следствие закона сохранения электричества: заряд, приходящий к узлу за некоторый промежуток времени, равен заряду, уходящему за этот же интервал времени от узла, т.е. электрический заряд в узле не накапливается и не исчезает.

Второй закон Кирхгофа алгебраическая сумма ЭДС, действующая в замкнутом контуре, равна алгебраической сумме падений напряжения в этом контуре.

Напряжение выражено как произведение тока на сопротивление (по закону Ома).

В этом законе тоже существуют свои правила по применению. Для начала нужно задать стрелкой направление обхода контура. Затем просуммировать ЭДСи напряжения соответственно, беря со знаком плюс, если величина совпадает с направлением обхода и минус, если не совпадает. Составим уравнение по второму закону Кирхгофа, для нашей схемы. Смотрим на нашу стрелку, E 2 и Е 3 совпадают с ней по направлению, значит знак плюс, а Е 1 направлено в противоположную сторону, значит знак минус. Теперь смотрим на напряжения, ток I 1 совпадает по направлению со стрелкой, а токи I 2 и I 3 направлены противоположно. Следовательно:

-E 1 +E 2 +E 3 =I 1 R 1 -I 2 R 2 -I 3 R 3

На основании законов Кирхгофа составлены методы анализа цепейпеременного синусоидального тока. Метод контурных токов – метод основанный на применении второго закона Кирхгофа и метод узловых потенциаловоснованный на применении первого закона Кирхгофа.

Электрический ток - упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.


Прохождение тока по проводнику сопровождается следующими его действиями:

* магнитным (наблюдается во всех проводниках)
* тепловым (наблюдается во всех проводниках, кроме сверхпроводников)
* химическим (наблюдается в электролитах).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

* наличие в среде свободных электрических зарядов
* создание в среде электрического поля.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,
Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).
Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.
Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.
основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).
Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.
I = Dq/Dt .

Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.
Для переменного тока:
I = lim Dq/Dt ,
Dt - 0

т.е. I = q", где q" - производная от заряда по времени.
2. Плотность тока - j, единица измерения - 1 А/м2.
Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:
j = I/S .

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
e = Аст./q .

4. Сопротивление проводника - R, единица измерения - 1 Ом.
Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что
R = r*l/S ,

где
l - длина проводника,
S - площадь поперечного сечения,
r - коэффициент пропорциональности, названный удельным сопротивлением материала.
Эта формула хорошо подтверждается на опыте.
Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что
r = r0(1 + a t) ,
R = R0(1 + a t) .

Коэффициент a называется температурным коэффициентом сопротивления:
a = (R - R0)/R0*t .

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.
Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s
s = 1/r .

5. Напряжение - U , единица измерения - 1 В.
Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .

Так как Аст./q = e, а Аэл./q = f1-f2, то
U = e + (f1 - f2) .

Заряд в движении. Он может принимать форму внезапного разряда статического электричества, такого как, например, молния. Или это может быть контролируемый процесс в генераторах, батареях, солнечных или топливных элементах. Сегодня мы рассмотрим само понятие "электрический ток" и условия существования электрического тока.

Электрическая энергия

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электрической сети. Он создается генераторами, работающими по закону индукции Фарадея, благодаря которому изменяющееся магнитное поле может индуцировать электрический ток в проводнике.

Генераторы имеют вращающиеся катушки провода, которые проходят через магнитные поля по мере их вращения. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и создают электрический ток, меняющий направление на каждом повороте. Ток проходит через полный цикл вперед и назад 60 раз в секунду.

Генераторы могут питаться от паровых турбин, нагретых углем, природным газом, нефтью или ядерным реактором. Из генератора ток проходит через ряд трансформаторов, где растет его напряжение. Диаметр проводов определяет величину и силу тока, которую они могут переносить без перегрева и потери энергии, а напряжение ограничено только тем, насколько хорошо линии изолированы от земли.

Интересно отметить, что ток переносится только одним проводом, а не двумя. Две его стороны обозначаются как положительная и отрицательная. Однако, поскольку полярность переменного тока изменяется 60 раз в секунду, они имеют и другие названия - горячие (магистральные линии электропередач) и заземленные (проходящие под землей для замыкания цепи).

Зачем нужен электрический ток?

