Что такое мост эйнштейна розена. Как теория эйнштейна предсказала черные дыры и кротовые норы. Условия образования "мостов" Эйнштейна-Розена

(англ.) русск. уравнений Эйнштейна , которые, в свою очередь, понимают как неотъемлемую часть максимально расширенной версии метрики Шварцшильда , описывающих вечную чёрную дыру, не изменяющуюся и не вращающуюся. При этом, «максимально расширенное » относится к тому, что пространство-время не должно иметь никаких «краёв »: для любой возможной траектории свободного падения частицы (следующей геодезической (англ.) русск. ) в пространстве-времени должна быть возможность продолжить этот путь сколь угодно далеко в будущее или прошлое частицы, за исключением случаев, когда траектория попадает в гравитационную сингулярность , как если бы находилась в центре внутренней части чёрной дыры. Чтобы удовлетворять данному требованию, получается, что в дополнение к внутренней области чёрной дыры, в которую частицы попадают, когда пересекают горизонт событий с внешней стороны, должна быть отдельная внутренняя область белой дыры , которая позволяет экстраполировать траектории частицы, которые сторонний наблюдатель видит, встав вдали от горизонта событий. И так же, как существуют две отдельные внутренние области пространства-времени, существуют две отдельные внешние области, которые иногда называют две разные «вселенные », наличие второй Вселенной позволяет экстраполировать некоторые возможные траектории частиц в двух внутренних областях. Это означает, что внутренняя область чёрной дыры может содержать смесь частиц, попавших в неё из любой Bселенной (таким образом, наблюдатель, увидевший свет из одной Вселенной, может увидеть свет и из другой Вселенной), а также частицы из внутренней области белой дыры могут вырываться в любую Вселенную. Все четыре области можно увидеть на пространственно-временной диаграмме Крускала-Секереша .

Напишите отзыв о статье "Мост Эйнштейна - Розена"

Ссылки

  • Зима К. . Телестудия Роскосмоса (12 ноября 2011).
  • (англ.) . Scientific American, a Division of Nature America, Inc (15 September 1997).
  • Visser M. General Interest Articles (англ.) . Victoria University of Wellington, New Zealand (3 October 1996).
  • Ideas Based On What We’d Like To Achieve (англ.) . NASA .gov.
  • Rodrigo E. (англ.) (2005).
  • Müller Th. Institut für Visualisierung und Interaktive Systeme (англ.) . Universität Stuttgart.

Отрывок, характеризующий Мост Эйнштейна - Розена

– У вас все на языке атаковать, а не видите, что мы не умеем делать сложных маневров, – сказал он Милорадовичу, просившемуся вперед.
– Не умели утром взять живьем Мюрата и прийти вовремя на место: теперь нечего делать! – отвечал он другому.
Когда Кутузову доложили, что в тылу французов, где, по донесениям казаков, прежде никого не было, теперь было два батальона поляков, он покосился назад на Ермолова (он с ним не говорил еще со вчерашнего дня).
– Вот просят наступления, предлагают разные проекты, а чуть приступишь к делу, ничего не готово, и предупрежденный неприятель берет свои меры.
Ермолов прищурил глаза и слегка улыбнулся, услыхав эти слова. Он понял, что для него гроза прошла и что Кутузов ограничится этим намеком.
– Это он на мой счет забавляется, – тихо сказал Ермолов, толкнув коленкой Раевского, стоявшего подле него.
Вскоре после этого Ермолов выдвинулся вперед к Кутузову и почтительно доложил:
– Время не упущено, ваша светлость, неприятель не ушел. Если прикажете наступать? А то гвардия и дыма не увидит.
Кутузов ничего не сказал, но когда ему донесли, что войска Мюрата отступают, он приказал наступленье; но через каждые сто шагов останавливался на три четверти часа.
Все сраженье состояло только в том, что сделали казаки Орлова Денисова; остальные войска лишь напрасно потеряли несколько сот людей.
Вследствие этого сражения Кутузов получил алмазный знак, Бенигсен тоже алмазы и сто тысяч рублей, другие, по чинам соответственно, получили тоже много приятного, и после этого сражения сделаны еще новые перемещения в штабе.
«Вот как у нас всегда делается, все навыворот!» – говорили после Тарутинского сражения русские офицеры и генералы, – точно так же, как и говорят теперь, давая чувствовать, что кто то там глупый делает так, навыворот, а мы бы не так сделали. Но люди, говорящие так, или не знают дела, про которое говорят, или умышленно обманывают себя. Всякое сражение – Тарутинское, Бородинское, Аустерлицкое – всякое совершается не так, как предполагали его распорядители. Это есть существенное условие.
Бесчисленное количество свободных сил (ибо нигде человек не бывает свободнее, как во время сражения, где дело идет о жизни и смерти) влияет на направление сражения, и это направление никогда не может быть известно вперед и никогда не совпадает с направлением какой нибудь одной силы.
Ежели многие, одновременно и разнообразно направленные силы действуют на какое нибудь тело, то направление движения этого тела не может совпадать ни с одной из сил; а будет всегда среднее, кратчайшее направление, то, что в механике выражается диагональю параллелограмма сил.
Ежели в описаниях историков, в особенности французских, мы находим, что у них войны и сражения исполняются по вперед определенному плану, то единственный вывод, который мы можем сделать из этого, состоит в том, что описания эти не верны.
Тарутинское сражение, очевидно, не достигло той цели, которую имел в виду Толь: по порядку ввести по диспозиции в дело войска, и той, которую мог иметь граф Орлов; взять в плен Мюрата, или цели истребления мгновенно всего корпуса, которую могли иметь Бенигсен и другие лица, или цели офицера, желавшего попасть в дело и отличиться, или казака, который хотел приобрести больше добычи, чем он приобрел, и т. д. Но, если целью было то, что действительно совершилось, и то, что для всех русских людей тогда было общим желанием (изгнание французов из России и истребление их армии), то будет совершенно ясно, что Тарутинское сражение, именно вследствие его несообразностей, было то самое, что было нужно в тот период кампании. Трудно и невозможно придумать какой нибудь исход этого сражения, более целесообразный, чем тот, который оно имело. При самом малом напряжении, при величайшей путанице и при самой ничтожной потере были приобретены самые большие результаты во всю кампанию, был сделан переход от отступления к наступлению, была обличена слабость французов и был дан тот толчок, которого только и ожидало наполеоновское войско для начатия бегства.

