Как регулировать альбедо деятельной поверхности. Суммарная радиация, отражение солнечной радиации, поглощенная радиация, фар, альбедо земли. Смотреть что такое "Альбедо" в других словарях

Для понимания процессов, влияющих на климат нашей планеты, вспомним некоторые термины.

Парниковый эффект – это повышение температуры нижних слоёв атмосферы по сравнению с температурой теплового излучения планеты. Суть явления заключается в том, что поверхность планеты поглощает солнечное излучение, в основном, в видимом диапазоне и, нагреваясь, излучает его обратно в пространство, но уже в инфракрасном диапазоне. Значительная часть инфракрасного излучения Земли поглощается атмосферой и частично вновь излучается на Землю. Этот эффект взаимного лучевого теплообмена в нижних слоях атмосферы и называется парниковым. Парниковый эффект – естественный элемент теплового баланса Земли. Без парникового эффекта средняя температура поверхности планеты составляла бы — 19°С вместо реальных +14°С. В течение последних нескольких десятков лет различные национальные и международные организации отстаивают гипотезу о том, что человеческая деятельность приводит к усилению парникового эффекта, а, значит, к дополнительному нагреву атмосферы. При этом существуют и альтернативные точки зрения, например, связывающие изменение температуры в атмосфере Земли с естественными циклами солнечной активности.(1)

В пятом оценочном докладе Межправительственной группы экспертов по изменению климата (2013-2014 гг.) констатируется, что, с вероятностью более 95%, влияние человека было доминирующей причиной потепления, наблюдаемого с середины ХХ в. Согласованность наблюдаемых и расчетных изменений во всей климатической системе указывает на то, что наблюдаемые изменения климата вызваны в первую очередь увеличением атмосферных концентраций парниковых газов, происходящим вследствие хозяйственной деятельности человека.

Текущее изменение климата России в целом следует охарактеризовать как продолжающееся потепление со скоростью, более чем в два с половиной раза превышающей среднюю скорость глобального потепления.(2)

Диффузное отражение - это отражение светового потока, падающего на поверхность, при котором отражение происходит под углом, отличающимся от падающего. Диффузным отражение становится в том случае, если неровности поверхности имеют порядок длины волны (или превышают её) и расположены беспорядочно. (3)

Альбедо Земли (А.З.) — Процентное отношение солнечной радиации, отданной земным шаром (вместе с атмосферой) обратно в мировое пространство, к солнечной радиации, поступившей на границу атмосферы. Отдача солнечной радиации Землей слагается из отражения от земной поверхности, рассеяния прямой радиации атмосферой в мировое пространство (обратного рассеяния) и отражения от верхней поверхности облаков. А. 3. в видимой части спектра (визуальное)-около 40%. Для интегрального потока солнечной радиации интегральное (энергетическое) А. 3. около 35%. В отсутствие облаков визуальное А. 3. было бы около 15%. (4)

Спектральный диапазон электромагнитного излучения Солнца - простирается от радиоволн до рентгеновских лучей. Однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра. На границе земной атмосферы ультрафиолетовая часть солнечного спектра составляет 5 %, видимая часть — 52 % и инфракрасная часть — 43 %, у поверхности Земли ультрафиолетовая часть составляет 1 %, видимая — 40 % и инфракрасная часть солнечного спектра — 59 %. (5)

Со́лнечная постоя́нная - суммарная мощность солнечного излучения, проходящего через единичную площадку, ориентированную перпендикулярно потоку, на расстоянии одной астрономической единицы от Солнца вне земной атмосферы. По данным внеатмосферных измерений солнечная постоянная составляет 1367 Вт/м².(3)

Площадь поверхности Земли – 510 072 000 км2.

  1. Основная часть.

Изменения в современном климате (в сторону потепления) называют глобальным потеплением.

Простейший механизм глобального потепления выглядит следующим образом.

Солнечная радиация, поступая в атмосферу нашей планеты, в среднем, отражается на 35%, что является интегральным альбедо Земли. Большая из оставшейся части поглощается поверхностью, которая нагревается. Остальное усваивается растениями в процессе фотосинтеза.

