Поверхностное натяжение численно равно. Поверхностное натяжение воды – все дело в границе. Параметры влияющие на поверхностное натяжение

Поверхностное натяжение описывает способность жидкости противостоять силе тяжести. Например, вода на поверхности стола образует капли, поскольку молекулы воды притягиваются друг к другу, что противодействует силе тяжести. Именно благодаря поверхностному натяжению более тяжелые предметы, например насекомые, могут удерживаться на поверхности воды. Поверхностное натяжение измеряется в силе (Н), поделенной на единицу длины (м), или в количестве энергии на единицу площади. Сила, с которой взаимодействуют молекулы воды (когезионная сила), вызывает натяжение, в результате чего образуются капли воды (или других жидкостей). Поверхностное натяжение можно измерить с помощью нескольких простых предметов, которые есть практически в каждом доме, и калькулятора.

Шаги

C помощью коромысла

    Запишите уравнение для поверхностного натяжения. В данном эксперименте уравнение для определения поверхностного натяжения выглядит следующим образом: F = 2Sd , где F - сила в ньютонах (Н), S - поверхностное натяжение в ньютонах на метр (Н/м), d - длина используемой в эксперименте иглы. Выразим из этого уравнения поверхностное натяжение: S = F/2d .

    • Сила будет рассчитана в конце эксперимента.
    • Прежде чем приступить к эксперименту, с помощью линейки измерьте длину иглы в метрах.
  1. Сконструируйте небольшое коромысло. В данном эксперименте для определения поверхностного натяжения используются коромысло и небольшая игла, которая плавает на поверхности воды. Необходимо внимательно отнестись к сооружению коромысла, так как от этого зависит точность результата. Можно использовать различные материалы, главное, сделать горизонтальную перекладину из чего-то жесткого: дерева, пластмассы или плотного картона.

    • Определите центр стержня (например, соломинки или пластмассовой линейки), который вы собираетесь использовать в качестве перекладины, и просверлите или проткните в этом месте отверстие; это будет точка опоры перекладины, на которой та будет свободно вращаться. Если вы используете пластмассовую соломинку, просто проткните ее булавкой или гвоздем.
    • Просверлите или проткните отверстия на концах перекладины так, чтобы они располагались на одинаковом расстоянии от центра. Проденьте через отверстия нитки, на которых вы подвесите чашку для груза и иглу.
    • При необходимости подоприте коромысло книгами или другими достаточно твердыми предметами, чтобы перекладина оставалась в горизонтальном положении. Необходимо, чтобы перекладина свободно вращалась вокруг воткнутого в ее середину гвоздя или стержня.
  2. Возьмите кусок алюминиевой фольги и сверните ее в форме коробочки или блюдца. Совсем не обязательно, чтобы это блюдце имело правильную квадратную или круглую форму. Вы заполните его водой или другим грузом, так что позаботьтесь о том, чтобы оно выдержало вес.

    • Подвесьте коробочку или блюдце из фольги к одному концу перекладины. Проделайте по краям блюдца небольшие отверстия и проденьте через них нитку, так чтобы блюдце висело на перекладине.
  3. Подвесьте к другому концу перекладины иглу или скрепку, так чтобы она располагалась горизонтально. Привяжите горизонтально иглу или скрепку к нити, которая свисает с другого конца перекладины. Чтобы эксперимент удался, необходимо расположить иглу или скрепку именно горизонтально.

  4. Разместите на перекладине что-нибудь, например пластилин, чтобы уравновесить емкость из алюминиевой фольги. Прежде чем приступить к эксперименту, необходимо добиться, чтобы перекладина располагалась горизонтально. Блюдце из фольги тяжелее иглы, поэтому на его стороне перекладина опустится вниз. Прикрепите к противоположной стороне перекладины достаточное количество пластилина, чтобы она располагалась горизонтально.

