Найти объем параллелограмма. Как найти объем в кубических метрах. Примеры из жизни

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Часто ученики возмущенно спрашивают: «Как мне в жизни это пригодится?». На любую тему каждого предмета. Не становится исключением и тема про объем параллелепипеда. И вот здесь как раз можно сказать: «Пригодится».

Как, например, узнать, поместится ли в почтовую коробку посылка? Конечно, можно методом проб и ошибок выбрать подходящую. А если такой возможности нет? Тогда на выручку придут вычисления. Зная вместимость коробки, можно рассчитать объем посылки (хотя бы приблизительно) и ответить на поставленный вопрос.

Параллелепипед и его виды

Если дословно перевести его название с древнегреческого, то получится, что это фигура, состоящая из параллельных плоскостей. Существуют такие равносильные определения параллелепипеда:

  • призма с основанием в виде параллелограмма;
  • многогранник, каждая грань которого - параллелограмм.

Его виды выделяются в зависимости от того, какая фигура лежит в его основании и как направлены боковые ребра. В общем случае говорят о наклонном параллелепипеде , у которого основание и все грани — параллелограммы. Если у предыдущего вида боковые грани станут прямоугольниками, то его нужно будет называть уже прямым . А у прямоугольного и основание тоже имеет углы по 90º.

Причем последний в геометрии стараются изображать так, чтобы было заметно, что все ребра параллельны. Здесь, кстати, наблюдается основное отличие математиков от художников. Последним важно передать тело с соблюдением закона перспективы. И в этом случае параллельность ребер совсем незаметна.

О введенных обозначениях

В приведенных ниже формулах справедливы обозначения, указанные в таблице.

Формулы для наклонного параллелепипеда

Первая и вторая для площадей:

Третья для того, чтобы вычислить объем параллелепипеда:

Так как основание - параллелограмм, то для расчета его площади нужно будет воспользоваться соответствующими выражениями.

Формулы для прямоугольного параллелепипеда

Аналогично первому пункту - две формулы для площадей:

И еще одна для объема:

Первая задача

Условие. Дан прямоугольный параллелепипед, объем которого требуется найти. Известна диагональ — 18 см - и то, что она образует углы в 30 и 45 градусов с плоскостью боковой грани и боковым ребром соответственно.

Решение. Чтобы ответить на вопрос задачи, потребуется узнать все стороны в трех прямоугольных треугольниках. Они дадут необходимые значения ребер, по которым нужно сосчитать объем.

Сначала нужно выяснить, где находится угол в 30º. Для этого нужно провести диагональ боковой грани из той же вершины, откуда чертилась главная диагональ параллелограмма. Угол между ними и будет тем, что нужен.

Первый треугольник, который даст одно из значений сторон основания, будет следующим. В нем содержатся искомая сторона и две проведенные диагонали. Он прямоугольный. Теперь потребуется воспользоваться отношением противолежащего катета (стороны основания) и гипотенузы (диагонали). Оно равно синусу 30º. То есть неизвестная сторона основания будет определяться как диагональ, умноженная на синус 30º или ½. Пусть она будет обозначена буквой «а».

Вторым будет треугольник, содержащий известную диагональ и ребро, с которым она образует 45º. Он тоже прямоугольный, и можно опять воспользоваться отношением катета к гипотенузе. Другими словами, бокового ребра к диагонали. Оно равно косинусу 45º. То есть «с» вычисляется как произведение диагонали на косинус 45º.

с = 18 * 1/√2 = 9 √2 (см).

В этом же треугольнике требуется найти другой катет. Это необходимо для того, чтобы потом сосчитать третью неизвестную - «в». Пусть она будет обозначена буквой «х». Ее легко вычислить по теореме Пифагора:

х = √(18 2 - (9√2) 2) = 9√2 (см).

Теперь нужно рассмотреть еще один прямоугольный треугольник. Он содержит уже известные стороны «с», «х» и ту, что нужно сосчитать, «в»:

в = √((9√2) 2 - 9 2 = 9 (см).

Все три величины известны. Можно воспользоваться формулой для объема и сосчитать его:

V = 9 * 9 * 9√2 = 729√2 (см 3).

Ответ: объем параллелепипеда равен 729√2 см 3 .

Вторая задача

Условие. Требуется найти объем параллелепипеда. В нем известны стороны параллелограмма, который лежит в основании, 3 и 6 см, а также его острый угол — 45º. Боковое ребро имеет наклон к основанию в 30º и равно 4 см.