Мост Эйнштейна-Розена

Релятивистское описание черных дыр фигурирует в работе Карла Шварцшильда. В 1916 г., всего через несколько месяцев после того, как Эйнштейн записал свои знаменитые уравнения, Шварцшильд сумел найти для них точное решение и вычислить гравитационное поле массивной стационарной: звезды.

Решение Шварцшильда имело несколько интересных особенностей. Во-первых, вокруг черной дыры находится «точка невозврата». Любой объект, приблизившийся на расстояние, меньшее, чем этот радиус, неизбежно затянет в черную дыру, спастись ему не удастся. Человек, которому не посчастливится оказаться в пределах радиуса Шварцшильда, будет захвачен черной дырой и раздавлен насмерть. В настоящее время это расстояние от черной дыры называется радиусом Шварцшильда, или горизонтом событий (самой удаленной видимой точкой).

Во-вторых, каждый, кто окажется в пределах радиуса Шварцшильда, обнаружит «зеркальную вселенную» по «другую сторону» пространства-времени (рис. 10.2). Эйнштейна не беспокоило существование этой причудливой зеркальной Вселенной, потому что сообщение с ней было невозможным. Любой космический зонд, отправленный в центр черной дыры, столкнется с бесконечной искривленностью; иначе говоря, гравитационное поле окажется бесконечным, а любой материальный объект будет уничтожен. Электроны оторвутся от атомов, и даже протоны и нейтроны в ядре разнесет в разные стороны. Кроме того, чтобы проникнуть в другую вселенную, зонду понадобится лететь со скоростью, превышающей скорость света, а это невозможно. Таким образом, хотя зеркальная Вселенная математически необходима для понимания решения Шварцшильда, наблюдать ее физически не удастся никогда.

Рис. 10.2. Мост Эйнштейна-Розена соединяет две разных вселенных. Эйнштейн считал, что любая ракета, очутившаяся на этом мосту, будет уничтожена, значит, сообщение между этими двумя вселенными невозможно. Но более поздние вычисления показали, что путешествия помосту хоть и чрезвычайно трудны, но все-таки возможны.

В итоге известный мост Эйнштейна-Розена, соединяющий две вселенных (мост назван в честь Эйнштейна и его соавтора Натана Розена), считается математической причудой. Этот мост необходим для получения математически последовательной теории черных дыр, однако по мосту Эйнштейна-Розена попасть в зеркальную вселенную невозможно. Мосты Эйнштейна-Розена вскоре обнаружились и в других решениях гравитационных уравнений, таких, как решение Райснера-Нордстрёма для черной дыры с электрическим зарядом… Тем не менее мост Эйнштейна-Розена оставался любопытным, но забытым приложением к теории относительности.

Ситуация начала меняться с появлением труда новозеландского математика Роя Керра, который в 1963 г. нашел еще одно точное решение уравнений Эйнштейна. Керр полагал, что любая коллапсирующая звезда вращается. Как вращающийся фигурист, скорость которого возрастает, когда он прижимает к себе руки, звезда неизбежно будет вращаться быстрее по мере схлопывания. Таким образом, стационарное решение Шварцшильда для черных дыр не было самым физически релевантным решением уравнений Эйнштейна.

Предложенное Керром решение стало сенсацией в вопросах относительности. Астрофизик Субраманьян Чандрасекар однажды сказал:

Самым ошеломляющим событием за всю мою научную жизнь, т. е. более чем за сорок пять лет, стало осознание, что точное решение уравнений общей теории относительности Эйнштейна, открытое новозеландским математиком Роем Керром, дает абсолютно точное отображение бессчетного множества массивных черных дыр, наполняющих вселенную. Этот «трепет перед прекрасным», этот невероятный факт, что открытие, к которому привел поиск красоты в математике, обнаружило ее точную копию в Природе, убеждают меня, что красота - то, на что человеческий разум отзывается на самом глубинном, содержательном уровне.

Однако Керр обнаружил, что массивная вращающаяся звезда не сжимается в точку. Вместо этого вращающаяся звезда сплющивается, пока в конце концов не превращается в кольцо, обладающее примечательными свойствами. Если запустить зонд в черную дыру сбоку, он ударится об это кольцо и будет полностью уничтожен. Искривленность пространства-времени остается бесконечной, если приближаться к кольцу сбоку. Если можно так выразиться, центр все так же окружен «кольцом смерти». Но, если запустить космический зонд в кольцо сверху или снизу, ему придется иметь дело с большой, но конечной искривленностью; иначе говоря, гравитационная сила не будет бесконечной.

Этот весьма неожиданный вывод из решения Керра означает, что любой космический зонд, запущенный во вращающуюся черную дыру вдоль оси ее вращения, может в принципе пережить огромное, но конечное воздействие гравитационных полей в центре и проделать весь путь до зеркальной Вселенной, избежав гибели под воздействием бесконечной искривленности. Мост Эйнштейна-Розена действует как туннель, соединяющий две области пространства-времени; это и есть «червоточина», или «кротовина». Таким образом, черная дыра Керра - ворота в другую вселенную.

А теперь представим, что наша ракета очутилась на мосту Эйнштейна-Розена. Приближаясь к вращающейся черной дыре, она видит кольцеобразную вращающуюся звезду. Поначалу кажется, что ракету, спускающуюся навстречу черной дыре со стороны северного полюса, ждет катастрофическое столкновение. Но по мере приближения к кольцу свет зеркальной Вселенной достигает наших датчиков. Поскольку все электромагнитное излучение, в том числе и от радаров, движется по орбите черной дыры, на экранах наших радаров появляются сигналы, многократно проходящие вокруг черной дыры. Создается эффект, напоминающий зеркальную «комнату смеха», где нас вводят в заблуждение многочисленные отражения со всех сторон. Свет отражается рикошетом от множества зеркал, создавая иллюзию, будто комната полна наших точных копий.

Тот же самый эффект наблюдается при прохождении сквозь черную дыру согласно Керру. Поскольку один и тот же луч света обходит черную дыру по орбите множество раз, радар в нашей ракете обнаруживает изображения, вращающиеся вокруг черной дыры и создающие иллюзию объектов, которых на самом деле там нет.