    • Это называется балансировкой.
  5. Поместите свисающую на нитке иглу или скрепку в емкость с водой. На этом шаге потребуются дополнительные усилия, чтобы расположить иглу на поверхности воды. Проследите, чтобы игла не погрузилась в воду. Наполните емкость водой (или другой жидкостью с неизвестным поверхностным натяжением) и поставьте ее под висящей иглой, так чтобы игла расположилась прямо на поверхности жидкости.

    • Проследите при этом, чтобы удерживающая иглу веревка оставалась на месте и была достаточно натянута.
  6. Взвесьте на небольших весах несколько булавок или небольшое количество отмеренных капель воды. Вы будете добавлять в алюминиевое блюдце на коромысле по одной булавке или капле воды. При этом необходимо знать точный вес, при котором игла оторвется от поверхности воды.

    • Посчитайте количество булавок или капель воды и взвесьте их.
    • Определите вес одной булавки или капли воды. Для этого поделите общий вес на количество булавок или капель.
    • Предположим, 30 булавок весят 15 граммов, тогда 15/30 = 0,5, то есть одна булавка весит 0,5 грамма.
  7. Добавляйте булавки или капли воды по одной в блюдце из алюминиевой фольги до тех пор, пока игла не оторвется от поверхности воды. Постепенно добавляйте по одной булавке или капле воды. Внимательно наблюдайте за иглой, чтобы не пропустить момент, когда после очередного увеличения груза она оторвется от воды. Как только игла оторвется от поверхности жидкости, перестаньте добавлять булавки или капли воды.

    • Посчитайте количество булавок или капель воды, при котором игла на противоположном конце перекладины оторвалась от поверхности воды.
    • Запишите результат.
    • Повторите опыт несколько (5 или 6) раз, чтобы получить более точные результаты.
    • Посчитайте среднее значение полученных результатов. Для этого сложите число булавок или капель во всех экспериментах и поделите сумму на количество экспериментов.
  8. Переведите число булавок в силу. Для этого следует умножить количество граммов на 0,00981 Н/г. Чтобы рассчитать поверхностное натяжение, необходимо знать силу, которая понадобилась для отрыва иглы от поверхности воды. Поскольку вы сосчитали вес булавок на предыдущем шаге, чтобы определить силу, достаточно умножить этот вес на 0,00981 Н/г.

    • Умножьте число помещенных в блюдце булавок на вес одной булавки. Например, если вы положили 5 булавок весом по 0,5 грамма, их общий вес составит 0,5 г/булавка = 5 x 0,5 = 2,5 грамма.
    • Умножьте количество граммов на множитель 0,00981 Н/г: 2,5 x 0,00981 = 0,025 Н.
  9. Подставьте полученные значения в уравнение и найдите искомую величину. С помощью полученных в ходе эксперимента результатов можно определить поверхностное натяжение. Просто подставьте найденные величины и вычислите результат.

    • Допустим, что в приведенном выше примере длина иглы составляет 0,025 метра. Подставляем значения в уравнение и получаем: S = F/2d = 0,025 Н/(2 x 0,025) = 0,05 Н/м. Таким образом, поверхностное натяжение жидкости равно 0,05 Н/м.

ОПРЕДЕЛЕНИЕ

Коэффициент поверхностного натяжения — это физическая величина, численно равная силе поверхностного натяжения, которая действует на линию разрыва единичной длины. Это так называемый динамический смысл коэффициента поверхностного натяжения. Обозначается коэффициент поверхностного натяжения буквой . Тогда динамическое определение коэффициента поверхностного натяжения запишем в виде формулы:

где — модуль силы поверхностного натяжения, которая действует на линию разрыва поверхности. Она направлена по касательной к поверхности раздела двух фаз в направлении сокращения площади поверхности и нормально по отношению у линии разрыва. — длина линии разрыва поверхности.

Имеется другое определение коэффициента поверхностного натяжения — энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу () против сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости ():

где коэффициентом пропорциональности является коэффициент поверхностного натяжения.