Решение. Для ответа на вопрос задачи нужно взять формулу, которая была записана для объема наклонного параллелепипеда. Но в ней неизвестны обе величины.

Площадь основания, то есть параллелограмма, будет определена по формуле, в которой нужно перемножить известные стороны и синус острого угла между ними.

S о = 3 * 6 sin 45º = 18 * (√2)/2 = 9 √2 (см 2).

Вторая неизвестная величина — это высота. Ее можно провести из любой из четырех вершин над основанием. Ее найти можно из прямоугольного треугольника, в котором высота является катетом, а боковое ребро — гипотенузой. При этом угол в 30º лежит напротив неизвестной высоты. Значит, можно воспользоваться отношением катета к гипотенузе.

н = 4 * sin 30º = 4 * 1/2 = 2.

Теперь все значения известны и можно вычислить объем:

V = 9 √2 * 2 = 18 √2 (см 3).

Ответ: объем равен 18 √2 см 3 .

Третья задача

Условие. Найти объем параллелепипеда, если известно, что он прямой. Стороны его основания образуют параллелограмм и равны 2 и 3 см. Острый угол между ними 60º. Меньшая диагональ параллелепипеда равна большей диагонали основания.

Решение. Для того чтобы узнать объем параллелепипеда, воспользуемся формулой с площадью основания и высотой. Обе величины неизвестны, но их несложно вычислить. Первая из них высота.

Поскольку меньшая диагональ параллелепипеда совпадает по размеру с большей основания, то их можно обозначить одной буквой d. Больший угол параллелограмма равен 120º, поскольку с острым он образует 180º. Пусть вторая диагональ основания будет обозначена буквой «х». Теперь для двух диагоналей основания можно записать теоремы косинусов :

d 2 = а 2 + в 2 - 2ав cos 120º,

х 2 = а 2 + в 2 - 2ав cos 60º.

Находить значения без квадратов не имеет смысла, так как потом они будут снова возведены во вторую степень. После подстановки данных получается:

d 2 = 2 2 + 3 2 - 2 * 2 * 3 cos 120º = 4 + 9 + 12 * ½ = 19,

х 2 = а 2 + в 2 - 2ав cos 60º = 4 + 9 - 12 * ½ = 7.

Теперь высота, она же боковое ребро параллелепипеда, окажется катетом в треугольнике. Гипотенузой будет известная диагональ тела, а вторым катетом — «х». Можно записать Теорему Пифагора:

н 2 = d 2 - х 2 = 19 - 7 = 12.

Отсюда: н = √12 = 2√3 (см).

Теперь вторая неизвестная величина — площадь основания. Ее можно сосчитать по формуле, упомянутой во второй задаче.

S о = 2 * 3 sin 60º = 6 * √3/2 = 3√3 (см 2).

Объединив все в формулу объема, получаем:

V = 3√3 * 2√3 = 18 (см 3).

Ответ: V = 18 см 3 .

Четвертая задача

Условие. Требуется узнать объем параллелепипеда, отвечающего таким условиям: основание — квадрат со стороной 5 см; боковые грани являются ромбами; одна из вершин, находящихся над основанием, равноудалена от всех вершин, лежащих в основании.

Решение. Сначала нужно разобраться с условием. С первым пунктом про квадрат вопросов нет. Второй, про ромбы, дает понять, что параллелепипед наклонный. Причем все его ребра равны 5 см, поскольку стороны у ромба одинаковые. А из третьего становится ясно, что три диагонали, проведенные из нее, равны. Это две, которые лежат на боковых гранях, а последняя внутри параллелепипеда. И эти диагонали равны ребру, то есть тоже имеют длину 5 см.

Для определения объема будет нужна формула, записанная для наклонного параллелепипеда. В ней опять нет известных величин. Однако площадь основания вычислить легко, потому что это квадрат.

S о = 5 2 = 25 (см 2).

Немного сложнее обстоит дело с высотой. Она будет таковой в трех фигурах: параллелепипеде, четырехугольной пирамиде и равнобедренном треугольнике. Последним обстоятельством и нужно воспользоваться.

Поскольку она высота, то является катетом в прямоугольном треугольнике. Гипотенузой в нем будет известное ребро, а второй катет равен половине диагонали квадрата (высота - она же и медиана). А диагональ основания найти просто:

d = √(2 * 5 2) = 5√2 (см).