Из книги Черные дыры и молодые вселенные автора Хокинг Стивен Уильям

8. Мечта Эйнштейна В первые годы XX века две новые теории совершенно изменили наше представление о пространстве и времени, да и о самой реальности тоже. Более чем через семьдесят пять лет мы все еще осознаем их смысл и пытаемся обобщить их в единую теорию, которая опишет все

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Из книги Самосознающая вселенная. Как сознание создает материальный мир автора Госвами Амит

Космологический вклад Эйнштейна Вклад, значительно способствовавший теоретическому осмыслению природы туманностей, поступил в астрономию из Швейцарии. Марсель Гроссман был одним из выпускников швейцарской Высшей технической школы (Политехникума) в Цюрихе. В его

Из книги Живой кристалл автора Гегузин Яков Евсеевич

Из книги История лазера автора Бертолотти Марио

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

ТЕОРИИ ЭЙНШТЕЙНА И ДЕБАЯ Открытие Дюлонга и Пти оказалось первым этапом почти вековой истории выяснения природы теплоемкости кристалла. Два последующих этапа связаны с именами великих физиков XX века - Альберта Эйнштейна и Петера Дебая. Их достижения относятся к

Из книги Гиперпространство автора Каку Мичио

Частная жизнь Эйнштейна После напряженной работы в предыдущие годы, в 1917 г. Эйнштейн серьезно заболел. Его кузина Эльза Эйнштейн, брак которой с торговцем по имени Ловенталь закончился разводом, ухаживала за Эйнштейном и в июне 1919 г. Альберт и Эльза поженились. Эльза,

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Конденсация Бозе-Эйнштейна Несомненно, одним из наиболее впечатляемых результатов современной физики было полученное в 1995 г. экспериментальное доказательство конденсации Бозе-Эйнштейна. В 1924 г. Эйнштейн предсказал существование особого состояния материи, в котором

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Глава 7 Пространство-время Эйнштейна

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

6. Реванш Эйнштейна Суперсимметрия - окончательное решение для полного объединения всех частиц. Абдус Садам Возрождение теории Калуцы-Клейна Эту проблему называли «величайшей в науке всех времен». В прессе ее именовали святым Граалем физики, стремлением объединить

Из книги автора

Из книги автора

Из книги автора

3. Построение уравнений Эйнштейна Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства-времени. При этом пространство-время

Из книги автора

4. Решение уравнений Эйнштейна Но если есть уравнения, значит их нужно решать. То есть при ограничениях и условиях каждой конкретной задачи или модели нужно найти метрические коэффициенты в каждой точке пространства-времени и тем самым определить его геометрические

На публикацию работу с основными уравнениями общей теории относительности (ОТО). Позднее стало понятно, что новая теория гравитации, которой в 2015 году исполняется сто лет, предсказывает существование черных дыр и пространственно-временных тоннелей. О них и расскажет «Лента.ру».

Что такое ОТО

В основе ОТО лежат принципы эквивалентности и общей ковариантности. Первое (слабый принцип) означает пропорциональность инертной (связанной с движением) и гравитационной (связанной с тяготением) масс и позволяет (сильный принцип) в ограниченной области пространства не различать гравитационное поле и движение с ускорением. Классический пример - лифт. При его равноускоренном движении вверх относительно Земли находящийся в нем наблюдатель не в состоянии определить, находится он в более сильном гравитационном поле или перемещается в рукотворном объекте.

Второй принцип (общей ковариантности) предполагает сохранение уравнениями ОТО своего вида при преобразованиях специальной теории относительности, созданной Эйнштейном и другими физиками к 1905 году. Идеи эквивалентности и ковариантности привели к необходимости рассмотрения единого пространства-времени, которое искривляется в присутствии массивных объектов. Это отличает ОТО от классической теории тяготения Ньютона, где пространство всегда плоское.

ОТО в четырехмерии включает в себя шесть независимых дифференциальных уравнений в частных производных. Для их решения (нахождения явного вида метрического тензора, описывающего кривизну пространства-времени) необходимо задание граничных и координатных условий, а также тензора энергии-импульса. Последний описывает распределение материи в пространстве и, как правило, связан с используемым в теории уравнением состояния. Кроме того, уравнения ОТО допускают введение в них космологической постоянной (лямбда-члена), с которой часто связывают темную энергию и, вероятно, отвечающее ей скалярное поле.

Черные дыры

В 1916 году немецкий математический физик Карл Шварцшильд нашел первое решение уравнений ОТО. Оно описывает гравитационное поле, созданное центрально-симметричным распределением масс с нулевым электрическим зарядом. Это решение содержало так называемый гравитационный радиус тела, определяющий размеры объекта со сферически-симметричным распределением материи, который не способны покинуть фотоны (движущиеся со скоростью света кванты электромагнитного поля).

Определенная таким образом шварцшильдова сфера тождественна понятию горизонта событий, а массивный ограниченный ею объект - черной дыре. Восприятие приближения к нему тела в рамках ОТО различается в зависимости от позиции наблюдателя. Для связанного с телом наблюдателя достижение шварцшильдовой сферы произойдет за конечное собственное время. Для внешнего наблюдателя приближение тела к горизонту событий займет бесконечное время и будет выглядеть как его неограниченное падение на шварцшильдову сферу.

Советские физики-теоретики также внесли свой вклад в теорию нейтронных звезд. В статье 1932 года «К теории звезд» Лев Ландау предсказал существование нейтронных звезд, а в работе «Об источниках звездной энергии», опубликованной в 1938 году в журнале Nature, предположил существование звезд с нейтронным ядром.

Как массивные объекты превращаются в черные дыры? Консервативный и наиболее признанный в настоящее время ответ на этот вопрос дали в 1939 году физики-теоретики Роберт Оппенгеймер (в 1943 году он стал научным руководителем Манхэттенского проекта, в рамках которого в США была создана первая в мире атомная бомба) и его аспирант Хартланд Снайдер.

В 1930-х годах астрономы заинтересовались вопросом о будущем звезды, если в ее недрах закончилось ядерное топливо. Для небольших звезд, подобных Солнцу, эволюция приведет к превращению в белых карликов, у которых сила гравитационного сжатия уравновешивается электромагнитным отталкиванием электронно-ядерной плазмы. У более тяжелых звезд гравитация оказывается сильнее электромагнетизма, и возникают нейтронные звезды. Сердцевина у таких объектов - из нейтронной жидкости, а ее покрывает тонкий плазменный слой электронов и тяжелых ядер.

Изображение: East News

Предельное значение массы белого карлика, не дающее ему превратиться в нейтронную звезду, в 1932 году впервые оценил индийский астрофизик Субраманьян Чандрасекар. Этот параметр вычисляется из условия равновесия вырожденного электронного газа и сил гравитации. Современное значение предела Чандрасекара оценивается в 1,4 солнечной массы.