Тогда коэффициент поверхностного натяжения можно определить как физическую величину, равную работе, которая необходима для увеличения площади поверхности жидкости при изотермическом процессе не единицу:

Коэффициент поверхностного натяжения — это положительная физическая величина ( title="Rendered by QuickLaTeX.com" height="12" width="45" style="vertical-align: 0px;">).

Молекулы поверхностного слоя жидкости имеют избыточную, в сравнении с молекулами внутренних слоев, потенциальную энергию. Потенциальную энергию поверхностного слоя можно вычислить как:

где S — площадь поверхности жидкости.

Свойства коэффициента поверхностного натяжения

Для чистых жидкостей при увеличении температуры коэффициент поверхностного натяжения уменьшается.

Величина коэффициента связана с силами межмолекулярного взаимодействия. Он может принимать различные значения. У летучих (хорошо испаряющихся) жидкостей меньше, чем у нелетучих.

Коэффициент поверхностного натяжения воды зависит от концентрации примесей в ней. Так, при добавлении в воду биологически активных веществ (паста, мыло) поверхностное натяжение воды уменьшается.

Коэффициент поверхностного натяжения можно найти, используя капилляры. Для этого капилляр опускают в сосуд с водой и измеряют высоту подъема жидкости (h). При этом коэффициент находят, применяя формулу:

где — плотность жидкости, — радиус капилляра, — краевой угол, — ускорение свободного падения.

Вообще говоря, поверхностное натяжение существует на границе твердых, жидких и газообразных тел. Но чаще рассматривают поверхностное натяжение на границе газ — жидкость.

Коэффициент поверхностного натяжения входит в известную формулу Лапласа, которая определяет добавочного давление (), которое вызывает кривизна поверхности жидкости:

где и — радиусы кривизны двух взаимно перпендикулярных сечений поверхности жидкости.

Единицы измерения

Основной единицей измерения коэффициента поверхностного натяжения в системе СИ является:

Н/м = Дж/м 2

Примеры решения задач

ПРИМЕР 1

Задание Какова разность уровней жидкости в двух сообщающихся капиллярах при полном несмачивании, если внутренние диаметры капилляров равны и ?
Решение Высоту поднятия жидкости в капилляре можно вычислить, применяя формулу:

По условию задачи мы имеем полное несмачивание, следовательно, краевой угол считаем равным . Тогда высота, на которую поднимется жидкость в первом капилляре равна:

во втором капилляре:

Разность уровней жидкости в капиллярах получается равной:

Ответ

Основная часть.

Для понимания основных свойств и закономерностей жидкого состояния вещества необходимо рассмотреть следующие аспекты:

Строение жидкости. Движение молекул жидкости .

Жидкость – это нечто такое, что может течь.

В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным.

Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным, и довольно быстро порядок в расположении частиц совсем исчезает.

Молекулы жидкости движутся гораздо более свободно, чем молекулы твердого тела, хотя и не так свободно, как молекулы газа.

Каждая молекула жидкости в течение некоторого времени движется то туда, то сюда, не удаляясь, однако от своих соседей. Но время от времени молекула жидкости вырывается из своего окружения и переходит в другое место, попадая в новое окружение, где опять в течение некоторого времени совершает движения, подобные колебанию. Значительные заслуги в разработке ряда проблем теории жидкого состояния принадлежит советскому ученому Я. И. Френкелю.

Cогласно Френкелю, тепловое движение в жидкостях имеет следующий характер. Каждая молекула в течение некоторого времени колеблется около определенного положения равновесия. Время от времени молекула меняет место равновесия, скачком перемещаясь на новое положение, отстоящего от предыдущего на расстояние порядка размеров самих молекул. То есть, молекулы лишь медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест.Таким образом, движение молекул жидкости представляет собой нечто вроде смеси движений в твердом теле и в газе: колебательное движение на одном месте сменяется свободным переходом из одного места в другое.

Давление в жидкости

Повседневный опыт учит нас, что жидкости действуют с известными силами на поверхность твердых тел, соприкасающихся с ними. Эти силы называются силами давления жидкости.