Высоту нужно будет сосчитать как разность второй степени ребра и квадрата половины диагонали и не забыть потом извлечь квадратный корень :

н = √ (5 2 - (5/2 * √2) 2) = √(25 - 25/2) = √(25/2) = 2,5 √2 (см).

V = 25 * 2,5 √2 = 62,5 √2 (см 3).

Ответ: 62,5 √2 (см 3).

Объем параллелепипеда

Величина объема дает нам представление о том, какую часть пространства занимает интересующий нас объект, а чтобы найти объем прямоугольного параллелепипеда нужно умножить его площадь основания на высоту.

В повседневной жизни, чаще всего для измерения объема жидкости, как правило, используют такую измерительную единицу, как литр = 1дм3.

Кроме этой единицы измерения для определения объема применяют:


Параллелепипед относится к простейшим трехмерным фигурам и поэтому найти его объем не представляет никаких сложностей.



Объем параллелепипеда равен произведению его длины, ширины и высоты. Т.е. для нахождения объема прямоугольного параллелепипеда, достаточно умножить все его три измерения.

Чтобы найти объем куба, нужно взять его длину и возвести в третью степень.

Определение параллелепипеда

А теперь давайте вспомним, что же такое параллелепипед и чем он отличается от куба.

Параллелепипедом называют такую объемную фигуру, в основании которой лежит многоугольник. Поверхность прямоугольного параллелепипеда состоит из шести прямоугольников, которые являются гранями данного параллелепипеда. Поэтому логично, что параллелепипед имеет шесть граней, которые состоят из параллелограммов. Все грани этого многоугольника, которые расположены друг против друга, имеют одинаковые размеры.

Все ребра параллелепипеда и есть сторонами граней. А вот точки соприкосновения граней являются вершинами данной фигуры.



Задание:

1. Посмотрите внимательно на рисунок и скажите, что она вам напоминает?
2. Подумайте и дайте ответ, где в повседневной жизни вы можете столкнуться с такой фигурой?
3. Сколько ребер имеет параллелепипед?

Разновидности параллелепипедов

Параллелепипеды делятся на несколько разновидностей, таких как:

Прямоугольный;
Наклонный;
Куб.

К прямоугольным параллелепипедам относятся те фигуры, у которых грани состоят из прямоугольников.

Если же боковые грани не являются перпендикулярными его основанию, то перед вами наклонный параллелепипед.

Такая фигура, как куб, также является параллелепипедом. Его все без исключения грани имеют форму квадратов.

Свойства параллелепипеда

Изучаемая фигура имеет ряд свойств, о которых мы сейчас с вами узнаем:

Во-первых, противоположные грани этой фигуры равны и параллельны друг другу;

Во-вторых, он симметричен лишь относительно средины любой без исключения своей диагонали;

В-третьих, если взять и провести диагонали между всеми противоположными вершинами параллелограмма, то у них окажется всего одна точка пересечения.

В-четвертых, квадрат длинны его диагонали, равен сумме квадратов 3-х его измерений.

Историческая справка

За период разных исторических эпох в разных странах использовали различные системы измерения массы, длины и других величин. Но так как это затрудняло торговые отношения между странами, а также тормозило развитие наук, то появилась необходимость иметь единую международную систему мер, которая была бы удобна для всех стран.

Метрическая система мер СИ, которая устраивала большинство стран, была разработана во Франции. Благодаря Менделееву метрическая система мер была внедрена и в России.

Но многие профессии по сей день используют свои специфические метрики, иногда это дань традициям, иногда вопрос удобства. Так, например, моряки все еще предпочитают измерять скорость в узлах, а расстояние в милях – для них это традиция. А вот ювелиры всего мира отдают предпочтение такой единице измерения, как карат – и в их случае это и традиция и удобство.

Вопросы:

1. А кто знает, сколько метров в одной миле? А что такое один узел?
2. Почему единица измерения алмазов называется «карат»? Почему ювелирам исторически удобно измерять массу в таких единицах?
3. А кто помнит, в каких единицах измеряется нефть?

Прямоугольник - одна из самых простых плоских фигур, а прямоугольный параллелепипед - такая же простая фигура, но в пространстве (рис. 1). Они очень похожи.

Так же похожи, как круг и шар.

Рис. 1. Прямоугольник и параллелепипед

Разговор про площади начинают с площади прямоугольника, а про объемы - с объема прямоугольного параллелепипеда.

