Финальные вероятности состояний. Уравнения Колмогорова. Предельные вероятности состояний Со страниц истории

Пусть имеется техническая система с дискретными состояниями, в которой протекают марковские случайные процессы с непрерывным временем. Предположим, что все интенсивности потоков событий, переводящие систему из состояния в состояние постоянны , т.е. все потоки событий –– простейшие (стационарные пуассоновские).

Сформулируем следующую задачу: что будет происходить с системой при стремлении t ® ¥ ? Если функции P i (t) будут стремиться к каким-либо пределам, то будем их называть предельными вероятностями состояний .

Можно доказать следующее общее положение.

Если число состояний системы конечно и из каждого состояния за конечное число шагов можно перейти в любое другое (замкнутая система, рис.2.8а), то предельные вероятности состояний существуют и они не зависят ни от времени, ни от начального состояния системы.

При этом, естественно, сохраняется условие:

Рис. 2.7.8 а) –– граф замкнутой системы

Рис. 2.7.8 б) –– граф разомкнутой системы

Таким образом, при t ® ¥ в системе устанавливается некоторый предельный стационарный режим, который состоит в том, что система случайным образом меняет свои состояния, но вероятность каждого из них уже не зависит от времени: каждое из состояний реализуется с некоторой постоянной вероятностью P i .

При этом предельная вероятность P i представляет собой среднее относительное время пребывания системы в данном i-м состоянии, т.е. после перехода системы в установившийся режим работы она будет находиться в состоянии S i в течение времени, пропорциональном P i .

Например, если система имеет состояния S 0 , S 1 , S 2 и предельные вероятности равны 0.4, 0.1, 0.5, то после перехода в установившийся режим 40% времени система будет находиться в состоянии S 0 , 10% –– в состоянии S 1 и 50% –– в состоянии S 2 .

Для вычисления предельных вероятностей в системе дифференциальных уравнений Колмогорова необходимо левые части уравнений положить равными нулю (как производные от постоянных, поскольку теперь вероятности состояний не зависят от времени). Тогда исходная система дифференциальных уравнений трансформируется в систему линейных алгебраических уравнений, решение которых совместно с (2.85) дает возможность определить предельные вероятности P i .

Размеченный граф замкнутой системы имеет следующий вид.


Рис. 2.7.9. Размеченный граф замкнутой системы.

Система дифференциальных уравнений Колмогорова:

Соответствующая линейная система алгебраических уравнений:

Решением этой системы будут значения предельных вероятностей.

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Построить граф состояний следующего случайного процесса: система состоит из двух аппаратов по продаже билетов, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.

Решение:

Система может находиться в четырех состояниях, так как у каждого аппарата по продаже билетов есть два состояния (быть занятым или свободным). Пусть S 0 - оба аппарата заняты; S 1 - 1-ый занят, 2-ой свободен; S 2 - 1-ый свободен, 2-ой занят; S 3 - оба аппарата свободны. Построим граф состояний, отметив на нем все возможные состояния кругами, а возможные переходы из состояния в состояние обозначим стрелками. Получаем, что переход из S 0 в S 3 возможен либо через S 1 , либо через S 2 , либо напрямик, как показано на рисунке 4.

Рисунок 4 - Граф состояний аппаратов по продаже билетов

Найти предельные вероятности для системы S, граф которой изображен на рисунке.

Решение:

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют. Их можно найти из уравнений Колмогорова, составив систему по данному размеченному графу состояний, по следующему правилу:

Слева в уравнении стоит предельная вероятность данного состояния p i , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в данное состояние, на вероятности тех состояний, из которых эти состояния выходят.

Кроме этого надо учитывать, что сумма всех вероятностей данной конечной системы равна единице. Составим уравнения для состояний S 1 и S 2 (уравнение для состояния S 0 - «лишнее»):

Ответ: Система примерно 66,67% времени пребывает в состоянии S 0 , 25% - в состоянии S 1 и 8,33% времени находится в состоянии S 2 .