Нагретая поверхность Земли начинает излучать в инфракрасном диапазоне, но это излучение не уходит в космос, а задерживается парниковыми газами. Виды парниковых газов мы рассматривать не будем. Чем больше парниковых газов, тем больше обратно ими на Землю излучается тепла, и тем выше, соответственно, становится средняя температура поверхности Земли.

Парижское соглашение - соглашение в рамках Рамочной конвенции ООН об изменении климата, рассматривает необходимость «держать рост глобальной средней температуры «намного ниже» 2 °C и «приложить усилия» для ограничения роста температуры величиной 1,5 °C». Но в нем, кроме сокращения выбросов парниковых газов, нет алгоритма решения этой проблемы.

Учитывая, что США вышли из этого соглашения 01 июня 2017 года, необходим новый международный проект. И Россия может его предложить.

Главным преимуществом нового соглашения должен быть – ясный и эффективный механизм смягчения воздействия парниковых газов на климат Земли.

Самым интересным способом уменьшения влияния парниковых газов на климат может стать увеличение среднего альбедо Земли.

Давайте поподробней рассмотрим его.

В России около 625 000 км дорог, покрытых асфальтом, в Китае и США – суммарно на порядок больше.

Даже если допустить, что все дороги в России однополосные и 4-ой категории (что само по себе абсурдно), то минимальная ширина составит 3м (согласно СНиП 2.07.01-89). Площадь дорог будет 1875 км2. Или 1 875 000 000 м2.

Солнечная постоянная вне атмосферы, как мы помним 1.37 кВт/м2.

Для упрощения возьмем среднюю полосу, где солнечная энергия у поверхности земли (усредненное значение за год) будет приблизительно равна 0.5 кВт/м2.

Получаем, что на дороги РФ падает мощность солнечной радиации 937 500 000 Ватт.

Теперь делим это число на 2. Т.к. Земля вертится. Получается 468 750 000 Вт.

Среднее интегральное альбедо асфальта 20%.

С помощью добавления пигмента или битого стекла, альбедо видимого диапазона асфальта возможно увеличить до 40%. Пигмент должен спектрально совпадать с диапазоном излучения нашей звезды. Т.е. иметь желто- зеленые расцветки. Но, одновременно – не ухудшать физические характеристики асфальтобетона и быть максимально дешевым и легким в синтезе.

При постепенной замене старого асфальтобетона на новый, в процессе естественного износа первого – суммарное увеличение отраженной мощности излучения составит 469 МВт х 0.4 (видимая часть Солнечного спектра) х0.2 (разница между старым и новым альбедо) 37.5 МВт.

Инфракрасную составляющую спектра в расчет не берем, т.к. она поглотится парниковыми газами.

В целом по миру эта величина составит более 500МВт. Это 0.00039% от общей поступающей мощности излучения на Землю. А для устранения парникового эффекта необходимо отразить мощность на 3 порядка больше.

Ухудшат ситуацию на планете и таяние ледников, т.к. их альбедо очень высоко.

Поверхность Характеристика Альбедо, %
Почвы
чернозем сухой, ровная поверхность свежевспаханный, влажный
суглинистая сухая влажная
песчаная желтоватая белесая речной песок 34 – 40
Растительный покров
рожь, пшеница в период полной спелости 22 – 25
пойменный луг с сочной зеленой травой 21 – 25
трава сухая
лес еловый 9 – 12
сосновый 13 – 15
березовый 14 – 17
Снежный покров
снег сухой свежевыпавший влажный чистый мелкозернистый влажный пропитан водой, серый 85 – 95 55 – 63 40 – 60 29 – 48
лед речной голубовато-зелёный 35 – 40
морской молочно-голубой цв.
Водная поверхность
при высоте Солнца 0,1° 0,5° 10° 20° 30° 40° 50° 60-90° 89,6 58,6 35,0 13,6 6,2 3,5 2,5 2,2 – 2,1

Преобладающая часть прямой радиации, отраженной земной по­верхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство около одной трети рассеянной радиации. Отношение всей уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного аль­бедо Земли. Планетарное альбедо Земли оценивается в 35 – 40 %. Основную его часть составляет отражение солнечной радиации облаками.

