Синтез белков в клетке - описание, функции процесса. Биосинтез белка: кратко и понятно. Биосинтез белка в живой клетке Что такое биосинтез белков

Белки играют очень важную роль в жизнедеятельности организмов, выполняют защитные, структурные, гормональные, энергетические функции. Обеспечивают рост мышечной и костной ткани. Белки информируют о строении клетки, о её функциях и биохимических свойствах, входят в состав ценных, полезных организму продуктов питания (яиц, молочных продуктов, рыбы, орехов, бобовых, ржи и пшеницы). Усвояемость такой пищи объясняется биологической ценностью. При равном показателе количества белка легче будет усваиваться тот продукт, чья ценность выше. Дефектные полимеры должны удаляться из организма и заменяться новыми. Этот процесс протекает при синтезе белков в клетках.

Какими бывают белки

Вещества, состоящие только из остатков аминокислот, называются простыми белками (протеинами). В случае необходимости используется их энергетическое свойство, поэтому людям, ведущим здоровый образ жизни, зачастую дополнительно нужен прием протеина. Сложные же белки, протеиды, имеют в своем составе простой белок и небелковую часть. Десять аминокислот в белке являются незаменимыми, это означает, что организм не может синтезировать их самостоятельно, они поступают из пищи, другой же десяток - заменимый, то есть их можно создать из других аминокислот. Так начинается жизненно необходимый для всех организмов процесс.

Основные этапы биосинтеза: откуда берутся белки

Новые молекулы берутся в результате биосинтеза - химической реакции соединения. Существует два основных этапа синтеза белков в клетке. Это транскрипция и трансляция. Транскрипция происходит в ядре. Это считывание с ДНК (дезоксирибонуклеиновой кислоты), которая несет информацию о будущем белке, на РНК (рибонуклеиновую кислоту), которая переносит эту информацию с ДНК в цитоплазму. Происходит это по причине того, что ДНК непосредственно в биосинтезе участия не принимает, она только несет сведения, не имея способности выходить в цитоплазму, где синтезируется белок, и выполняя только функцию носителя генетической информации. Транскрипция же позволяет считать данные с матрицы ДНК на РНК по принципу комплементарности.

Роль РНК и ДНК в процессе

Итак, запускает синтез белков в клетках цепочка ДНК, которая несет информацию о каком-либо конкретном белке и называется геном. Цепочка ДНК в процессе транскрипции расплетается, то есть её спираль начинает распадаться в линейную молекулу. С ДНК информация должна преобразоваться на РНК. Напротив тимина в данном процессе должен становиться аденин. Цитозин же имеет в качестве пары гуанин, точно так же, как ДНК. Напротив аденина РНК становится урацил, потому как в РНК такого нуклеотида, как тимин, не существует, он заменяется просто урациловым нуклеотидом. С гуанином соседствует цитозин. Напротив аденина становится урацил, а в паре с тимином располагается аденин. Эти молекулы РНК, которые становятся напротив, называются информационными РНК (иРНК). Они способны через поры выходить из ядра в цитоплазму и рибосомы, которые, собственно, и выполняют функцию синтеза белков в клетках.

О сложном простыми словами

Теперь же совершается сборка из аминокислотных последовательностей полипептидной цепочки белка. Транскрипцией можно назвать считывание информации о будущем белке с матрицы ДНК на РНК. Это можно определить как первый этап. После того как РНК выходит из ядра, она должна попасть к рибосомам, где происходит второй этап, который называется трансляцией.

Трансляция - это уже переход РНК, то есть перенос информации с нуклеотидов на молекулу белка, когда РНК говорит о том, какая последовательность аминокислот должна быть в веществе. В таком порядке информационная РНК попадает в цитоплазму к рибосомам, которые осуществляют синтез белков в клетке: А (аденин) - Г (гуанин) - У (урацил) - Ц (цитозин) - У (урацил) - А (аденин).

Зачем нужны рибосомы

Для того чтобы произошла трансляция и в результате образовался белок, нужны такие компоненты, как сама информационная РНК, транспортная РНК, а также рибосомы в качестве "фабрики", на которой производится белок. В данном случае функционируют две разновидности РНК: информационная, которая образовалась в ядре с ДНК, и транспортная. Молекула второй кислоты имеет вид клевера. Этот "клевер" присоединяет к себе аминокислоту и несет её к рибосомам. То есть он выполняет транспортировку органических соединений непосредственно к "фабрике" по их образованию.