Если мы умеем находить площадь прямоугольника, то это нам позволяет найти площадь любой фигуры.

Вот эту фигуру мы можем разбить на 3 прямоугольника и найти площадь каждого, а значит, и всей фигуры. (Рис. 2.)

Рис. 2. Фигура

Рис. 3. Фигура, площадь которой равна семи прямоугольникам

Даже если фигура не разбивается точно на прямоугольники, это можно сделать с любой точностью и площадь посчитать приблизительно.

Площадь этой фигуры (рис. 3) примерно равна сумме площадей семи прямоугольников. Неточность получается за счет верхних маленьких фигур. Если увеличить число прямоугольников, то неточность уменьшится.

То есть прямоугольник - это инструмент для вычисления площадей любых фигур.

Такая же ситуация, когда речь идет об объемах.

Любую фигуру можно выложить прямоугольными параллелепипедами, кирпичиками. Чем мельче будут эти кирпичики, тем точнее мы сможем посчитать объем (рис. 4, рис.5).

Рис. 4. Вычисление площади с помощью прямоугольных параллелепипедов

Прямоугольный параллелепипед является инструментом для вычисления объемов любых фигур.

Рис. 5. Вычисление площади с помощью маленьких параллелепипедов

Давайте немного вспомним.

Квадрат со стороной 1 единица (рис. 6) имеет площадь в 1 квадратную единицу. Исходная линейная единица может быть любой: сантиметр, метр, километр, миля.

Например, 1 см 2 - это площадь квадрата со стороной 1 см.

Рис. 6. Квадрат и прямоугольник

Площадь прямоугольника - это количество таких квадратов, которые в него поместятся. (Рис. 6.)

Уложим единичные квадраты в длину прямоугольника в один ряд. Получилось 5 штук.

В высоту помещается 3 квадрата. Значит, всего помещается три ряда, в каждом по пять квадратов.

Итого площадь равна .

Понятно, что нет нужды каждый раз внутри прямоугольника размещать единичные квадраты.

Достаточно умножить длину одной стороны на длину другой.

Или в общем виде:

Очень похоже обстоят дела с объемом прямоугольного параллелепипеда.

Объем куба со стороной 1 единица - это 1 кубическая единица. Опять же, исходные линейные величины могут быть любыми: миллиметры, сантиметры, дюймы.

Например, 1 см 3 - это объем куба со стороной 1 см, а 1 км 3 - это объем куба со стороной 1 км.

Найдем объем прямоугольного параллелепипеда со сторонами 7 см, 5 см, 4 см. (Рис. 7.)

Рис. 7. Прямоугольный параллелепипед

Объем нашего прямоугольного параллелепипеда - это количество единичных кубов, помещающихся в него.

Уложим на дно ряд единичных кубиков со стороной 1 см вдоль длинной стороны. Поместилось 7 штук. Уже по опыту работы с прямоугольником мы знаем, что на дно поместится всего 5 таких рядов, по 7 штук в каждом. То есть всего:

Назовем это слой. Сколько таких слоев мы можем уложить друг на друга?

Это зависит от высоты. Она равна 4 см. Значит, укладывается 4 слоя в каждом по 35 штук. Всего:

А откуда у нас появилось число 35? Это 75. То есть количество кубиков мы получили перемножением длин всех трех сторон.

Но это и есть объем нашего прямоугольного параллелепипеда.

Ответ: 140

Теперь мы можем записать формулу и в общем виде. (Рис. 8.)

Рис. 8. Объем параллелепипеда

Объем прямоугольного параллелепипеда со сторонами , , равен произведению всех трех сторон.

Если длины сторон даны в сантиметрах, то объем получится в кубических сантиметрах (см 3).

Если в метрах, то объем в кубических метрах (м 3).

Аналогично объем может быть измерен в кубических миллиметрах, километрах и т. д.

Стеклянный куб со стороной 1 м наполнен водой целиком. Какова масса воды? (Рис. 9.)

Рис. 9. Куб

Куб является единичным. Сторона - 1 м. Объем - 1 м 3 .

Если мы знаем, сколько весит 1 кубический метр воды (сокращенно говорят кубометр), то задача решена.

Но если мы этого не знаем, то нетрудно посчитать.

Длина стороны .

Посчитаем объем в дм 3 .

Но 1 дм 3 имеет отдельное название, 1 литр. То есть у нас 1000 литров воды.