Таблица 2.6

Зависимость величины К н от широты места и времени года

Широта Месяцы
III IV V VI VII VIII IX X
0.77 0.76 0.75 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.77 0.76 0.76 0.77 0.78 0.81
0.80 0.77 0.77 0.76 0.76 0.77 0.79 0.82
0.80 0.78 0.77 0.77 0.77 0.78 0.79 0.83
0.81 0.78 0.77 0.77 0.77 0.78 0.80 0.83
0.82 0.78 0.78 0.77 0.77 0.78 0.80 0.84
0.82 0.79 0.78 0.77 0.77 0.78 0.81 0.85
0.83 0.79 0.78 0.77 0.77 0.79 0.82 0.86

Таблица 2.7

Зависимость величины К в+с от широты места и времени года

(по А.П. Браславскому и З.А. Викулиной)

Широта Месяцы
III IV V VI VII VIII IX X
0.46 0.42 0.38 0.37 0.38 0.40 0.44 0.49
0.47 0.42 0.39 0.38 0.39 0.41 0.45 0.50
0.48 0.43 0.40 0.39 0.40 0.42 0.46 0.51
0.49 0.44 0.41 0.39 0.40 0.43 0.47 0.52
0.50 0.45 0.41 0.40 0.41 0.43 0.48 0.53
0.51 0.46 0.42 0.41 0.42 0.44 0.49 0.54
0.52 0.47 0.43 0.42 0.43 0.45 0.50 0.54
0.52 0.47 0.44 0.43 0.43 0.46 0.51 0.55
0.53 0.48 0.45 0.44 0.44 0.47 0.51 0.56
0.54 0.49 0.46 0.45 0.45 0.48 0.52 0.57
0.55 0.50 0.47 0.46 0.46 0.48 0.53 0.58
0.56 0.51 0.48 0.46 0.47 0.49 0.54 0.59
0.57 0.52 0.48 0.47 0.47 0.50 0.55 0.60
0.58 0.53 0.49 0.48 0.48 0.51 0.56 0.60

Суммарная радиация, достигающая земной поверхности, не поглощается ею полностью, а частично отражается от земли. Поэтому при расчетах прихода солнечной энергии для какого-нибудь места необходимо принимать во внимание отражательную способность земной поверхности. Отражение радиации происходит также и от поверхности облаков. Отношение величины всего потока коротковолновой радиации Rк, отраженного данной поверхностью по всем направлениям, к потоку радиации Q, падающему на эту поверхность, называется альбедо (А) данной поверхности. Эта величина

показывает, какая часть падающей на поверхность лучистой энергии отражается от нее. Часто величину альбедо выражают в процентах. Тогда

(1.3)

В табл. № 1.5 приводятся величины альбедо различных видов земной поверхности. Из данных табл. № 1.5 видно, что наибольшей отражательной способностью обладает свежевыпавший снег. В отдельных случаях наблюдалась величина альбедо снега до 87%, а в условиях Арктики и Антарктики даже до 95%. Слежавшийся, подтаявший и тем более загрязненный снег отражает уже гораздо меньше. Альбедо различных почв и растительного покрова, как следует из табл. № 4, отличаются сравнительно незначительно. Многочисленные исследования показали, что величина альбедо часто изменяется в течение суток.

При этом наибольшие значения альбедо отмечаются утром и вечером. Объясняется это тем, что отражательная способность шероховатых поверхностей зависит от угла падения солнечных лучей. При отвесном падении солнечные лучи проникают глубже в растительный покров и там поглощаются. При малой высоте солнца лучи меньше проникают внутрь растительности и в большей мере отражаются от ее поверхности. Альбедо водных поверхностей в среднем меньше, чем альбедо поверхности суши. Объясняется это тем, что солнечные лучи (коротковолновая зелено-голубая часть солнечного спектра) в значительной мере проникают в прозрачные для них верхние слои воды, где рассеиваются и поглощаются. В связи с этим на отражательную способность воды оказывает влияние степень ее мутности.

Таблица № 1.5

Для загрязненной и мутной воды величины альбедо заметно возрастает. Для рассеянной радиации альбедо воды в среднем около 8-10%. Для прямой солнечной радиации альбедо водной поверхности зависит от высоты солнца: с уменьшением высоты солнца величина альбедо увеличивается. Так, при отвесном падении лучей отражается только около 2-5%. При низком положении солнца над горизонтом отражается 30-70%. Очень велика отражательная способность облаков. В среднем альбедо облаков около 80%. Зная величину альбедо поверхности и значение суммарной радиации, можно определить количество радиации, поглощенной данной поверхностью. Если А - альбедо, то величина а = (1-А) представляет собой коэффициент поглощения данной поверхности, показывающий, какая часть падающей на эту поверхность радиации ею поглощается.