Как работает рРНК

Также существуют рибосомальные РНК, которые входят в состав самой рибосомы и выполняют синтез белка в клетке. Получается, что рибосомы являются немембранными структурами, они не имеют оболочек, как, например, ядро или эндоплазматическая сеть, а состоят просто из белков и рибосомальных РНК. Что же происходит, когда последовательность из нуклеотидов, то есть информационная РНК, попадает к рибосомам?

Транспортная РНК, которая находится в цитоплазме, подтягивает к себе аминокислоты. Откуда же взялись аминокислоты в клетке? А образуются они вследствие расщепления белков, которые поступают внутрь с пищей. Эти соединения переносятся током крови к клеткам, где происходит продуцирование необходимых для организма белков.

Конечный этап синтеза белков в клетках

Аминокислоты плавают в цитоплазме так же, как и транспортные РНК, и когда происходит непосредственно сборка полипептидной цепи, эти транспортные РНК начинают с ними соединяться. Однако не во всякой последовательности и далеко не любая транспортная РНК может соединиться со всеми видами аминокислот. Существует определенный участок, к которому присоединяется необходимая аминокислота. Второй же участок транспортной РНК называется антикодоном. Этот элемент состоит из трех нуклеотидов, которые комплементарны последовательности нуклеотидов в информационной РНК. Для одной аминокислоты необходимо три нуклеотида. Например, какой-либо условный белок состоит для упрощения из всего лишь двух аминокислот. Очевидно, что в основном белки имеют очень длинную структуру, состоят из многих аминокислот. Цепь А - Г - У называется триплетом, или кодоном, к нему будет присоединяться транспортная РНК в виде клевера, на конце которого будет находиться определенная аминокислота. К следующему триплету Ц - У - А будет присоединяться еще одна тРНК, которая будет содержать совершенно другую аминокислоту, комплементарную данной последовательности. В таком порядке будет происходить дальнейшая сборка полипептидной цепочки.

Биологическое значение синтеза

Между двумя аминокислотами, находящимися на концах "клеверов" каждого триплета, образуется пептидная связь. На этом этапе транспортная РНК уходит в цитоплазму. К триплетам присоединяется затем следующая транспортная РНК с другой аминокислотой, которая образует с предыдущими двумя полипептидную цепь. Этот процесс повторяется до момента, когда набирается необходимая последовательность аминокислот. Таким образом происходит синтез белка в клетке, и образуются ферменты, гормоны, кровяные вещества и т. д. Не во всякой клетке образуется любой белок. Каждая клетка может образовать определенный белок. Например, в эритроцитах будет образовываться гемоглобин, а клетками поджелудочной железы будут синтезироваться гормоны и разнообразные ферменты, расщепляющие пищу, которая попадает в организм.

В мышцах же будет образовываться белок актин и миозин. Как видно, процесс синтеза белка в клетках многоэтапен и сложен, что говорит о его значимости и необходимости для всего живого.

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид. Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

нетранскрибируемая цепь ДНК

транскрибируемая цепь ДНК

транскрипция ДНК

кодоны мРНК

трансляция мРНК

антикодоны тРНК

аминокислоты белка

метионин

На схеме видно, что генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции (такая цепь называется транскрибируемой). Вторая цепь является комплементарной по отношению к транскрибируемой и не участвует в синтезе мРНК.

Молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны. В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК.

На рибосомах к определенному кодону мРНК с помощью специфического белка присоединяется антикодон соответствующей молекулы аминоацил-тРНК. Такое связывание мРНК и аминоацил-тРНК называется кодонзависимым. На рибосомах аминокислоты соединяются между собой с помощью пептидных связей, а освободившиеся молекулы тРНК уходят на поиски свободных аминокислот.

Рассмотрим подробнее основные этапы биосинтеза белков.

1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называетсясплайсинг.

Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность альтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.

3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).

Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

Вторая тРНК вместе с аминокислотой (в нашем примере Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.

На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Заключается в окончании синтеза полипептидной цепи.

В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Модификация белков. Как правило, синтезированный полипептид подвергается дальнейшим химическим превращениям. Исходная молекула может разрезаться на отдельные фрагменты; затем одни фрагменты сшиваются, другие гидролизуются до аминокислот. Простые белки могут соединяться с самыми разнообразными веществами, образуя гликопротеины, липопротеины, металлопротеины, хромопротеины и другие сложные белки. Кроме того, аминокислоты уже в составе полипептида могут подвергаться химическим превращениям. Например, аминокислота пролин, входящая в состав белка проколлагена, окисляется до гидроксипролина. В результате из проколлагена образуется коллаген – основной белковый компонент соединительной ткани.

Реакции модификации белков не являются реакциями матричного типа. Такие биохимические реакции называются ступенчатыми.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).