Нам всем известно, что масса одного литра воды равна 1 кг. То есть у нас 1000 кг воды, или 1 тонна.

Понятно, что такой куб, наполненный водой, не под силу передвинуть ни одному обычному человеку.

Ответ: 1 т.

Рис. 10. Холодильник

Холодильник имеет высоту 2 метра, ширину 60 см и глубину 50 см. Найти его объем.

Прежде чем мы воспользуемся формулой объема - произведение длин всех сторон - необходимо перевести длины в одинаковые единицы измерения.

Мы можем перевести все в сантиметры.

Соответственно, и объем мы получим в кубических сантиметрах.

Думаю, вы согласитесь, что в кубических метрах объем более понятен.

Человек на глаз плохо отличает число с пятью нулями от числа с шестью нулями, а ведь одно в 10 раз больше, чем другое.

Часто нам нужно перевести одну единицу объема в другую. Например, кубометры в кубические дециметры. Тяжело запомнить все эти соотношения. Но этого и не нужно делать. Достаточно понять общий принцип.

Например, сколько кубических сантиметров в кубическом метре?

Давайте посмотрим, сколько кубиков со стороной 1 сантиметр поместится в куб со стороной 1 м. (Рис. 11.)

Рис. 11. Куб

В один ряд укладывается 100 штук (ведь в одном метре 100 см).

В один слой укладывается 100 рядов или кубиков.

Всего помещается 100 слоев.

Таким образом,

То есть если линейные величины связаны соотношением «в одном метре 100 см», то чтобы получить соотношение для кубических величин, нужно возвести 100 в 3 степень (). И не нужно каждый раз чертить кубы.

Прямоугольным параллелепипедом называется фигура, в основании которой находится прямоугольник. Фигура имеет шесть граней. Грани, пресекаясь, образовывают ребра, их 12.

Прямоугольный параллелепипед имеет четыре боковые грани. В жизни мы часто сталкиваемся с данной фигурой: шкаф, холодильник, коробка – все они имею форму прямоугольного параллелепипеда.

Рис. 1. Прямоугольный параллелепипед

Формула объема данной фигуры

Объем куба (фигуры, в основании которого находится квадрат) со стороной 1 единица называется 1 кубическая единица.

Рис. 2. Единичный куб

Если дно чтобы заложить такими кубиками дно фигуры в длину понадобится 4 куба, а в ширину 3.

Рис. 3. Прямоугольный параллелепипед, который заполнен шаром кубов

Таким образом, для заполнения основания необходимо:

3 х 4 =12 – так мы вычисляли площадь.

Чтобы заполнить всю фигуру и узнать объем, необходимо посчитать, сколько поместится в высоту таких слоев кубов, к примеру, если это будет 2, то объем составит:

3 х 4 х 2 = 24 кубов

Так, если учесть что длина основания фигуры 4 единицы, ширина – 3, высота – 2, то для того чтобы вычесть объем прямоугольного параллелепипеда необходимо найти произведение этих величин или измерений. Фигура, которая имеет три измерения, называется трехмерной либо объемной.

Для обозначения объема используют букву V.

Формула объема прямоугольного параллелепипеда имеет вид:

$$V = a · b · c$$

При необходимости все данные в задании необходимо перевести в одни единицы измерения.

Единицами измерения является $мм^3, см^3, дм^3$ и так далее. Важно правильно читать: $1 м^3$ и так далее.

Английский иллюзионист провел 44 дня в стеклянном прямоугольном параллелепипеде, который был подвешен над рекой Темза. В его распоряжении была только вода, подушка, матрас и письменные принадлежности.

Задание: Вычесть объем фигура, ширина которой 4 дм., длина 50 мм., а высота 10 см.

Решение: Для начала необходимо перевести все данные в одну единицу измерения.

$4 дм. = 40 см$;

$50 мм. = 5 см$.

$V = 40 5 10 = 200 см^3$

Таким образом, объем фигуры $V = 200 см^3$

Для измерения объема жидкости используют особую единицу измерения литр – 1л.

Древние измерения жидкости, например кор = 220 л, бат = 22 л.

Измерения объема:

$$1 л = 1 000 см^3 = 1 дм^3$$

$$1 км^3 = 1000 000 000 м^3$$

$$1 м^3 = 1 000 дм^3 = 1 000 000 см^3$$

$$1 дм^3 = 1 000 см^3$$