Например, если на поверхность зеленой травы (А = 26%) падает поток суммарной радиации Q = 1,2 кал/см 2 мин, то процент поглощенной радиации будет

Q = 1- А = 1 - 0,26 = 0,74, или а = 74%,

а величина поглощенной радиации

В погл = Q (1 - А) = 1,2 ·0,74 = 0,89 кал\см2 ·мин.

Альбедо поверхности воды в большой степени зависит от угла падения солнечных лучей, поскольку чистая вода отражает свет по закону Френеля.

гдеZ п зенитный угол Солнца, Z 0 - угол преломления солнечных лучей.

Приположении Солнца в зените альбедо поверхности спокойного моря равна0,02. При росте зенитного угла СолнцаZ п альбедо увеличивается и достигает 0,35 приZ п =85.Волнение моря приводит к изменению Z п , и существенно уменьшает диапазон значений альбедо, поскольку оно увеличивается при больших Z n благодаря увеличению вероятности попадания лучей на наклоую волновую поверхность.Волнение влияет на отражающих способность не только из-занаклона поверхности волны относительно солнечных лучей, но и за счет образованием пузырей воздуха в воде. Эти пузыри в значительной степени рассеивают свет, увеличивая рассеяннуюрадиацию выходящего из моря. Поэтому при больших волнениях моря, когдавозникает пена и барашки, альбедо под влиянием обоих факторов увеличивается.Рассеянная радиация поступает к поверхности воды под разными углами.Интенсивность лучей различных направлений изменяется при изменении высоты Солнца, от которой зависит, как известно, интенсивность рассеивания солнечной радиации при безоблачном небе. Она зависит также от распределения облаков на небе. Поэтому альбедо поверхности моря для рассеянной радиации не является постоянным. Но границы его колебания более узкие 1 от 0,05 до 0,11.Следовательно, альбедо поверхности воды для суммарной радиации изменяется в зависимости от высоты Солнца, соотношение между прямой и рассеянной радиации, волнения поверхности моря.Надо иметь в виду, что северные части океанов в большой степени покрыты морским льдом. В таком случае надо учитывать и альбедо льда. Как известно, значительные пространства земной поверхности, особенно в средних и высоких широтах, покрытые облаками, которые очень отражают солнечную радиацию. Поэтому знания о альбедо облачности вызывают большой интерес. Были проведены специальные измерения альбедо облаков с помощью самолетов и аэростатов. Они показали, что альбедо облаков зависит от их формы и толщины.Наибольшие значения имеет альбедо высоко-кучевых и слоисто-кучевых облаков.Например, при толщине 300 м альбедо Ас находится в границах 71-73%, Sс - 56-64%, смешанных облаков Сu - Sс - около 50%.

Наиболееполные данные о альбедо облаков полученные в Украине. Зависимость альбедо и функции пропускания р от толщины облаков, является результатомсистематизации данных измерений, приводится в табл. 1.6. Как видно, рост толщины облаков приводит к увеличению альбедо и уменьшение функции пропускания.

Среднеезначение альбедо для облаков St при средней толщине 430 м равна 73%, для облаковS с при среднейтолщине 350м - 66%, а функции пропускания для указанных облаков равны соответственно 21 й 26%.

Альбедо облаков зависит от альбедо земной поверхности r 3 , над которой располагается облако. С физической точки зрения понятно, что чем большеr 3 , тем больше поток отраженной радиации, проходящей вверх через верхнюю границуоблака. Поскольку альбедо - это отношение этого потока до поступающего, то увеличение альбедо земной поверхности приводит к увеличению альбедо облаков.Исследование свойств облаков отражать солнечную радиацию проводились с помощью искусственных спутников Земли путем измерения яркости облаков.Средние значения альбедо облаков, полученные по этим данным, приводятся в табл.1.7.

Таблиця 1.7 - Средние значения альбедо облаков разных форм

По этим данным альбедо облаков колеблется от 29 до 86%. Обращает внимание тот факт, что перистые облака имеют небольшое альбедо по сравнению с другими формами облаков (за исключением кучевых). Только перисто-слоистые облака, которые имеют большую толщину, в значительной степени отражают солнечную радиацию(r= 74%).