Верхнее ограничение на массу нейтронной звезды, при которой она не превращается в черную дыру, получило название предела Оппенгеймера-Волкова . Определяется из условия равновесия давления вырожденного нейтронного газа и сил гравитации. В 1939 году получили значение в 0,7 солнечной массы, современные оценки варьируются от 1,5 до 3,0.

Кротовая нора

Физически червоточина (кротовая нора) представляет собой тоннель, связывающий две удаленные области пространства-времени. Эти области могут находиться в одной и той же вселенной или связывать разные точки разных вселенных (в рамках концепции мультивселенной). В зависимости от возможности вернуться сквозь нору обратно их подразделяют на проходимые и непроходимые. Непроходимые дыры быстро закрываются и не позволяют потенциальному путешественнику проделать обратный путь.

С математической точки зрения червоточина - это гипотетический объект, получаемый как особое несингулярное (конечное и имеющее физический смысл) решение уравнений ОТО. Обычно червоточины изображают в виде согнутой двумерной поверхности. Попасть с одной ее стороны на другую можно как обычным способом, так и по соединяющему их тоннелю. В наглядном случае двумерного пространства видно, что это позволяет существенно сократить расстояние.

В двумерии горловины червоточины - отверстия, с которых начинается и заканчивается тоннель - имеют форму окружности. В трехмерии горловина кротовой норы похожа на сферу. Образуются такие объекты из двух сингулярностей в разных областях пространства-времени, которые в гиперпространстве (пространстве большей размерности) стягиваются друг к другу с образованием норы. Поскольку нора - это пространственно-временной тоннель, путешествовать по нему можно не только в пространстве, но и во времени.

Впервые решения уравнений ОТО типа кротовой норы привел в 1916 году Людвиг Фламм. Его работа, описывавшая кротовую нору со сферической горловиной без гравитирующей материи, не привлекла внимания ученых. В 1935 году Эйнштейн и американо-израильский физик-теоретик Натан Розен, не знакомые с работой Фламма, нашли аналогичное решение уравнений ОТО. Ими двигало в этой работе желание объединить гравитацию с электромагнетизмом и избавиться от сингулярностей решения Шварцшильда.

В 1962 году американские физики Джон Уилер и Роберт Фуллер показали, что червоточина Фламма и мост Эйнштейна-Розена быстро схлопываются и потому являются непроходимыми. Первое решение уравнений ОТО с проходимой кротовой норой предложил в 1986 году американский физик Кип Торн. Его червоточина заполнена материей с отрицательной средней плотностью массы, препятствующей закрытию тоннеля. Элементарные частицы с такими свойствами науке пока неизвестны. Вероятно, они могут входить в состав темной материи.

Гравитация сегодня

Решение Шварцшильда - самое простое для черных дыр. Сейчас уже описаны вращающиеся и заряженные черные дыры. Последовательная математическая теория черных дыр и связанных с ними сингулярностей развита в работах британского математика и физика Роджера Пенроуза. Еще в 1965 году в журнале Physical Review Letters он опубликовал статью под названием «Гравитационный коллапс и пространственно-временные сингулярности».

В ней описывается образование так называемой ловушечной поверхности, приводящей к эволюции звезды в черную дыру и возникновению сингулярности - особенности пространства-времени, где уравнения ОТО дают некорректные с физической точки зрения решения. Выводы Пенроуза считаются первым крупным математически строгим результатом ОТО.

Вскоре после этого ученый вместе с британцем Стивеном Хокингом показал, что в далеком прошлом Вселенная находилась в состоянии с бесконечной плотностью массы. Сингулярности, возникающие в ОТО и описанные в работах Пенроуза и Хокинга, не поддаются объяснению в современной физике. В частности, это приводит к невозможности описания природы до Большого взрыва без привлечения дополнительных гипотез и теорий, например, квантовой механики и теории струн. Развитие теории кротовых нор в настоящее время также невозможно без квантовой механики.

Хотя Эйнштейн считал, что черные дыры - явление слишком невероятное и в природе существовать не могут, позднее, такова ирония судьбы, он показал, что они еще более причудливы, чем кто-либо мог предположить. Эйнштейн объяснил возможность существования пространственно-временных «порталов» в недрах черных дыр. Физики называют эти порталы червоточинами, поскольку, подобно червю, вгрызающемуся в землю, они создают более короткий альтернативный путь между двумя точками. Эти порталы также называют иногда порталами или «вратами» в другие измерения. Как их ни назови, когда-нибудь они могут стать средством путешествий между различными измерениями, но это случай крайний.

Первым, кто популяризовал идею порталов, стал Чарльз Доджсон, который писал под псевдонимом Льюис Кэрролл. В «Алисе в Зазеркалье» он представил портал в виде зеркала, которое соединяло пригород Оксфорда и Страну Чудес. Поскольку Доджсон был математиком и преподавал в Оксфорде, ему было известно об этих многосвязных пространствах. По определению, многосвязное пространство таково, что лассо в нем нельзя стянуть до размеров точки. Обычно любую петлю можно безо всякого труда стянуть в точку. Но если мы рассмотрим, например, пончик, вокруг которого намотано лассо, то увидим, что лассо будет стягивать этот пончик. Когда мы начнем медленно затягивать петлю, то увидим, что ее нельзя сжать до размеров точки; в лучшем случае, ее можно стянуть до окружности сжатого пончика, то есть до окружности «дырки».

Математики наслаждались тем фактом, что им удалось обнаружить объект, который был совершенно бесполезен при описании пространства. Но в 1935 году Эйнштейн и его студент Натан Розен представили физическому миру теорию порталов. Они попытались использовать решение проблемы черной дыры как модель для элементарных частиц. Самому Эйнштейну никогда не нравилась восходящая ко временам Ньютона теория, что гравитация частицы стремится к бесконечности при приближении к ней. Эйнштейн считал, что эта сингулярность должна быть искоренена, потому что в ней нет никакого смысла.

У Эйнштейна и Розена появилась оригинальная идея представить электрон (который обычно считался крошечной точкой, не имеющей структуры) как черную дыру. Таким образом, можно было использовать общую теорию относительности для объяснения загадок квантового мира в объединенной теории поля. Они начали с решения для стандартной черной дыры, которая напоминает большую вазу с длинным горлышком. Затем они отрезали «горлышко» и соединили его с еще одним частным решением уравнений для черной дыры, то есть с вазой, которая была перевернута вверх дном. По мнению Эйнштейна, эта причудливая, но уравновешенная конфигурация была бы свободна от сингулярности в происхождении черной дыры и могла бы действовать как электрон.