Найти валовой выпуск для сбалансированной многоотраслевой экономики в модели Леонтьева, если дана матрица прямых затрат А и вектор конечного потребления У:

Решение:

Для сбалансированной многоотраслевой экономики выполняется следующее соотношение:

Выразим валовой выпуск через конечное потребление и матрицу затрат:

Находим матрицу, обратную к (Е - А):

Найдем валовой выпуск:

Ответ: Валовой выпуск равен (811,3; 660,4).

*При решении задач использовался

Пусть имеется физическая система S с дискретными состояниями:

S 1 ,S 2 ,...,S n ,

в которой протекает марковский случайный процесс с непрерывным временем (непрерывная цепь Маркова). Граф состояний показан на рис. 23.

Предположим, что все интенсивности потоков событий, переводя­щих систему из состояния в состояние, постоянны:

другими словами, все потоки событий – простейшие (стационарные. пуассоновские) потоки.

Записав систему дифференциальных уравнений Колмогорова для вероятностей состояний и проинтегрировав эти уравнения при заданных начальных условиях, мы получим вероятности состояний, как функции времени, т. е. n функций:

p 1 (t), p 2 (t),…,p n (t),

при любом t дающих в сумме единицу: .

Поставим теперь следующий вопрос: что будет происходить с сис­темой S при t®¥? Будут ли функции p 1 (t), p 2 (t),…,p n (t) стремиться к каким-то пределам? Эти пределы, если они существуют, называются предельными (или «финальными») вероятностями состояний.

Можно доказать следующее общее положение. Если число состоя­ний системы S конечно и из каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности со­стояний существуют и не зависят от начального состояния системы .

На рис. 24 показан граф состояний, удовлетворяющий постав­ленному условию: из любого состояния система может рано или позд­но перейти в любое другое. Напротив, для системы, граф состояний которой показан на рис. 25, условие не выполнено. Очевидно, что если начальное состояние такой системы S 1 то, например, состояние S 6 при t®¥ может быть достигнуто, а если начальное состояние S 2 – не может.

Предположим, что поставленное условие выполнено, и предель­ные вероятности существуют:



(i = 1, 2,..., n). (6.1)

Предельные вероятности мы будем обозначать теми же буквами р 1 , р 2 , … р n , что и сами вероятности состояний, разумея подними на этот раз не переменные величины (функции времени), а постоянные числа.

Очевидно, предельные вероятности состоянии, так же как и допредельные, в сумме должны давать единицу:

Таким образом, при t®¥ в системе S устанавливается некоторый предельный стационарный режим: он состоит в том, что система случайным образом меняет свои состояния, но вероятность каждого из них уже не зависит от времени: каждое из состояний осу­ществляется с некоторой постоянной вероятностью. Каков смысл этой вероятности? Она представляет собой не что иное, как сред­нее относительное время пребывания си­стемы в данном состоянии. Например, если у системы S три возможных состояния: S 1 ,S 2 и S 3 , причем их предельные вероят­ности равны 0,2, 0,3 и 0,5, это означает, что после перехода к устано­вившемуся режиму система S в среднем две десятых времени будет находиться в состоянии S 1 три десятых – в состоянии S 2 и полови­ну времени – в состоянии S 3 . Возникает вопрос: как вычислить пре­дельные вероятности состояний р 1 , р 2 , … р n ?

Оказывается, для этого в системе уравнений Колмогорова, описывающих вероятности состояний, нужно положить все левые час­ти (производные) равными нулю.

Действительно, в предельном (установившемся) режиме все вероят­ности состояний постоянны, значит, их производные равны нулю.

Если все левые части уравнений Колмогорова для вероятностей состояний положить разными нулю, то система дифференциальных уравнений превратится в систему линейных алгеб­раических уравнений. Совместно с условием

(так называемым «нормировочным условием») эти уравнения дают возможность вычислить все предельные вероятности

р 1 , р 2 , … р n

Пример 1 . Физическая система S имеет возможные состояния: S l , S 2 , S 3 , S 4 , размеченный граф которых дан на рис. 26 (у каждой стрелки поставлено численное значение соответствующей интенсивности). Вычислить предельные ве­роятности состояний: р 1 , р 2 , р 3 , р 4 .