Страница 17 из 81

Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли

Всю солнечную радиацию, приходящую к земной поверхности – прямую и рассеянную – называют суммарной радиацией. Таким образом, суммарная радиация

Q = S ? sin h + D ,

где S – энергетическая освещенность прямой радиацией,

D – энергетическая освещенность рассеянной радиацией,

h – высота стояния Солнца.

При безоблачном небе суммарная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая солнечный диск, увеличивает суммарную радиацию по сравнению с безоблачным небом; полная облачность, напротив, ее уменьшает. В среднем облачность уменьшает суммарную радиацию. Поэтому летом приход суммарной радиации в дополуденные часы в среднем больше, чем в послеполуденные.
По той же причине в первую половину года он больше, чем во вторую.

С.П. Хромов и А.М. Петросянц приводят полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе: в среднем 0,78 кВт/м 2 , при Солнце и облаках – 0,80, при сплошной облачности – 0,26 кВт/м 2 .

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем тонком слое почвы или в более толстом слое воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Итак, из общего потока суммарной радиации (S sin h + D ) от земной поверхности отражается часть его (S · sin h + D )А, где А – альбедо поверхности. Остальная часть суммарной радиации
(S · sin h + D ) (1 – А ) поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.

Альбедо поверхности почвы меняется в пределах 10–30%; у влажного чернозема оно снижается до 5%, а у сухого светлого песка может повышаться до 40%. С возрастанием влажности почвы альбедо снижается. Альбедо растительного покрова – леса, луга, поля – составляет 10–25%. Альбедо поверхности свежевыпавшего снега – 80–90%, давно лежащего снега – около 50% и ниже. Альбедо гладкой водной поверхности для прямой радиации меняется от нескольких процентов (если Солнце высоко) до 70% (если низко); оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей равно 5–10%. В среднем альбедо поверхности Мирового океана составляет 5–20%. Альбедо верхней поверхности облаков – от нескольких процентов до 70–80% в зависимости от типа и мощности облачного покрова – в среднем 50–60% (С.П. Хромов, М.А. Петросянц, 2004).

Приведенные цифры относятся к отражению солнечной радиации не только видимой, но и во всем ее спектре. Фотометрическими средствами измеряют альбедо только для видимой радиации, которое, конечно, может несколько отличаться от альбедо для всего потока радиации.

Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть (около одной трети) рассеянной радиации.

Отношение уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли, или просто альбедо Земли .

В целом планетарное альбедо Земли оценивается в 31%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.

Часть прямой и отраженной радиации участвует в процессе фотосинтеза растений, поэтому ее называют фотосинтетически активной радиацией (ФАР). ФАР – часть коротковолновой радиации (от 380 до 710 нм), наиболее активная в отношении фотосинтеза и продукционного процесса растений, представлена как прямой, так и рассеянной радиацией.

Растения способны потреблять прямую солнечную радиацию и отраженную от небесных и земных объектов в области длин волн от 380 до 710 нм. Поток фотосинтетически активной радиации составляет примерно половину солнечного потока, т.е. половину суммарной радиации, причем практически вне зависимости от метеоусловий и местоположения. Хотя, если для условий Европы характерно именно значение 0,5, то для условий Израиля оно несколько больше (около 0,52). Однако нельзя сказать, что растения одинаково используют ФАР на протяжении своей жизни и в различных условиях. Эффективность использования ФАР различна, поэтому были предложены показатели «коэффициент использования ФАР», который отражает эффективность использования ФАР и «КПД фитоценозов». КПД фитоценозов характеризует фотосинтетическую активность растительного покрова. Этот параметр нашел наиболее широкое применение у лесоводов для оценки лесных фитоценозов.

Необходимо подчеркнуть, что растения сами способны формировать ФАР в растительном покрове. Это достигается благодаря расположению листьев по направлению к солнечным лучам, поворотам листьев, распределением листьев разного размера и угла наклона на разных уровнях фитоценозов, т.е. с помощью так называемой архитектуры растительного покрова. В растительном покрове солнечные лучи многократно преломляются, отражаются от листовой поверхности, тем самым формируя свой внутренний радиационный режим.