К несчастью, идея Эйнштейна о представлении электрона § качестве черной дыры провалилась. Но сегодня космологи предполагают, что мост Эйнштейна-Розена может служить «вратами» между двумя вселенными. Мы можем свободно передвигаться по Вселенной до тех пор, пока случайно не упадем в черную дыру, где нас немедленно протащит сквозь портал и мы появимся на другой стороне (пройдя сквозь «белую» дыру).

Для Эйнштейна любое решение его уравнений, если оно начиналось с физически вероятной точки отсчета, должно было соотноситься с физически вероятным объектом. Но он не беспокоился о том, кто свалится в черную дыру и попадет в параллельную вселенную. Приливные силы бесконечно возросли бы в центре, и гравитационное поле немедленно разорвало бы на части атомы любого объекта, который имел несчастье свалиться в черную дыру. (Мост Эйнштейна-Розена действительно открывается за доли секунды, но он закрывается настолько быстро, что ни один объект не сможет пройти его с такой скоростью, чтобы достичь другой стороны.) По мнению Эйнштейна, хотя существование порталов и возможно, живое существо никогда не сможет пройти сквозь какой-либо из них и рассказать о своих переживаниях во время этого путешествия.

Мост Эйнштейна-Розена. В центре черной дыры находится «горлышко», которое соединяется с пространством-временем другой вселенной или другой точкой в нашей Вселенной. Хотя путешествие сквозь стационарную черную дыру имело бы фатальные последствия, вращающиеся черные дыры обладают кольцеобразной сингулярностью, которая позволила бы пройти сквозь кольцо и мост Эйнштейна-Розена, хотя это находится еще на стадии предположений.

Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Причем тема эта оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поиском таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена.

В фантастических романах описываются целые транспортные сети, соединяющие звездные системы и исторические эпохи. Шагнул в кабинку, стилизованную, скажем, под телефонную будку, и оказался где-то в туманности Андромеды или на Земле, но — в гостях у давно вымерших тиранозавров. Персонажи подобных произведений постоянно используют нуль-транспортировки машины времени, порталы и тому подобные удобные приспособления. Впрочем, любители фантастики воспринимают такие путешествия без особого трепета — мало ли что можно вообразить, относя реализацию придуманного к неопределенному будущему или к озарениям неведомого гения. Гораздо более удивительным представляется то, что машины времени и тоннели в пространстве вполне серьезно как гипотетически возможные активно обсуждаются в статьях по теоретической физике, на страницах самых солидных научных изданий.

Разгадка кроется в том, что согласно эйнштейновской теории тяготения — общей теории относительности (ОТО) четырехмерное пространство-время, в котором мы живем, искривлено, а знакомая всем гравитация и есть проявление такого искривления.

Материя «прогибает», искривляет пространство вокруг себя, и — чем она плотнее, тем сильнее искривление. Многочисленные альтернативные теории тяготения, счет которым идет на сотни, отличаясь от ОТО в деталях, сохраняют главное — идею кривизны пространства-времени. И если пространство кривое, то почему бы ему не принять, к примеру, форму трубы, накоротко соединяющей области, разделенные сотнями тысяч световых лет, или, допустим, далекие друг от друга эпохи — ведь речь идет не просто о пространстве, а о пространстве-времени? Помните, у Стругацких (тоже, кстати, прибегавших к нуль-транспортировке): «Совершенно не вижу, почему бы благородному дону не...» — ну, скажем, не слетать в XXXII век?…

Кротовые норы или черные дыры?

Мысли о столь сильном искривлении нашего пространства-времени возникли сразу после появления ОТО — уже в 1916 году австрийский физик Л. Фламм обсуждал возможность существования пространственной геометрии в виде некой норы, соединяющей два мира. В 1935 году А. Эйнштейн и математик Н. Розен обратили внимание на то, что простейшие решения уравнений ОТО, описывающие изолированные, нейтральные или электрически заряженные источники гравитационного поля, имеют пространственную структуру «моста», почти гладким образом соединяющего две вселенные — два одинаковых, почти плоских, пространства-времени.

Такого рода пространственные структуры позднее получили название «кротовые норы» (достаточно вольный перевод английского слова «wormhole» — «червоточина»). Эйнштейн и Розен даже рассматривали возможность применения таких «мостов» для описания элементарных частиц. В самом деле, частица в этом случае — чисто пространственное образование, поэтому нет необходимости специально моделировать источник массы или заряда, а при микроскопических размерах кротовой норы внешний, удаленный наблюдатель, находящийся в одном из пространств, видит лишь точечный источник с определенными массой и зарядом. Электрические силовые линии входят в нору с одной стороны и выходят с другой, нигде не начинаясь и не заканчиваясь. По выражению американского физика Дж. Уилера, получается «масса без массы, заряд без заряда». И в этом случае вовсе не обязательно полагать, что мост соединяет две разные вселенные — ничуть не хуже предположение, что оба «устья» кротовой норы выходят в одну и ту же вселенную, но в разных ее точках и в разные времена — что-то вроде пустотелой «ручки», пришитой к привычному практически плоскому миру. Одно устье, в которое входят силовые линии, можно видеть как отрицательный заряд (к примеру, электрон), другое, из которого они выходят, — как положительный (позитрон), массы же будут одинаковы с обеих сторон.

При всей привлекательности такой картины она (по многим причинам) не прижилась в физике элементарных частиц. «Мостам» Эйнштейна — Розена трудно приписать квантовые свойства, а без них в микромире делать нечего. При известных значениях масс и зарядов частиц (электронов или протонов) мост Эйнштейна — Розена вообще не образуется, вместо этого «электрическое» решение предсказывает так называемую «голую» сингулярность — точку, в которой кривизна пространства и электрическое поле становятся бесконечными. Понятие пространства-времени, пусть даже искривленного, в таких точках теряет смысл, поскольку решать уравнения с бесконечными слагаемыми невозможно. Сама ОТО вполне определенно заявляет, где именно она перестает работать. Вспомним сказанные выше слова: «почти гладким образом соединяющего…». Вот это «почти» и относится к основному изъяну «мостов» Эйнштейна — Розена — нарушению гладкости в самом узком месте «моста», на горловине. И нарушение это, надо сказать, весьма нетривиально: на такой горловине, с точки зрения удаленного наблюдателя, останавливается время…

По современным понятиям, то, что Эйнштейн и Розен рассматривали как горловину (то есть самое узкое место «моста»), на самом деле есть не что иное, как горизонт событий черной дыры (нейтральной или заряженной). Более того, с разных сторон «моста» частицы или лучи попадают на разные «участки» горизонта, а между, условно говоря, правой и левой частями горизонта находится особая нестатическая область, не преодолев которую нельзя пройти нору.