Прикрывая пальцем отверстие открытого водопроводного крана, мы ощущаем силу давления жидкости на палец. Боль в ушах, которую испытывает пловец, нырнувший на большую глубину, вызвана силами давления воды на барабанную перепонку уха. Термометры для измерения температуры на глубине моря должны быть очень прочными, чтобы давление воды не могло раздавить их.

Давление в жидкости обусловлено изменением ее объема – сжатием. По отношению к изменению объема жидкости обладают упругостью. Силы упругости в жидкости – это и есть силы давления. Таким образом, если жидкость действует с силами давления на соприкасающиеся с ней тела, это значит, что она сжата. Так как при сжатии плотность вещества растет то можно сказать, что жидкости обладают упругостью по отношению к изменению плотности.

Давление в жидкости перпендикулярно любой поверхности, помещенной в жидкость. Давление в жидкости на глубине h равно сумме давления на поверхности и величины, пропорциональной глубине:

Благодаря тому, что жидкости могут передавать статическое давление, практически не менее своей плотности они могут использоваться в устройствах, дающих выигрыш в силе: гидравлическом прессе.

Закон Архимеда

На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть жидкости и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Равнодействующая сил давления на тело, погруженное в жидкость, называется поддерживающей силой жидкости.

Если тело, погруженное в жидкость, предоставить самому себе, то оно потонет, останется в равновесии или всплывет на поверхность жидкости в зависимости от того, меньше ли поддерживающая сила, чем сила тяжести, действующая на тело, равна ей или больше ее.

Закон Архимеда заключается в том, что на тело, находящееся в жидкости, действует направленная вверх выталкивающая сила, равная весу вытесненной жидкости. На тело, погружённое в жидкость, действует выталкивающая сила (называемая силой Архимеда)

где ρ - плотность жидкости (газа), - ускорение свободного падения, а V - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности).

Если тело, погруженное в жидкость, подвешено к чаше весов, то весы показывают разность между весом тела в воздухе и весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Интересно отметить такой экспериментальный факт, что, находясь внутри другой жидкости большего удельного веса, жидкость по закону Архимеда «теряет» свой вес и принимает свою естественную, шарообразную форму.

Испарение

В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры.

Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией.

Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным.

С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей должна быть плотность пара, чтобы конденсация могла сравняться с испарением.

Кипение

Когда при нагревании жидкости достигается температура, при которой давление насыщенных паров равно внешнему давлению, устанавливается равновесие между жидкостью и ее насыщенным паром. При сообщении жидкости дополнительного количества теплоты происходит немедленное превращение соответствующей массы жидкости в пар. Этот процесс называется кипением.

Кипение – это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Например, для испарения 1 г воды при температуре 100° С и давлении, соответствующем атмосферному давлению на уровне моря, требуется затратить 2258 Дж, из которых 1880 идут на отделение молекул от жидкости, а остальные – на работу по увеличению объема, занимаемого системой, против сил атмосферного давления (1 г водяных паров при 100° С и нормальном давлении занимает объем 1,673 см 3 , тогда как 1 г воды при тех же условиях – лишь 1,04 см 3).

Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается.

По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения.

Температуры кипения различных жидкостей сильно отличаются, между собой и это находит широкое применение в технике, например, при разгонке нефтепродуктов.

Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.

Поверхностное натяжение жидкости

Свойство жидкости сокращать свою поверхность до минимума называется поверхностным натяжением. Поверхностное натяжение – явление молекулярного давления на жидкость, вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости. На поверхности жидкости молекулы испытывают действие сил, которые не являются симметричными. На находящуюся внутри жидкости молекулу со стороны соседей в среднем равномерно со всех сторон действует сила притяжения, сцепления. Если поверхность жидкости увеличивать, то молекулы будут двигаться против действия удерживающих сил. Таким образом, сила, стремящаяся сократить поверхность жидкости, действует в противоположном направлении внешней растягивающей поверхность силе. Эта сила называется силой поверхностного натяжения и вычисляется по формуле:

Коэффициент поверхностного натяжения()

Длина границы поверхности жидкости

Обратим внимание, что у легко испаряющихся жидкостей (эфира, спирта) поверхностное натяжение меньше, чем у жидкостей нелетучих (у ртути). Очень мало поверхностное натяжение у жидкого водорода и, особенно, у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико. Различие в поверхностном натяжении жидкостей объясняется различием в силах сцепления у разных молекул.