Генетический код, его основные свойства

В ходе реакций матричного синтеза на основании генетического кода синтезируется полипептид с наследственно обусловленной структурой. Отрезок ДНК, содержащий информацию о структуре определенного полипептида, называется ген.

Однако, ген – это не просто участок ДНК, а единица наследственной информации, носителем которой являются нуклеиновые кислоты. Установлено, что ген имеет сложную структуру.

В большинстве случаев кодирующие участки (экзоны) разделены некодирующими (интронами). В то же время, благодаря альтернативному сплайсингу, деление участка ДНК на кодирующие и некодирующие оказывается условным. Некоторые участки ДНК могут перемещаться относительно друг друга – их называют мобильными генетическими элементами (МГЭ). Многие гены представлены несколькими копиями – тогда один и тот же белок кодируется разными участками ДНК. Еще сложнее закодирована генетическая информация у вирусов. У многих из них обнаружены перекрывающиеся гены: один и тот же участок ДНК может транскрибироваться с разных стартовых точек.

Процесс экспрессии генов обладает гибкостью: одному участку ДНК может соответствовать несколько полипептидов; один полипептид может кодироваться разными участками ДНК. Окончательная модификация белков происходит с помощью ферментов, которые кодируются различными участками ДНК.

Общие свойства генетического кода

Отражение одних объектов с помощью других называется кодированием. Отражение структуры белков в виде триплетов ДНК называется кодом ДНК, или генетическим кодом. Благодаря генетическому коду устанавливается однозначное соответствие между нуклеотидными последовательностями нуклеиновых кислот и аминокислотами, входящими в состав белков. Генетический код обладает следующими основными свойствами:

1. Генетический код триплетен: каждая аминокислота кодируется триплетом нуклеотидов ДНК и соответствующим триплетом иРНК. При этом кодоны ничем не отделены друг от друга (отсутствуют «запятые»).

2. Генетический код является избыточным (вырожденным): почти все аминокислоты могут кодироваться разными кодонами. Только двум аминокислотам соответствует по одному кодону: метионину (АУГ) и триптофану (УГГ). Зато лейцину, серину и аргинину соответствует по 6 разных кодонов.

3. Генетический код является неперекрывающимся: каждая пара нуклеотидов принадлежит только одному кодону (исключения обнаружены у вирусов).

4. Генетический код един для подавляющего большинства биологических систем. Однако имеются и исключения, например, у инфузорий и в митохондриях разных организмов. Поэтому генетический код называют квазиуниверсальным.

Биосинтез белков (полипептидов) является чрезвычайно сложным и удивительным процессом. Биосинтез белков активно протекает во всех органах и тканях, исключая эритроциты. Многие клетки синтезируют белки на «экспорт» (клетки печени, поджелудочной железы), и в этом случае они содержат очень большое число рибосом. В животной клетке число рибосом достигает 10 5 , диаметр рибосомы равен 20 нм.

Процесс синтеза белка происходит внутри клеток на поверхности рибосом, которые представляют собой комплексы из двух субъединиц с константой седиментации 60S и 40S, функционирующих как единое целое. В рибосоме белок составляет 30-35% и рибосомальная РНК - 65-70%. В рибосоме различают аминоацильный и пептидильный участки. Первый служит для фиксации поступающего на рибосому комплекса активной аминокислоты и тРНК, а второй фиксирует полипептидную цепь, связанную с другой тРНК. Субъединицы рибосом синтезируются в ядрышке ядра на матрице ДНК.

Сущность процесса синтеза белка представляет схема:

Белоксинтезирующая система включает рибосомы, нуклеиновые кислоты, набор из 20 аминокислот, различные ферменты, АТФ, ГТФ, ионы магния, около 200 различных некаталитических белковых факторов.

Молекула белка - длинная цепь аминокислотных остатков, насчитывающая в среднем от 100 до 500 аминокислот. Программа синтеза каждого белка хранится в молекуле дезоксирибонуклеиновой кислоты (ДНК). Молекула ДНК - полимер, мономерами которого служат нуклеотиды. Последовательность азотистых оснований в молекуле ДНК определяет последовательность аминокислот в молекуле белка.

В молекуле ДНК имеются четыре вида азотистых оснований: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). Последовательность из трех оснований (триплет) составляет кодон, которому соответствует одна определенная аминокислота.

Нуклеиновые кислоты - ДНК и РНК - обязательные компоненты биосинтеза белков. ДНК отвечает за сохранение генетической информации, тогда как РНК определяет передачу этой информации и реализацию в виде молекул белка. Можно утверждать, что главная функция ДНК - это сохранение генотипа, а РНК - выражение этого генотипа.