Решение . Пишем уравнения Колмогорова для вероятностей состояний:

(6.3)

Полагая левые части равными нулю, получим систему алгебраических уравнений для предельных вероятностей состояний:

(6.4)

Уравнения (6.4) – так называемые однородные уравнения (без свободного члена). Как известно из алгебры, эти уравнения определяют величины р 1 , р 2 , р 3 , р 4 только с точностью до постоянного множителя. К счастью, у нас есть нор­мировочное условие:

p 1 + p 2 + p 3 + p 4 = 1, (6.5)

которое, совместно с уравнениями (64), дает возможность найти все неизвест­ные вероятности.

Действительно, выразим из (6.4) все неизвестные вероятности через одну из них, например, через p 1 . Из первого уравнения:

p 3 = 5p 1

Подставляя во второе уравнение, получим:

р 2 = 2 p 1 + 2р 3 = 12 p 1 .

Четвертое уравнение дает:

p 4 = 1/2p 2 = 6 p 1 .

Подставляя все эти выражения вместо р 2 , р 3 , р 4 в нормировочное условие (6.5), получим

p 1 + 12p 1 + 5 p 1 + 6 p 1 = 1.

24 p 1 = 1, p 1 = 1/24, p 2 =12p 1 = 1/2.

p 3 = 5p 1 = 5/24. p 4 = 6 p 1 = 1/4.

Таким образом, предельные вероятности состояний получены, они равны;

p 1 = 1/24, p 2 = 1/2, p 3 = 5/24, p 4 = 1/4 (6.6)

Это значит, что в предельном, установившемся режиме система S будет проводить в состоянии S 1 в среднем одну двадцать четвертую часть времени, в состоянии S 2 – половину времени, в состоянии S 3 – пять двадцать четвертых и в состоянии S 4 – одну четверть времени.

Заметим, что решая эту задачу, мы совсем не пользовались одним из уравнений (6.4) – третьим. Нетрудно убедиться, что оно является следствием трех остальных: складывая все четыре уравнения, мы получим тождественный нуль. С равным успехом, решая систему, мы могли бы отбросить любое из четырех уравнений (6.4).

Примененный нами способ составления алгебраических уравнений для предельных вероятностей состояний сводился к следующему: сперва написать дифференциальные уравнения, а затем положить в них левые части равными ну­лю Однако можно записать алгебраические уравнения для предельных вероят­ностей и непосредственно, не проходя через этап дифференциальных. Проиллюстрируем это на примере.

Пример 2 . Граф состоянии системы показан на рис. 27. Написать ал­гебраические уравнения для предельных вероятностей состояний.

Решение . Не записывая дифференциальных уравнений, прямо пишем соот­ветствующие правые части и приравниваем их нулю; чтобы не иметь дела с от­рицательными членами, сразу переносим их в другую часть, меняя знак:

(6.7)

Чтобы в дальнейшем сразу же писать такие уравнения, полезно запом­нить следующее мнемоническое правило: «что втекает, то и вытекает», то есть для каждого состояния сумма членов, соответствующих входящим стрелкам, рав­на сумме членов, соответствующих выходящим; каждый член равен интенсивнос­ти потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого выходит стрелка.

В дальнейшем мы во всех случаях будем пользоваться именно этим кратчай­шим способом записи уравнений для предельных вероятностей.

Пример 3 . Написать алгебраические уравнения для предельных вероят­ностей состояний системы S , граф состояний которой дан на рис. 28. Решить эти уравнения.

Решение. Пишем алгебраические уравнения для предельных вероятно­стей состояний;

Нормировочное условие;

p 1 + p 2 + p 3 = 1 . (6.9)

Выразим с помощью первых двух уравнений (6.8) р 2 и р 3 через р 1:

Подставим их в нормировочное условие (6.9):

,

откуда .