Измерения поверхностного натяжения жидкости показывают, что поверхностное натяжение зависит не только от природы жидкости, но и от его температуры: с повышением температуры различие в плотностях жидкости уменьшаются, в связи с этим уменьшается и коэффициент поверхностного натяжения - .

Благодаря поверхностному натяжению любой объем жидкости стремится уменьшить площадь поверхности, уменьшая таким образом и потенциальную энергию. Поверхностное натяжение – одна из упругих сил, ответственных за движение ряби на воде. В выпуклостях поверхностное тяготение и поверхностное натяжение тянут частицы воды вниз, стремясь сделать поверхность снова гладкой.

Жидкостные пленки

Все знают, как легко получить пену из мыльной воды. Пена – это множества пузырьков воздуха, ограниченных тончайшей пленкой из жидкости. Из жидкости, образующей пену, легко можно получить и отдельную пленку.

Эти пленки очень интересны. Они могут быть чрезвычайно тонки: в наиболее тонких частях их толщина не превосходит стотысячной доли миллиметра. Несмотря на свою тонкость, они иногда очень устойчивы. Мыльную пленку можно растягивать и деформировать, сквозь мыльную пленку может протекать струя воды, не разрушая ее.

Чем же объяснить устойчивость пленок? Непременным условием образования пленки является прибавление к чистой жидкости растворяющихся в ней веществ, притом таких, которые сильно понижают поверхностное натяжение

В природе и технике мы обычно встречаемся не с отдельными пленками, а с собранием пленок – пеной. Часто можно видеть в ручьях, там, где небольшие струйки падают в спокойную воду, обильное образование пены. В этом случае способность воды пениться связана с наличием в воде особого органического вещества, выделяющегося из корней растений. В строительной технике используют материалы, имеющие ячеистую структуру, вроде пены. Такие материалы дешевы, легки, плохо проводят теплоту и звуки и достаточно прочны. Для их изготовления добавляют в растворы, из которых образуются стройматериалы, вещества, способствующие пенообразованию.

Смачивание

Небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости. Ртуть, помещенная на поверхность твердого тела, не всегда образует круглые капли. Она растекается по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится.

Капля анилина имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда. Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность.

Это объясняется тем, что в случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекулы жидкости с молекулой твердого тела. В случае ртути и стекла силы сцепления между молекулами ртути и стекла малы по сравнению с силами сцепления между молекулами ртути, и ртуть собирается в каплю.

Такая жидкость называется не смачивающей твердое тело. В случае же ртути и цинка силы сцепления между молекулами жидкости и твердого тела превосходят силы сцепления, действующие между молекулами жидкости, и жидкость растекается по твердому телу. В этом случае жидкость называется смачивающей твердое тело.

Отсюда следует, что, говоря о поверхности жидкости, надо иметь в виду не только поверхность, где жидкость граничит с воздухом, но также и поверхность, граничащую с другими жидкостями и ли с твердым телом.

В зависимости от того, смачивает ли жидкость стенки сосуда или не смачивает, форма поверхности жидкости у места соприкосновения с твердой стенкой и газом имеет тот или иной вид. В случае несмачивания форма поверхности жидкости у края круглая, выпуклая. В случае смачивания жидкость у края принимает вогнутую форму.

Капиллярные явления

В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. д. Подобные явления можно также наблюдать в узких стеклянных трубочках. Узкие трубочки называются капиллярными или волосными.

При погружении такой трубочки одним концом в широкий сосуд в широкий сосуд происходит следующее: если жидкость смачивает стенки трубки, то она поднимется над уровнем жидкости в сосуде и притом тем выше, чем уже трубка; если жидкость не смачивает стенки, то наоборот уровень жидкости в трубке устанавливается ниже, чем в широком сосуде. Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности. В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения.