Для удаленного наблюдателя космический корабль, приближающийся к горизонту достаточно крупной (по сравнению с кораблем) черной дыры, как бы навеки застывает, а сигналы от него доходят все реже и реже. Напротив, по корабельным часам горизонт достигается за конечное время. Миновав горизонт, корабль (частица или луч света) вскоре неотвратимо упирается в сингулярность — туда, где кривизна становится бесконечной и где (еще на подходе) любое протяженное тело будет неизбежно раздавлено и разорвано. Такова суровая реальность внутреннего устройства черной дыры. Решения Шварцшильда и Райснера — Нордстрема, описывающие сферически-симметричные нейтральные и электрически заряженные черные дыры, были получены в 1916—1917 годах, однако в непростой геометрии этих пространств физики полностью разобрались лишь на рубеже 1950— 1960-х годов. Кстати, именно тогда Джон Арчибальд Уилер, известный своими работами в ядерной физике и теории гравитации, предложил термины «черная дыра» и «кротовая нора». Как оказалось, в пространствах Шварцшильда и Райснера — Нордстрема кротовые норы действительно есть. С точки зрения удаленного наблюдателя, они не видны полностью, как и сами черные дыры, и — так же вечны. А вот для путешественника, отважившегося проникнуть за горизонт, нора настолько быстро схлопывается, что сквозь нее не пролетит ни корабль, ни массивная частица, ни даже луч света. Чтобы, минуя сингулярность, прорваться «на свет Божий» — к другому устью норы, необходимо двигаться быстрее света. А физики сегодня полагают, что сверхсветовые скорости перемещения материи и энергии невозможны в принципе.

Кротовые норы и временные петли

Итак, черную дыру Шварцшильда можно рассматривать как непроходимую кротовую нору. Черная дыра Райснера — Нордстрема устроена сложнее, но тоже непроходима. Однако не так уж сложно придумать и описать проходимые четырехмерные кротовые норы, подбирая нужный вид метрики (метрика, или метрический тензор, — это набор величин, с помощью которых вычисляются четырехмерные расстояния-интервалы между точками-событиями, полностью характеризующий и геометрию пространства-времени, и поле тяготения). Проходимые кротовые норы, в общем, геометрически даже проще, чем черные дыры: там не должно быть никаких горизонтов, приводящих к катаклизмам с ходом времени. Время в разных точках может, конечно, идти в разном темпе — но не должно бесконечно ускоряться или останавливаться.

Надо сказать, различные черные дыры и кротовые норы весьма интересные микрообъекты, возникающие сами собой, как квантовые флуктуации гравитационного поля (на длинах порядка 10-33 см), где, по существующим оценкам, понятие классического, гладкого пространства-времени уже неприменимо. На таких масштабах должно существовать что-то похожее на водяную или мыльную пену в бурном потоке, постоянно «дышащую» за счет образования и схлопывания мелких пузырьков. Вместо спокойного пустого пространства мы имеем возникающие и исчезающие в бешеном темпе мини-черные дыры и кротовые норы самых причудливых и переплетающихся конфигураций. Их размеры невообразимо малы — они во столько же раз меньше атомного ядра, во сколько это ядро меньше планеты Земля. Строгого описания пространственно-временной пены пока нет, так как еще не создана последовательная квантовая теория гравитации, но в общих чертах описанная картина следует из основных принципов физической теории и вряд ли изменится.

Однако с точки зрения межзвездных и межвременных путешествий нужны кротовые норы совсем иных размеров: «хотелось» бы, чтобы через горловину без повреждений проходил разумных размеров космический корабль или хотя бы танк (без него среди тиранозавров будет неуютно, не правда ли?). Поэтому для начала нужно получить решения уравнений гравитации в виде проходимых кротовых нор макроскопических размеров. И если предположить, что такая нора уже появилась, а остальное пространство-время осталось почти плоским, то, считайте, есть все — нора может быть и машиной времени, и межгалактическим тоннелем, и даже ускорителем. Независимо от того, где и когда находится одно из устьев кротовой норы, второе может оказаться в любом месте в пространстве и когда угодно — в прошлом или в будущем. К тому же устье может двигаться с любой скоростью (в пределах световой) по отношению к окружающим телам — это не помешает выходу из норы в (практически) плоское пространство Минковского. Оно, как известно, необычайно симметрично и выглядит одинаково во всех своих точках, во всех направлениях и в любых инерциальных системах, с какими бы скоростями они ни двигались.

Но, с другой стороны, допустив существование машины времени, мы немедленно сталкиваемся со всем «букетом» парадоксов типа — полетел в прошлое и «убил дедушку лопатой» раньше, чем дедушка мог бы стать отцом. Нормальный здравый смысл подсказывает, что такого, скорее всего, быть просто не может. И если физическая теория претендует на описание реальности, она должна содержать механизм, запрещающий образование подобных «временных петель», или, по меньшей мере, до крайности затруднять их образование.

ОТО, вне всякого сомнения, претендует на описание реальности. В ней найдено немало решений, описывающих пространства с замкнутыми временными петлями, но они, как правило, по тем или иным причинам признаются либо нереалистическими, либо, скажем так, «неопасными».

Так, весьма интересное решение уравнений Эйнштейна указал австрийский математик К. Гедель: это однородная стационарная вселенная, вращающаяся как целое. Она содержит замкнутые траектории, путешествуя по которым можно вернуться не только в исходную точку пространства, но и в исходный момент времени. Однако расчет показывает, что минимальная временная протяженность такой петли много больше времени существования Вселенной.

Проходимые кротовые норы, рассматриваемые как «мосты» между разными вселенными, временных (как мы уже говорили) предположить, что оба устья выходят в одну и ту же вселенную, как петли возникают немедленно. Что же тогда с точки зрения ОТО мешает их образованию — по крайней мере, в макроскопических и космических масштабах?

Ответ простой: структура уравнений Эйнштейна. В их левой части стоят величины, характеризующие пространственно-временную геометрию, а в правой — так называемый тензор энергии-импульса, в котором сосредоточены сведения о плотности энергии вещества и различных полей, об их давлении в разных направлениях, об их распределении в пространстве и о состоянии движения. Можно «читать» уравнения Эйнштейна справа налево, заявляя, что с их помощью материя «говорит» пространству, как ему искривляться. Но можно и — слева направо, тогда интерпретация будет иной: геометрия диктует свойства материи, которая могла бы обеспечить ее, геометрии, существование.