В количественном плане в клетке преобладает рибосомаль- ная РНК (рРНК). рРНК имеет спирализованные участки, содержит модифицированные нуклеотиды (например, 2-метил- рибоза). рРНК составляет около 80% от общего количества РНК в клетке. Второй вид РНК в клетке представлен транспортной РНК (тРНК), которая, как и все другие виды РНК, синтезируется в ядре. На ее долю приходится 10-15% общего количества РНК в клетке. Выявлено свыше 60 различных тРНК. Поэтому для транспорта отдельных аминокислот существует несколько разных тРНК. Для каждой аминокислоты в клетке есть по крайней мере одна специфическая тРНК. Молекулы тРНК сравнительно мелкие. В их структуре 75-93 рибонук- леотидов.

Аминокислота присоединяется к свободной 3-ОН-группе концевого мононуклеотида тРНК, представленной всегда аде- ниловой кислотой. тРНК имеет и другой важный участок - антикодон, с помощью которого комплекс аминокислоты и тРНК узнает определенную последовательность из трех нуклеотидов в матричной РНК (кодон). Антикодон и кодон комплементарно соединяются посредством водородных связей.

Если носителем наследственной информации в клетке является ДНК, которая сосредоточена в ядре, но синтез белка происходит в цитоплазме, то, следовательно, должен быть определенный посредник, передающий эту информацию в цитоплазму клетки. Этим посредником оказалась информационная или матричная РНК (мРНК). На долю мРНК приходится 2% общего количества РНК клетки. Молекулы мРНК самые длинные (включают до 5 тыс. нуклеотидов). мРНК также содержит четыре вида азотистых оснований. Из них три (А, Г, Ц) такие же, как в ДНК, а четвертое - урацил.

Информация, закодированная в мРНК, необходима для синтеза молекулы белка, который происходит на рибосомах. Синтез мРНК в ядре клетки очень быстрый, что необходимо для активного биосинтеза белковых молекул. мРНК образуется на одной из нитей ДНК ядра. При этом двухспиральная структура ДНК раскручивается и при участии ДНК-зависимой РНК-по- лимеразы по принципу комплементарности происходит синтез мРНК:


Схема синтеза мРНК

Принцип комплементарности означает, что аденину на спирали ДНК соответствует урацил мРНК, тимину - аденин, а гуанину - цитозин. Следовательно, мРНК считывает информацию с ДНК.

Стадия ДНК -» РНК, таким образом, определяет синтез молекулы мРНК, в которой нуклеотидная последовательность комплементарна определенному участку (гену) ДНК. Этот процесс носит название транскрипции. Затем мРНК поступает на рибосому, объединяясь с ее субъединицами. Одна молекула мРНК фиксируется на множестве рибосом одновременно, образуя так называемые полисомы. Наличие полисом повышает эффективность и скорость использования мРНК.

Синтез полипептидной цепи определенного состава происходит на матрице мРНК. Процесс передачи информации с мРНК на белок получил название трансляции. Стадия «РНК -> белок » представляет процесс синтеза белка, направляемый мРНК. Таким образом, передача информации всегда идет в направлении ДНК -» РНК -» белок.

Процесс трансляции включает следующие этапы:

  • 1) активация аминокислот и их фиксация на тРНК;
  • 2) инициация синтеза полипептидной цепи;
  • 3) элонгация синтезируемой полипептидной цепи;
  • 4) терминация полипептидной цепи и ее освобождение;
  • 5) посттрансляционная модификация полипептидной цепи.
  • 1. Активация аминокислот требует фермента аминоацил- тРНК-синтетазы и затраты энергии в виде АТФ:

Этот же фермент участвует в фиксации предварительно активированной аминокислоты в положение 2 или 3 рибозы последнего нуклеотида тРНК:

В виде данного комплекса аминокислота транспортируется на рибосому, на которой происходит синтез белковой молекулы. Аминоацил-тРНК-синтетаза специфична, она способна узнавать как аминокислоту, так и тРНК. В клетке, таким образом, имеется не менее 20 различных синтетаз, в соответствии с числом а-аминокислот.

2. тРНК, связанная эфирной связью с определенной аминокислотой, поступает на рибосому и взаимодействует с мРНК по типу комплементарности между специфическим триплетом нуклеотидов мРНК, названным кодоном, и ей комплементарным специфическим триплетом нуклеотидов (антикодоном) тРНК, переносящей определенную аминокислоту. Таким образом, каждый кодон мРНК соответствует специфической фиксации одной аминокислоты в пептидной цепи посредством антикодона тРНК. Рибосома передвигается вдоль молекулы мРНК, считывая последовательно все кодоны, устанавливая таким образом порядок расположения всех аминокислот, доставляемых к месту синтеза.