Высота поднятия жидкости в капиллярных трубках зависит от радиуса канала в трубке, поверхностного натяжения и плотности жидкости. Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней h, чтобы гидростатическое давление rgh уравновешивало капиллярное давление:

где s - поверхностное натяжение жидкости

R – радиус капилляра.

Высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости (закон Жюрена)

Кап, кап... Вот очередная капля собралась на носике крана, набухла и сорвалась вниз. Подобная картина знакома любому. Или теплый летний дождик поливает истосковавшуюся по влаге землю - и опять капли. А почему именно капли? В чем здесь причина? Все очень просто: причиной этого является поверхностное натяжение воды.

Это одно из свойств воды или, если говорить в общем, всех жидкостей. Как известно, газ заполняет весь объём, в который попадает, а вот жидкость этого сделать не может. Молекулы, находящиеся внутри объема воды, окружены такими же молекулами со всех сторон. А вот находящиеся на поверхности, на границе жидкости и газа, испытывают воздействие не со всех сторон, а только со стороны тех молекул, которые расположены внутри объема, со стороны газа на них воздействия нет.

При этом на поверхности жидкости будет действовать сила, направленная вдоль нее перпендикулярно к тому участку поверхности, на который она действует. В результате действия этой силы и возникает поверхностное натяжение воды. Внешним его проявлением будет образование подобия невидимой, упругой пленки на границе раздела. Вследствие воздействия поверхностного натяжения капля воды примет форму сферы как тела, имеющего наименьшую площадь при заданном объеме.

Теперь можно определить, что поверхностное натяжение - это работа по изменению поверхности жидкости. С другой стороны его можно определить как энергию, необходимую для разрыва единицы поверхности. Поверхностное натяжение возможно на границе жидкости и газа. Оно определяется силой, действующей между молекулами, и значит, ответственной за летучесть (испаряемость). Чем меньше величина поверхностного натяжения, тем более летучей будет жидкость.

Можно определить, чему равно Формула для его вычисления включает в себя площадь поверхности и Как уже упоминалось раньше, коэффициент не зависит от формы и величины поверхности, а определяется силой межмолекулярного взаимодействия, т.е. типом жидкости. Для разных жидкостей его величина будет различной.

Поверхностное натяжение воды можно менять. Это достигается нагреванием, добавлением биологически активных веществ - таких, как мыло, порошок, паста. Его величина зависит от степени чистоты воды. Чем чище вода, тем величина поверхностного натяжения больше, и она по своему значению уступает только ртути.

Любопытный эффект наблюдается, когда жидкость соприкасается и с твердым веществом, и с газом. Если мы нанесем каплю воды на поверхность парафина, то она примет форму шарика. Это вызвано тем, что силы, действующие между парафином и каплей, меньше, чем взаимодействие между собой в результате чего и появляется шарик. Когда силы, действующие между поверхностью и каплей, будут больше, чем силы межмолекулярного взаимодействия, то вода равномерно растечется по поверхности. Это явление называется смачиванием.

Эффект смачиваемости в какой-то степени может характеризовать степень чистоты поверхности. На чистой поверхности капля растекается равномерно, а если поверхность загрязнена или покрыта веществом, не смачиваемым водой, то последняя собирается в шарики.

Как пример использования поверхностного натяжения в промышленности можно привести отливку сферических деталей, например, дроби для ружей. Капли расплавленного металла просто застывают на лету, принимая шарообразную форму.

Поверхностное натяжение воды, как и любой другой жидкости, является одним из важных ее параметров. Оно определяет некоторые характеристики жидкости - такие, как летучесть (испаряемость) и смачиваемость. Его значение зависит только от параметров межмолекулярного взаимодействия.

В § 7.1 были рассмотрены опыты, свидетельствующие о стремлении поверхности жидкости к сокращению. Это сокращение вызывается силой поверхностного натяжения.

Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, и стремится сократить ее до минимума, называют силой поверхностного натяжения.

Измерение силы поверхностного натяжения

Чтобы измерить силу поверхностного натяжения, проделаем следующий опыт. Возьмем прямоугольную проволочную рамку, одна сторона которой АВ длиной l может перемещаться с малым трением в вертикальной плоскости. Погрузив рамку в сосуд с мыльным раствором, получим на ней мыльную пленку (рис. 7.11, а). Как только мы вытащим рамку из мыльного раствора, проволочка АВ сразу же придет в движение. Мыльная пленка будет сокращать свою поверхность. Следовательно, на проволочку АВ действует сила, направленная перпендикулярно проволочке в сторону пленки. Это и есть сила поверхностного натяжения.

Чтобы помешать проволочке двигаться, надо к ней приложить некоторую силу. Для создания этой силы можно прикрепить к проволочке мягкую пружину, закрепленную на основании штатива (см. рис. 7.11, о). Сила упругости пружины вместе с силой тяжести, действующей на проволочку, в сумме составят результирующую силу Для равновесия проволочки необходимо, чтобы выполнялось равенство
, где - сила поверхностного натяжения, действующая на проволочку со стороны одной из поверхностей пленки (рис. 7.11, б).

Отсюда
.

От чего зависит сила поверхностного натяжения?

Если проволочку переместить вниз на расстояние h , то внешняя сила F 1 = 2 F совершит работу

(7.4.1)

Согласно закону сохранения энергии эта работа равна изменению энергии (в данном случае поверхностной) пленки. Начальная поверхностная энергия мыльной пленки площадью S 1 равна U п 1 = = 2σS 1 , так как пленка имеет две поверхности одинаковой площади. Конечная поверхностная энергия

где S 2 - площадь пленки после перемещения проволочки на расстояние h . Следовательно,

(7.4.2)

Приравнивая правые части выражений (7.4.1) и (7.4.2), получим:

Отсюда сила поверхностного натяжения, действующая на границу поверхностного слоя длиной l , равна:

(7.4.3)

Направлена сила поверхностного натяжения по касательной к поверхности перпендикулярно границе поверхностного слоя (перпендикулярно проволочке АВ в данном случае, см. рис. 7.11, а).

Измерение коэффициента поверхностного натяжения

Существует много способов измерения поверхностного натяжения жидкостей. Например, поверхностное натяжение а можно определить, пользуясь установкой, изображенной на рисунке 7.11. Мы рассмотрим другой способ, не претендующий на большую точность результата измерений.

Прикрепим к чувствительному динамометру медную проволочку, изогнутую так, как показано на рисунке 7.12, a. Подставим под проволочку сосуд с водой так, чтобы проволочка коснулась поверхности воды (рис. 7.12, б) и «прилипла» к ней. Будем теперь медленно опускать сосуд с водой (или, что то же, поднимать динамометр с проволочкой). Мы увидим, что вместе с проволочкой поднимается обволакивающая ее водяная пленка, а показание динамометра при этом постепенно увеличивается. Оно достигает максимального значения в момент разрыва водяной пленки и «отрыва» проволочки от воды. Если из показаний динамометра в момент отрыва проволочки вычесть ее вес, то получится сила F , равная удвоенной силе поверхностного натяжения (у водяной пленки две поверхности):

где l - длина проволочки.

При длине проволочки 1 = 5 см и температуре 20 °С сила оказывается равной 7,3 · 10 -3 Н. Тогда

Результаты измерений поверхностных натяжений некоторых жидкостей приведены в таблице 4.

Таблица 4

Из таблицы 4 видно, что у легкоиспаряющихся жидкостей (эфира, спирта) поверхностное натяжение меньше, чем у нелетучих жидкостей, например у ртути. Очень мало поверхностное натяжение у жидкого водорода и особенно у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико.

Различие в поверхностном натяжении жидкостей объясняется различием в силах межмолекулярного взаимодействия.