; .

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем на примере случайного процесса из задачи 1, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния S i в S j происходят под воздействием простейших потоков событий с интенсивностями l ij (i, j=0,1,2,3); так, переход системы из состояния S 0 в S 1 будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния S 1 в S 0 - под воздействием потока «окончаний ремонтов» первого узла и т.п.
Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 1). Рассматриваемая система S имеет четыре возможных состояния: S 0 , S 1 , S 2 , S 3 .
Вероятностью i-го состояния называется вероятность p i (t) того, что в момент t система будет находиться в состоянии S i . Очевидно, что для любого момента t сумма вероятностей всех состояний равна единице:
. (8)
Рассмотрим систему в момент t и, задав малый промежуток Dt , найдем вероятность p 0 (t+Dt) того, что система в момент t+ Dt будет находиться в состоянии S 0 . Это достигается разными способами.
1. Система в момент t с вероятностью p 0 (t) находилась в состоянии S 0 , а за время Dt не вышла из него.
Вывести систему из этого состояния (см. граф на рис. 1) можно суммарным простейшим потоком с интенсивностью (l 01 +l 02), т.е. в соответствии с (15.7), с вероятностью, приближенно равной (l 01 +l 02)Dt . А вероятность того, что система не выйдет из состояния S 0 , равна . Вероятность того, что система будет находиться в состоянии S 0 , по первому способу (т.е. того, что находилась в состоянии S 0 и не выйдет из него за время Dt ), равна по теореме умножения вероятностей:
p 0 (t)· .
2. Система в момент t с вероятностями р 1 (t) (или p 2 (t)) находилась в состоянии S 1 или S 2 и за время Dt перешла в состояние S 0 .
Потоком интенсивностью l 10 (или l 20 - см. рис. 1) система перейдет в состояние S 0 с вероятностью, приближенно равной l 10 Dt (или l 20 Dt ). Вероятность того, что система будет находиться в состоянии S 0 по этому способу, равна р 1 (t)× l 10 Dt (или р 2 (t) × l 20 Dt ).
Применяя теорему сложения вероятностей, получим
p 0 (t+Δt)=p 1 ·λ 10 ·Δt+p 2 (t)·λ 20 ·Δt+p 0 (t),
откуда
,
Переходя к пределу при Dt ®0 (приближенные равенства, связанные с применением формулы (7), перейдут в точные), получим в левой части уравнения производную p’ 0 (t ) (обозначим ее для простоты p’ 0):
p′ 0 = λ 10 ·p 1 +λ 20 ·p 2 +(λ 10 +λ 20)·p 0 ,
Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.
Рассуждая аналогично для других состояний системы S, можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:
(9)
Сформулируем правило составления уравнений Колмогорова. В левой части каждого из них стоит производная вероятности i-го состояния. В правой части - сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).
В системе (9) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение (8).
Особенность решения дифференциальных уравнений вообще состоит в том, что требуется задать так называемые начальные условия, т.е. в данном, случае вероятности состояний системы в начальный момент t = 0. Так, например, систему уравнений (9) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии S 0 , т.е. при начальных условиях p 0 (0)=1, p 1 (0)=p 2 (0)=p 3 (0)=0.
Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени . Особый интерес представляют вероятности системы p i (t ) в предельном стационарном режиме, т.е. при t→∞, которые называются предельными (или финальными) вероятностями состояний.
В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.
Предельная вероятность состояния S i имеет четкий смысл: она показывает среднее относительное время пребывания системы в этом состоянии. Например, если предельная вероятность состояния S 0 , т.е. p 0 =0,5, то это означает, что в среднем половину времени система находится в состоянии S 0 .
Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы S с графом состояний, изображенном на рис. 1, такая система уравнений имеет вид:
(10)
Систему (10) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом, согласно которому слева в уравнениях стоит предельная вероятность данного состояния p i , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Задача 2. Найти предельные вероятности для системы S задачи 1, граф состояний которой приведен на рис. 1, при l 01 =1, l 02 =2, l 10 =2, l 13 =2, l 20 =3, l 23 =1, l 31 =3, l 32 =2.
Решение . Система алгебраических уравнений , описывающих стационарный режим для данной системы, имеет вид (10) или
3p 0 =2p 1 +3p 2 (11)
4p 1 =p 0 +3p 3
4p 2 =2p 0 +2p 3
p 0 +p 1 +p 2 +p 3 =1
(Здесь мы вместо одного "лишнего" уравнения системы (10) записали нормировочное условие (8)).
Решив систему (11), получим p 0 =0,40, p 1 =0,20, p 2 =0,27, p 3 =0,13, т.е. в предельном, стационарном режиме система S в среднем 40% времени будет находиться в состоянии S 0 (оба узла исправны), 20% - в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% времени - в состоянии S 3 (оба узла ремонтируются).