Рассеянная внутри растительного покрова радиация имеет такое же фотосинтетическое значение, как и поступающая на поверхность растительного покрова прямая и рассеянная.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков
Химический состав осадков
Кислотность осадков
Общая циркуляция атмосферы

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.

Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.

Книга:

<<< Назад
Вперед >>>

Астероиды, как и все тела Солнечной системы кроме центрального тела, светят отраженным светом Солнца. При наблюдении глаз регистрирует световой поток, рассеянный астероидом в направлении на Землю и проходящий через зрачок. Характеристикой субъективного ощущения светового потока различной интенсивности, приходящего от астероидов, является их блеск. Именно этот термин (а не яркость) рекомендуется использовать в научной литературе. Фактически глаз реагирует на освещенность сетчатки, т. е. на световой поток, приходящийся на единицу площади площадки, перпендикулярной лучу зрения, на расстоянии Земли. Освещенность обратно пропорциональна квадрату расстояния астероида от Земли. Учитывая, что рассеянный астероидом поток обратно пропорционален квадрату его расстояния от Солнца, можно заключить, что освещенность на Земле обратно пропорциональна квадрату расстояний от астероида до Солнца и до Земли. Таким образом, если обозначить освещенность, создаваемую астероидом, находящимся на расстоянии r от Солнца и? от Земли, посредством E, а посредством E 1 - освещенность, создаваемую тем же телом, но находящимся на единичном расстоянии от Солнца и от Земли, то

E = E 1 r -2 ? -2 . (3.2)

В астрономии освещенность принято выражать в звездных величинах. Интервалом освещенности в одну звездную величину называется отношение освещенностей, создаваемых двумя источниками, при котором освещенность от одного из них в 2,512 раза превосходит освещенность, создаваемую другим. В более общем случае имеет место формула Погсона:

E m1 /E m2 = 2,512 (m2-m1) , (3.3)

где E m1 - освещенность от источника со звездной величиной m 1 , E m2 - освещенность от источника со звездной величиной m 2 (освещенность тем меньше, чем больше звездная величина). Из этих формул вытекает зависимость блеска астероида m, выраженного в звездных величинах, от расстояния r от Солнца и? от Земли:

m = m 0 + 5 lg(r?), (3.4)

где m 0 - так называемая абсолютная звездная величина астероида, численно равная звездной величине, которую имел бы астероид, находясь на расстоянии 1 а.е. от Солнца и Земли и при нулевом угле фазы (напомним, что углом фазы называется угол при астероиде между направлениями на Землю и на Солнце). Очевидно, что в природе подобная конфигурация трех тел осуществиться не может.

Формула (3.4) не полностью описывает изменение блеска астероида при его орбитальном движении. Фактически блеск астероида зависит не только от его расстояний от Солнца и Земли, но и от угла фазы. Эта зависимость связана, с одной стороны, с наличием ущерба (неосвещенной Солнцем части астероида) при наблюдении с Земли при ненулевом фазовом угле, с другой, - от микро- и макроструктуры поверхности.

Надо иметь в виду, что астероиды Главного пояса могут наблюдаться лишь при относительно небольших фазовых углах, приблизительно до 30°.

До 80-х гг. XX в. считалось, что добавление в формулу (3.4) слагаемого, пропорционального величине фазового угла, позволяет достаточно хорошо учесть изменение блеска в зависимости от угла фазы:

m = m 0 + 5 lg(r?) + k?, (3.5)

где? - угол фазы. Коэффициент пропорциональности k, хотя и отличается для разных астероидов, варьируется в основном в пределах 0,01–0,05 m /°.

Возрастание звездной величины m с ростом угла фазы согласно формуле (3.5) имеет линейный характер, m 0 есть ордината точки пересечения фазовой кривой (фактически прямой) с вертикалью при r = ? = 1 и? = 0°.

Более поздние исследования показали, что фазовая кривая астероидов имеет сложный характер. Линейный спад блеска (увеличение звездной величины объекта) с ростом фазового угла имеет место лишь в диапазоне приблизительно от 7° до 40°, после чего начинается нелинейный спад. С другой стороны, при углах фазы, меньших 7°, имеет место так называемый оппозиционный эффект - нелинейное нарастание блеска с уменьшением фазового угла (рис. 3.15).