Существует масса возможностей применения электротока: он может осветить ваш дом, вымыть и высушить одежду, поднять дверь вашего гаража, заставить вскипеть воду в чайнике и дать возможность работать другим бытовым предметам, которые значительно облегчают нам жизнь. Тем не менее все более важным становится способность тока передавать информацию.

При подключении к Интернету компьютером используется лишь небольшая часть электрического тока, но это то, без чего современный человек не представляет своей жизни.

Понятие об электрическом токе

Подобно речному течению, потоку молекул воды, электрический ток - это поток заряженных частиц. Что это такое, что его вызывает, и почему он не всегда идет в одном направлении? Когда вы слышите слово «течет», о чем вы думаете? Возможно, это будет река. Это хорошая ассоциация, потому что именно по этой причине электрический ток получил свое название. Он очень похож на поток воды, только вместо молекул воды, движущихся по руслу, заряженные частицы движутся по проводнику.

Среди условий, необходимых для существования электрического тока, есть пункт, предусматривающий наличие электронов. Атомы в проводящем материале имеют много этих свободных заряженных частиц, которые плавают вокруг и между атомами. Их движение является случайным, поэтому поток в каком-либо заданном направлении отсутствует. Что же нужно, чтобы существовал электрический ток?

Условия существования электрического тока включают в себя наличие напряжения. Когда оно применяется к проводнику, все свободные электроны будут двигаться в одном направлении, создавая ток.

Любопытно об электрическом токе

Интересно то, что когда электрическая энергия передается через проводник со скоростью света, сами электроны движутся намного медленнее. На самом деле, если бы вы не спеша прошли рядом с токопроводящей проволокой, ваша скорость была бы в 100 раз быстрее, чем двигаются электроны. Это обусловлено тем, что им не нужно преодолевать огромные расстояния, чтобы передавать энергию друг другу.

Прямой и переменный ток

Сегодня широко используются два разных типа тока - постоянный и переменный. В первом электроны движутся в одном направлении, с «отрицательной» стороны на «положительную». Переменный ток толкает электроны назад и вперед, изменяя направление потока несколько раз в секунду.

Генераторы, используемые на электростанциях для производства электроэнергии, предназначены для производства переменного тока. Вы, наверное, никогда не обращали внимание на то, что свет в вашем доме на самом деле мерцает, поскольку текущее направление меняется, но это происходит слишком быстро, чтобы глаза смогли это распознать.

Каковы условия существования постоянного электрического тока? Зачем нам нужны оба типа и какой из них лучше? Это хорошие вопросы. Тот факт, что мы все еще используем оба типа тока, говорит о том, что они оба служат определенным целям. Еще в XIX веке было понятно, что эффективная передача мощности на большие расстояния между электростанцией и домом была возможна лишь при очень высоком напряжении. Но проблема заключалась в том, что отправка действительно высокого напряжения была чрезвычайно опасной для людей.

Решение этой проблемы состояло в том, чтобы уменьшить напряжение вне дома, прежде чем отправлять его внутрь. И по сей день постоянный электрический ток используется для передачи на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.

Как работает электрический ток

Условия существования электрического тока включают в себя наличие заряженных частиц, проводника и напряжения. Многие ученые изучали электричество и обнаружили, что существует два его типа: статическое и текущее.

Именно второе играет огромную роль в повседневной жизни любого человека, так как представляет собой электрический ток, который проходит через цепь. Мы ежедневно используем его для питания наших домов и многого другого.

Что такое электрический ток?

Когда в цепи циркулируют электрические заряды из одного места в другое, возникает электрический ток. Условия существования электрического тока включают в себя, помимо заряженных частиц, наличие проводника. Чаще всего это провод. Схема его представляет собой замкнутый контур, в котором ток проходит от источника питания. Когда же цепь разомкнута, он не может закончить путь. Например, когда свет в вашей комнате выключен, цепь разомкнута, но когда цепь замкнута, свет горит.

Мощность тока

На условия существования электрического тока в проводнике большое влияние оказывает такая характеристика напряжения, как мощность. Это показатель того, сколько энергии используется в течение определенного периода времени.

Существует много разных единиц, которые могут использоваться для выражения данной характеристики. Однако электрическая мощность почти измеряется в ваттах. Один ватт равен одному джоулю в секунду.