Задача 3. Найти средний чистый доход от эксплуатации в стационарном режиме системы S в условиях задач 1 и 2, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 ден.ед., а их ремонт требует затрат соответственно в 4 и 2 ден.ед. Оценить экономическую эффективность СМО имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).
Решение. Из задачи 2 следует, что в среднем первый узел исправно работает долю времени, равную p 0 +p 3 =0,40+0,27=0,67, а второй узел - p 0 +p 1 =0,40+0,20=0,60. В то же время первый узел находится в ремонте в среднем долю времени, равную p 1 +p 3 =0,20+0,13=0,33, а второй узел – p 2 +p 3 =0,27+0,13=0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы, т.е. разность между доходами и затратами, равен
Д=0,67 ×10+0,60×6-0,33 ×4-0,40×2=8,18 ден.ед.
Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с (6) будет означать увеличение вдвое интенсивностей потока "окончаний ремонтов" каждого узла, т.е. теперь l 10 =4, l 20 =6, l 31 =6, l 32 =4 и система линейных алгебраических уравнений (10), описывающая стационарный режим системы вместе с нормировочным условием (8) примет вид:
3p 0 =4p 1 +6p 2
6p 1 =p 0 +6p 3
7p 2 =2p 0 +4p 3
p 0 +p 1 +p 2 +p 3 =1
Решив систему, получим p 0 =0,60, p 1 =0,15, p 2 =0,20, p 3 =0,05.
Учитывая, что p 0 +p 2 =0,60+0,20=0,80, p 0 +p 1 =0,60+0,15=0,75, p 1 +p 3 =0,15+0,05=0,20, p 2 +p 3 =0,20+0,05=0,25, а затраты на ремонт первого и второго узла составляют теперь соответственно 8 и 4 ден. ед., вычислим средний чистый доход в единицу времени:Д 1 =0,80 ×10+0,75×6-0,20 ×8-0,25×4=9,9 ден.ед.
Так как Д 1 больше Д (примерно на 20%), то экономическая целесообразность ускорения ремонтов узлов очевидна.

Пример . Техническое устройство может находиться в одном из трех состояний S 0 , S 1 , S 2 . Интенсивность потоков, переводящих устройство из состояния, заданы в таблице.

Необходимо построить размеченный граф состояний, записать систему уравнений Колмогорова, найти финальные вероятности и сделать анализ полученных решений.
Размеченный граф состояний имеет вид.






p 0 (t) + p 1 (t) + p 2 (t) = 1





p 0 (t) + p 1 (t) + p 2 (t) = 1


2p 0 -3p 1 = 0
2p 0 +2p 1 -3p 2 =0
p 0 + p 1 + p 2 = 1
Решим СЛАУ с помощью метода Гаусса.
Вывод: При достаточно большом времени работы техническое устройство с вероятностью p 0 = 0.36 будет находиться в состоянии S 0 , с вероятностью p 1 = 0.24 в состоянии S 1 и с вероятностью p 2 = 0.4 в состоянии S 2 .