Так вот, если нам нужна геометрия кротовой норы — подставим ее в уравнения Эйнштейна, проанализируем и выясним, какая же требуется материя. Оказывается, весьма странная и невиданная, ее так и называют — «экзотическая материя». Так, для создания самой простой кротовой норы (сферически-симметричной) необходимо, чтобы плотность энергии и давление в радиальном направлении в сумме давали отрица-тельную величину. Надо ли говорить, что для обычных видов вещества (как и многих известных физических полей) обе эти величины положительны?..

Природа, как мы видим, в самом деле поставила серьезный барьер на тпути возникновения кротовых нор. Но так уж устроен человек, и ученые здесь не исключение: если барьер существует, всегда найдутся желающие его преодолеть…

Работы теоретиков, интересующихся кротовыми норами, можно условно разделить на два дополняющих друг друга направления. Первое, заранее предполагая существование кротовых нор, рассматривает возникающие следствия, второе — пытается определить, как и из чего могут быть построены кротовые норы, при каких условиях они появляются или могут появляться.

В работах первого направления обсуждается, например, такой вопрос.

Предположим, в нашем распоряжении кротовая нора, сквозь которую можно пройти за считанные секунды, и пусть два ее воронкообразных устья «А» и «Б» расположены близко друг от друга в пространстве. Можно ли превратить такую нору в машину времени? Американский физик Кип Торн с сотрудниками показал, как это сделать: идея заключается в том, чтобы одно из устьев, «А», оставить на месте, а другое, «Б» (которое должно вести себя как обычное массивное тело), — разогнать до скорости, сравнимой со скоростью света, а затем вернуть обратно и затормозить рядом с «А». Тогда за счет эффекта СТО (замедления времени на движущемся теле по сравнению с неподвижным) для устья «Б» пройдет меньше времени, чем для устья «А». Причем чем больше была скорость и продолжительность путешествия устья «Б», тем больше будет разница времен между ними. Это, по сути дела, тот же хорошо известный ученым «парадокс близнецов»: близнец, вернувшийся из полета к звездам, оказывается младше своего брата-домоседа… Пусть разница во времени между устьями составляет, к примеру, полгода. Тогда, сидя возле устья «А» посреди зимы, мы увидим сквозь кротовую нору яркую картину прошедшего лета и — реально в это лето и вернемся, пройдя нору насквозь. Затем снова приблизимся к воронке «А» (она, как мы договорились, где-то рядом), еще раз нырнем в нору и — перепрыгнем прямиком в прошлогодний снег. И так сколько угодно раз. Двигаясь же в обратном направлении — ныряя в воронку «Б», — скакнем на полгода в будущее… Таким образом, совершив единственную манипуляцию с одним из устьев, мы получаем машину времени, которой можно «пользоваться» постоянно (если, конечно, предположить, что нора устойчива или что мы в состоянии поддерживать ее «работоспособность»).

Работы второго направления более многочисленны и, пожалуй, даже более интересны. К этому направлению относится поиск конкретных моделей кротовых нор и исследование их специфических свойств, которые, в общем-то, и определяют, что с этими норами можно делать и как их использовать.

Экзоматерия и темная энергия

Экзотические свойства материи, которыми должен обладать строительный материал для кротовых нор, как выясняется, могут быть реализованы за счет так называемой поляризации вакуума квантовых полей. К такому выводу недавно пришли российские физики Аркадий Попов и Сергей Сушков из Казани (совместно с Давидом Хохбергом из Испании) и Сергей Красников из Пулковской обсерватории. И в данном случае вакуум — вовсе не пустота, а квантовое состояние с наименьшей энергией — поле без реальных частиц. В нем постоянно появляются пары «виртуальных» частиц, которые снова исчезают раньше, чем их можно было бы обнаружить приборами, но оставляют свой вполне реальный след в виде некоторого тензора энергии-импульса с необычными свойствами.

И хотя квантовые свойства материи проявляются главным образом в микромире, порождаемые ими кротовые норы (при некоторых условиях) могут достигать весьма приличных размеров. Кстати, одна из статей С. Красникова носит «пугающее» название — «Угроза кротовых нор». Самым интересным в этой чисто теоретической дискуссии является то, что реальные астрономические наблюдения последних лет, похоже, сильно подрывают позиции противников возможности самого существования кротовых нор.

Астрофизики, изучая статистику взрывов сверхновых в галактиках, удаленных от нас на миллиарды световых лет, сделали вывод, что наша Вселенная не просто расширяется, а разлетается со все большей скоростью, то есть с ускорением. Более того, со временем это ускорение даже нарастает. Об этом достаточно уверенно говорят самые последние наблюдения, проведенные на новейших космических телескопах. Ну а теперь — самое время вспомнить о связи между материей и геометрией в ОТО: характер расширения Вселенной накрепко связан с уравнением состояния материи, иными словами, с соотношением между ее плотностью и давлением. Если материя — обычная (с положительными плотностью и давлением), то сама плотность со временем падает, а расширение замедляется.

Если же давление отрицательно и равно по величине, но противоположно по знаку плотности энергии (тогда их сумма = 0), то такая плотность постоянна во времени и пространстве — это так называемая космологическая постоянная, которая приводит к расширению с постоянным ускорением.

Но чтобы ускорение росло со временем, и этого недостаточно — сумма давления и плотности энергии должна быть отрицательной. Такую материю никто и никогда не наблюдал, однако поведение видимой части Вселенной, похоже, сигнализирует о ее присутствии. Расчеты показывают, что такой вот странной, невидимой, материи (названной «темной энергией») в настоящую эпоху должно быть около 70%, и эта доля постоянно увеличивается (в отличие от обычного вещества, которое с увеличением объема теряет плотность, темная энергия ведет себя парадоксально — Вселенная расширяется, а ее плотность растет). Но ведь (и мы об этом уже говорили) именно такая экзотическая материя — самый подходящий «стройматериал» для образования кротовых нор.

Так и тянет пофантазировать: рано или поздно темная энергия будет обнаружена, ученые и технологи научатся ее сгущать и строить кротовые норы, а там — недалеко и до «сбычи мечт» — о машинах времени и о тоннелях, ведущих к звездам... Правда, несколько расхолаживает оценка плотности темной энергии во Вселенной, обеспечивающей ее ускоренное расширение: если темная энергия распределена равномерно, получается совершенно ничтожная величина — около 10-29 г/см3. Для обычного вещества такая плотность соответствует 10 атомам водорода на 1 м3. Даже межзвездный газ в несколько раз плотнее. Так что если этот путь к созданию машины времени и может стать реальным, то очень и очень не скоро.