Электрический заряд в движении

Каковы условия существования электрического тока? Он может принимать форму внезапного разряда статического электричества, такого как молния или искра от трения с шерстяной тканью. Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, благодаря которой горит свет и работают приборы. Большая часть электрического заряда переносится отрицательными электронами и положительными протонами внутри атома. Однако вторые в основном иммобилизованы внутри атомных ядер, поэтому работа по переносу заряда из одного места в другое проделывается электронами.

Электроны в проводящем материале, таком как металл, в значительной степени свободны для перехода от одного атома к другому вдоль их зон проводимости, которые являются высшими электронными орбитами. Достаточная электродвижущая сила или напряжение создает дисбаланс заряда, который может вызвать движение электронов через проводник в виде электрического тока.

Если провести аналогию с водой, то возьмем, к примеру, трубу. Когда мы открываем клапан на одном конце, чтобы вода попала в трубу, то нам не нужно ждать, пока эта вода проложит весь путь до ее конца. Мы получаем воду на другом конце почти мгновенно, потому что входящая вода толкает воду, которая уже находится в трубе. Это то, что происходит в случае электрического тока в проводе.

Электрический ток: условия существования электрического тока

Электрический ток обычно рассматривается как поток электронов. Когда два конца батареи соединены друг с другом с помощью металлической проволоки, эта заряженная масса через провод попадает из одного конца (электрода или полюса) батареи на противоположный. Итак, назовем условия существования электрического тока:

  1. Заряженные частицы.
  2. Проводник.
  3. Источник напряжения.

Однако не все так просто. Какие условия необходимы для существования электрического тока? На этот вопрос можно ответить более подробно, рассмотрев следующие характеристики:

  • Разность потенциалов (напряжение). Это одно из обязательных условий. Между 2 точками должна быть разница потенциалов, означающая, что отталкивающая сила, которая создается заряженными частицами в одном месте, должна быть больше, чем их сила в другой точке. Источники напряжения, как правило, не встречаются в природе, и электроны распределяются в окружающей среде достаточно равномерно. Все же ученым удалось изобрести определенные типы приборов, где эти заряженные частицы могут накапливаться, тем самым создавая то самое необходимое напряжение (например, в батарейках).
  • Электрическое сопротивление (проводник). Это второе важное условие, которое необходимо для существования электротока. Это путь, по которому перемещаются заряженные частицы. В качестве проводников выступают только те материалы, которые дают возможность электронам свободно перемещаться. Те же, у которых этой способности нет, называются изоляторами. Например, проволока из металла будет отличным проводником, в то время как ее резиновая оболочка будет превосходным изолятором.

Тщательно изучив условия возникновения и существования электрического тока, люди смогли приручить эту мощную и опасную стихию и направить ее на благо человечества.

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q*E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

Я = НтДд /Дт,(*)

т.е. = q", гдеq"- производная от заряда по времени.

2. Плотность тока - j, единица измерения - 1 А/м2.

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

е = а друг. / г. (3)

4. Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

R = R* L / S Э, (4)

l - длина проводника,

S - площадь поперечного сечения,

r - коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

г = г 0 (1 + т), (5)

R = R 0 (1 + т).

Коэффициент a называется температурным коэффициентом сопротивления:

а = (R - R0) / R0 * т.

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t)для металлов линейная:

В 1911 году открыто явление сверхпроводимости , заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью с

с = 1 / г. (7)

5. Напряжение - U , единица измерения - 1 В.

Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (ст. + Аэл.) / Q (8)

Так как Аст./q = e, а Аэл./q = f1-f2, то

U = е + (е1 - е2) (9)

2.7.2 Основы электробезопасности

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых,воздействие тока вызывает у человека резкую реакцию отдергивания, а в ряде случаев и потерю сознания, что при работе навысоте может привести к травмированию в результате падения.

Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов,

электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельностинаиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца.

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги - наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов - контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает.

Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

Оценивать опасность воздействия электрического тока на человека проявляются три качественно отличные ответные реакции. Это прежде всего ощущение, более судорожное сокращение мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

С увеличением тока четко проявляются три качественно отличные

ответные реакции. Это прежде всего ощущение, более судорожное сокращение

мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

В целях обеспечения электробезопасности используют следующие технические способы и средства (часто в сочетании одного с другим): защитное заземление; зануление; защитное отключение; выравнивание потенциалов; малое напряжение; электрическое разделение сети; изоляцию токоведущих частей; оградительные устройства; предупредительную сигнализацию, блокировку, знаки безопасности; электрозащитные средства, предохранительные приспособления и др.

Защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических не токоведущих частей, которые могут оказаться под напряжением в результате повреждения изоляции (ГОСТ 12.1.009-76). Защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью.

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (не более чем за 0,2 с) при возникновении в ней повреждения, в том числе при пробое изоляции на корпус оборудования.

Выравнивание потенциалов - метод снижения напряжений прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Малое напряжение - номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.

Электрическое разделение сети - разделение сети на отдельные, электрически не связанные между собой, участки с помощью разделяющего

трансформатора. Если сильно разветвленную электрическую сеть, имеющую

большую емкость и малое сопротивление изоляции, разделить на ряд небольших сетей такого же напряжения, то они будут обладать незначительной емкостью и высоким сопротивлением изоляции. Опасность поражения током при этом резко снижается.

Изоляция в электроустановках служит для защиты от случайного прикосновения к токоведущим частям. Различают рабочую, дополнительную, двойную и усиленную электрическую изоляцию.

Оградительные устройства используются для предотвращения прикосновения или опасного приближения к токоведущим частям.

Блокировки широко применяются в электроустановках. Они бывают механическими, электрическими, электромагнитными и др. Блокировки обеспечивают снятие напряжения с токоведущих частей при попытке проникнуть к ним при открывании ограждения без снятия напряжения.

Направленное (упорядоченное) движение свободных заряженных частиц под действием электрического поля называется электрическим током .

Условия существования тока :

1. Наличие свободных зарядов.

2. Наличие электрического поля, т.е. разности потенциалов. Свободные заряды имеются в проводниках. Электрическое поле создается источниками тока.

При прохождении тока через проводник он оказывает следующие действия:

· Тепловое (нагревание проводника током). Например: работа электрического чайника, утюга и т.д.).

· Магнитное (возникновение магнитного поля вокруг проводника с током). Например: работа электродвигателя, электроизмерительных приборов).

· Химическое (химические реакции при прохождении тока через некоторые вещества). Например: электролиз.

Можно также говорить о

· Световом (сопровождает тепловое действие). Например: свечение нити накала электрической лампочки.

· Механическом (сопровождает магнитное или тепловое). Например: деформация проводника при нагревании, поворот рамки с током в магнитном поле).

· Биологическом (физиологическом). Например: поражение человека током, использование действия тока в медицине.

Основные величины, описывающие процесс прохождения тока по проводнику .

1. Сила тока I - скалярная величина, равная отношению заряда, прошедшего через поперечное сечение проводника, промежутку времени, в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени. Ток называют постоянным , если сила тока не меняется со временем. Для того чтобы ток через проводник был постоянным необходимо, чтобы разность потенциалов на концах проводника была постоянной.

2. Напряжение U . Напряжение численно равно работе электрического поля по перемещению единичного положительного заряда вдоль силовых линий поля внутри проводника.

3. Электрическое сопротивление R - физическая величина, численно равная отношению напряжения (разности потенциалов) на концах проводника к силе тока, проходящего через проводник.

60. Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R;

Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

61. Сопротивление как электрическая характеристика резистора. Зависимость сопротивления металлических проводников от рода материала и геометрических размеров.


Электри́ческое сопротивле́ние - физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Где R - сопротивление; U - разность электрических потенциалов на концах проводника; I - сила тока, протекающего между концами проводника под действием разности потенциалов.

Сопротивление проводника является такой же характеристикой проводника как и его масса. Сопротивление проводника не зависит ни от силы тока в проводнике, ни от напряжения на его концах, а зависит только от рода вещества, из которого изготовлен проводник и его геометрических размеров: , где: l - длина проводника, S - площадь поперечного сечения проводника, ρ - удельное сопротивление проводника, показывающее каким сопротивлением будет обладать проводник длиной 1 м и площадью сечения 1 м 2 , изготовленный из данного материала.

Проводники, подчиняющиеся закону Ома, называются линейными. Существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Зависимость сопротивления проводника от температуры выражается формулой: , где: R - сопротивление проводника при температуре Т, R 0 - сопротивление проводника при температуре 0ºС, α - температурный коэффициент сопротивления.