Рис. 3.15. Зависимость звездной величины от угла фазы для астероида (1862) Apollo

С 1986 г. для вычислений видимой звездной величины астероидов в лучах V (визуальная полоса спектра фотометрической системы UBV ) применяется более сложная полуэмпирическая формула, которая позволяет более точно описать изменение блеска в диапазоне фазовых углов от 0° до 120° . Формула имеет вид

V = H + 5 lg(r?) - 2,5 lg[(1 - G)? 1 + G? 2 ]. (3.6)

Здесь H - абсолютная звездная величина астероида в лучах V, G - так называемый параметр наклона, ? 1 и? 2 - функции угла фазы, определяемые следующими выражениями:

I = exp { - A i B i }, i = 1, 2,

A 1 = 3,33, A 2 = 1,87, B 1 = 0,63, B 2 = 1,22.

После того как элементы орбиты определены и, следовательно, r, ? и? могут быть вычислены, формула (3.6) позволяет найти абсолютную звездную величину, если имеются наблюдения видимой звездной величины. Для определения параметра G требуются наблюдения видимой звездной величины при различных углах фазы. В настоящее время значение параметра G определено из наблюдений только для 114 астероидов, в том числе для нескольких АСЗ. Найденные значения G варьируются в пределах от –0,12 до 0,60. Для прочих астероидов значение G принимается равным 0,15.

Поток лучистой энергии Солнца в диапазоне длин волн видимого света, падающий на поверхность астероида, обратно пропорционален квадрату его расстояния от Солнца и зависит от размеров астероида. Этот поток частично поглощается поверхностью астероида, нагревая ее, а частично рассеивается по всем направлениям. Отношение величины рассеянного по всем направлениям потока к падающему потоку называется сферическим альбедо A. Оно характеризует отражательную способность поверхности астероида.

Сферическое альбедо принято представлять в виде произведения двух сомножителей:

Первый сомножитель p, называемый геометрическим альбедо, есть отношение блеска реального небесного тела при нулевом угле фазы к блеску абсолютно белого диска того же радиуса, что и небесное тело, расположенного перпендикулярно к солнечным лучам на том же расстоянии от Солнца и Земли, что и само небесное тело. Второй сомножитель q, называемый фазовым интегралом, зависит от формы поверхности.

В противоречии со своим названием геометрическое альбедо определяет зависимость рассеяния падающего потока не от геометрии тела, а от физических свойств поверхности. Значения именно геометрического альбедо приводят в таблицах и имеют в виду, когда говорят об отражательной способности поверхностей астероидов.

Альбедо не зависит от размеров тела. Оно тесным образом связано с минералогическим составом и микроструктурой поверхностных слоев астероида и может быть использовано для классификации астероидов и определения их размеров. Для разных астероидов альбедо варьируется в пределах от 0,02 (очень темные объекты, отражающие только 2 % падающего света Солнца) до 0,5 и более (очень светлые).

Для дальнейшего важно установить связь между радиусом астероида, его альбедо и абсолютной звездной величиной. Очевидно, что чем больше радиус астероида и чем больше его альбедо, тем больший световой поток он отражает в заданном направлении при прочих равных условиях. Освещенность, которую астероид создает на Земле, зависит также от его расстояния от Солнца и Земли и потока лучистой энергии Солнца, который может быть выражен через звездную величину Солнца.

Если обозначить освещенность, создаваемую Солнцем на Земле, как E ? , освещенность, создаваемую астероидом, - как E, расстояния от астероида до Солнца и Земли - как r и?, а радиус астероида (в а.е.) - как?, то для вычисления геометрического альбедо p можно использовать следующее выражение:


Если прологарифмировать это соотношение и заменить логарифм отношения E/E ? по формуле Погсона (3.3), то найдем

lg p = 0,4(m ? - m) + 2(lg r + lg ? - lg ?),

где m ? - видимая звездная величина Солнца. Заменим теперь m по формуле (3.4), тогда

lg p = 0,4(m ? - m 0) - 2 lg ?,

или, выражая диаметр D в километрах и полагая видимую звездную величину Солнца в лучах V равной –26,77 [Герелс, 1974], получим

lg D = 3,122 - 0,5 lg p - 0,2H, (3.7)

где H - абсолютная звездная величина астероида в лучах V.

<<< Назад