Требуется дырка от бублика

До сих пор речь шла о тоннелеобразных кротовых норах с гладкими горловинами. Но ведь ОТО предсказывает и другой вид кротовых нор — и они принципе вообще не требуют никакой распределенной материи. Существует целый класс решений уравнений Эйнштейна, в которых четырехмерное пространство-время, плоское вдали от источника поля, существует как бы в двух экземплярах (или листах), а общими для них обоих являются лишь некое тонкое кольцо (источник поля) и диск, этим кольцом ограниченный. Кольцо это обладает поистине волшебным свойством: можно сколь угодно долго «бродить» вокруг него, оставаясь в «своем» мире, но стоит пройти его насквозь — и попадешь совсем в другой мир, хотя и похожий на «свой». А чтобы вернуться назад, надо еще раз пройти сквозь кольцо (причем с любой стороны, не обязательно с той, с которой только что вышел).

Само кольцо сингулярно — кривизна пространства-времени на нем обращается в бесконечность, но все точки внутри него вполне нормальны, и движущееся там тело не испытывает никаких катастрофических воздействий.

Интересно, что таких решений великое множество — и нейтральных, и с электрическим зарядом, и с вращением, и без него. Таково, в частности, знаменитое решение новозеландца Р. Керра для вращающейся черной дыры. Оно наиболее реалистично описывает черные дыры звездных и галактических масштабов (в существовании которых большинство астрофизиков уже не сомневается), так как едва ли не все небесные тела испытывают вращение, а при сжатии вращение только ускоряется, тем более — при коллапсе в черную дыру.

Итак, получается, что именно вращающиеся черные дыры — «прямые» кандидаты в «машины времени»? Однако черные дыры, образующиеся в звездных системах, окружены и заполнены горячим газом и жесткими смертоносными излучениями. Помимо этого чисто практического возражения есть и принципиальное, связанное со сложностями выхода из-под горизонта событий на новый пространственно-временной «лист». Но на этом не стоит останавливаться подробнее, так как согласно ОТО и многим ее обобщениям кротовые норы с сингулярными кольцами могут существовать и без всяких горизонтов.

Так что есть по крайней мере две теоретические возможности для существования кротовых нор, соединяющих разные миры: норы могут быть гладкими и состоять из экзотической материи, а могут возникать за счет сингулярности, оставаясь при этом проходимыми.

Космос и струны

Тонкие сингулярные кольца напоминают другие необычные объекты, предсказываемые современной физикой, — космические струны, образовывавшиеся (согласно некоторым теориям) в ранней Вселенной при остывании сверхплотного вещества и смене его состояний. Они действительно напоминают струны, только необычайно тяжелые — многие миллиарды тонн на сантиметр длины при толщине в доли микрона. И, как было показано американцем Ричардом Готтом и французом Жераром Клеманом, из нескольких струн, движущихся друг относительно друга с большими скоростями, можно составить конструкции, содержащие временные петли. То есть, двигаясь определенным образом в гравитационном поле этих струн, можно вернуться в исходную точку раньше, чем из нее вылетел.

Астрономы давно ищут такого рода космические объекты, и на сегодня один «хороший» кандидат уже имеется — объект CSL-1. Это две удивительно похожие галактики, которые в реальности наверняка являются одной, только раздвоившейся из-за эффекта гравитационного линзирования. Причем в данном случае гравитационная линза — не сферическая, а цилиндрическая, напоминающая длинную тонкую тяжелую нить.

Поможет ли пятое измерение?

В том случае, если пространствовремя содержит больше четырех измерений, архитектура кротовых нор обретает новые, неведомые ранее возможности. Так, в последние годы приобрела популярность концепция «мира на бране». Она предполагает, что вся наблюдаемая материя располагается на некоторой четырехмерной поверхности (обозначаемой термином «брана» — урезанным словом «мембрана»), а в окружающем пятиили шестимерном объеме нет ничего, кроме гравитационного поля. Поле тяготения на самой бране (а только его мы и наблюдаем) подчиняется модифицированным уравнениям Эйнштейна, а в них есть вклад от геометрии окружающего объема. Так вот, этот вклад и способен играть роль экзотической материи, порождающей кротовые норы. Норы могут быть любого размера и при этом не обладать собственным тяготением.

Этим, конечно, не исчерпывается все разнообразие «конструкций» кротовых нор, и общий вывод таков, что при всей необычности их свойств и при всех трудностях принципиального, в том числе и философского, характера, к которым они могут привести, к их возможному существованию стоит отнестись с полной серьезностью и должным вниманием. Нельзя, например, исключить, что норы больших размеров существуют в межзвездном или межгалактическом пространстве — хотя бы по причине концентрации той самой темной энергии, что ускоряет расширение Вселенной. Однозначного ответа на вопросы — как они могут выглядеть для земного наблюдателя и существует ли способ их обнаружения — пока нет. В отличие от черных дыр у кротовых нор может даже не быть сколько-нибудь заметного поля притяжения (не исключено и отталкивание), а следовательно, в их окрестности не стоит ожидать заметных концентраций звезд или межзвездного газа и пыли. Но полагая, что они могут «закорачивать» далекие друг от друга области или эпохи, пропуская через себя излучение светил, вполне можно ожидать, что какая-то далекая галактика покажется необычайно близкой. За счет расширения Вселенной чем дальше галактика, тем с большим смещением спектра (в красную сторону) приходит к нам ее излучение. Но при взгляде сквозь кротовую нору красного смещения, возможно, и не будет. Или будет, но — другое. Некоторые такие объекты можно будет наблюдать одновременно двумя способами — сквозь нору или «обычным» образом, «мимо норы».

Таким образом, признак космической кротовой норы может быть следующим: наблюдение двух объектов с очень похожими свойствами, но на разных видимых расстояниях и с разными красными смещениями. Если кротовые норы все-таки обнаружат (или построят), перед той областью философии, что занимается интерпретацией науки, встанут новые и, надо сказать, очень непростые задачи. И при всей кажущейся абсурдности временных петель и сложности проблем, связанных с причинностью, эта область науки, по всей вероятности, рано или поздно со всем этим как-нибудь разберется. Так же, как в свое время «справилась» с концептуальными проблемами квантовой механики и теории относительности Эйнштейна…

Кирилл Бронников, доктор физико-математических наук