Пример .
Техническое устройство может находиться в одном из трех состояний S 0 , S 1 , S 2 . Интенсивность потоков, которые переводят устройства из одного состояния во второе, известны λ 01 =2, λ 10 =4, λ 21 =2, λ 12 =3, λ 20 =4.
Необходимо построить размеченный граф состояний, записать систему уравнений Колмогорова, найти финальные вероятности и сделать анализ полученных решений.
Размеченный граф состояний имеет вид.


По графу запишем систему уравнений Колмогорова в общем виде:

Вместо интенсивности потоков λ ij запишем их конкретные значения и получим искомую систему:

Чтобы найти финальные вероятности состояний, в уравнениях Колмогорова отбросим первое уравнения, а по остальным составим систему алгебраических уравнений:
2p 0 -7p 1 +2p 2 =0
3p 1 -6p 2 =0
p 0 +p 1 +p 2 =1
Делим первое уравнение на 2, а второе на 3 и получим систему
p 0 -7p 1 +2p 2 =0
3p 1 -6p 2 =0
p 0 +p 1 +p 2 =1
Из третьего уравнения вычитаем первое
p 0 -3.5p 1 +p 2 =0
p 1 -2p 2 =0
4.5p 1 =1
Отсюда получим p 1 =0,22, p 2 =0,11 и p 0 =0,67.
Вывод: При достаточно большом времени работы техническое устройство с вероятностью p 0 = 0,67 будет находиться в состоянии S 0 , с вероятностью p 1 = 0,22 в состоянии S 1 и с вероятностью p 2 = 0,11 в состоянии S 2 .

Процесс гибели и размножения

В теории массового обслуживания широкое распространение имеет специальный класс случайных процессов - так называемый процесс гибели и размножения . Название этого процесса связано с рядом биологических задач, где он является математической моделью изменения численности биологических популяций.
Граф состояний процесса гибели и размножения имеет вид, показанный на рис. 4.

Рис. 4
Рассмотрим упорядоченное множество состояний системы S 0 , S 1 , S 2 , …, S k . Переходы могут осуществляться из любого состояния только в состояния с соседними номерами, т.е. из состояния S k возможны переходы только либо в состояние S k-1 , либо в состояние S k+1 . (При анализе численности популяций считают, что состояние S k соответствует численности популяции, равной k, и переход системы из состояния S k в состояние S k+1 происходит при рождении одного члена популяции, а переход в состояние S k-1 , - при гибели одного члена популяции).
Предположим, что все потоки событий, переводящие систему по стрелкам графа, простейшие с соответствующими интенсивностями l k, k+1 или l k+1, k .
По графу, представленному на рис. 4, составим и решим алгебраические уравнения для предельных вероятностей состояний (их существование вытекает из возможности перехода из каждого состояния в каждое другое и конечности числа состояний).
В соответствии с правилом составления таких уравнений (см. 13) получим: для состояния S 0
λ 01 p 0 = λ 10 p 1 (12)
для состояния S 1 – (l 12 +l 10)p 1 =l 01 p 0 +l 21 p 2 , которое с учетом (12) приводится к виду
λ 12 p 1 = λ 21 p 2 (13)
Аналогично, записывая уравнения для предельных вероятностей других состояний, можно получить следующую систему уравнений:
(14)
к которой добавляется нормировочное условие
p 0 +p 1 +p 2 +...+p n =1 (15)
Решая систему (14), (15), можно получить (16)
(17)
Легко заметить, что в формулах (17) для p 1 , p 2 , …, p n коэффициенты при p 0 есть слагаемые, стоящие после единицы в формуле (16). Числители этих коэффициентов представляют произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо до данного состояния S k (k=1, 2, …, n), а знаменатели - произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево до состояния S k .

Задача 4. Процесс гибели и размножения представлен графом (рис. 5). Найти предельные вероятности состояний.

Рис. 5

Решение. По формуле (16) найдем

по (17) – т.е. в установившемся, стационарном режиме в среднем 70,6% времени система будет находиться в состоянии S 0 , 17,6% - в состоянии S 1 и 11,8% - в состоянии S 2 .