Синтез молекулы белка идет по направлению от свободной аминогруппы к свободной карбоксильной группе аминокислоты. Обычно начальной аминокислотой в синтезе полипептид- ной цепи является метионин, для которой кодоном служит нуклеотидная последовательность АУГ мРНК.

Инициация синтеза полипептида начинается при фиксации двух антикодонов тРНК по соответствующим кодонам мРНК. Процесс требует наличия источника энергии, которым служит ГТФ, а также участия целого ряда белковых факторов инициации и пептидилтрансферазы.

При участии данного фермента скорость образования ковалентных связей достигает 1200 аминокислот/мин/рибосому.


Схема инициации синтеза полипептида

3. После образования дипептида «ненагруженная» тРНК покидает рибосому и способна доставлять новые молекулы аминокислот, а мРНК продвигается относительно рибосомы (полисомы) на три нуклеотида. В результате перемещения (транслокации) свободный кодон занимает положение для узнавания очередной молекулы тРНК. Следовательно, в стадии элонгации происходит последовательное присоединение по одной аминокислоте к полипептидной цепи в строгом соответствии с порядком кодонов молекулы мРНК.

Удлиняющаяся полипептидная цепь с одной молекулой тРНК фиксируется с большой субъединицей рибосомы. Присоединение каждой дополнительной аминокислоты к полипептидной цепи происходит за счет взаимосвязи аминогруппы присоединяющейся аминокислоты в комплексе с тРНК и карбоксильной группы пептида.

4. Терминация, или завершение синтеза полипептидной молекулы, вовлекает определенные кодоны терминации «без смысла» и белковые факторы терминации. Известны три кодона (УАГ, УГА, УАА), которые не кодируют, не связывают какую-либо аминокислоту, так как в клетке не существует антикодонов тРНК, комплементарных к ним. Теоретически лишь один кодон «без смысла», узнаваемый полисомой во время прохождения в направлении 5-3 мРНК, должен остановить синтез молекулы белка.

Наличие терминирующего кодона в любом участке мРНК означает окончание белкового синтеза. В результате полисома распадается, неиспользованная мРНК гидролизуется полинук- леотидфосфорилазой, а субъединицы рибосом готовятся к началу синтеза новой молекулы белка.

мРНК может неоднократно участвовать в процессе биосинтеза белка. Продолжительность функционирования молекулы мРНК неодинакова у различных организмов. Она может колебаться от нескольких минут до нескольких суток.

5. В ДНК закодирована лишь первичная структура белка. Поэтому синтезированные на рибосомах молекулы белков еще не имеют окончательно завершенного состояния. Они представляют первичные полипептиды, которые затем претерпевают многочисленные модификации (ассоциации мономеров с образованием олигомеров, присоединения коферментов, химические превращения), изменяющие структуру белков и, значит, их активность.

Вторичная и третичная структуры не кодированы, они определяются свойствами первичной структуры, а это значит, что та или иная форма белковой молекулы зависит от последовательности аминокислот и возможностей их взаимодействия между собой. Структурные модификации синтезируемых белков имеют место еще на уровне рибосом или после завершения синтеза в результате присоединения различных функциональных групп.

Рассмотренная схема передачи информации в виде

может в отдельных случаях изменяться. Так, у вирусов, не содержащих ДНК, информация заложена в РНК. При проникновении вируса в клетку эта информация передается на ДНК клетки, а последняя уже синтезирует мРНК, на матрице которой синтезируются вирусные белки. Такой процесс носит название обратной транскрипции, и схема передачи информации в этом случае будет следующей:

Пока сохраняется последовательность нуклеотидов ДНК и, следовательно, мРНК, характер вновь синтезируемого белка остается неизменным.

Необходимая генетическая информация для синтеза белка может быть представлена аналогично записи человеческого языка, которая состоит из последовательности букв, формирующих слова и предложения. В генетическом языке, однако, есть только четыре буквы - четыре основания (аденин, гуанин, урацил, цитозин).

Генетический код включает трехбуквенные слова. Четыре основания в данном случае (43) дают 64 варианта (слова), которых более чем достаточно, чтобы кодировать 20 аминокислот. Таким образом, 64 кодона и составляют генетический код (табл. 3).

Анализ генетического кода показывает, что для различных аминокислот имеется различное число кодонов. Например, метионин и триптофан имеют только один кодон, тогда как аргинин, лейцин, серин имеют по шесть кодонов. Наличие нескольких кодонов для одной аминокислоты отражает «вырожден- ность» кода. Следовательно, одна и та же аминокислота может кодироваться несколькими по своему строению нуклеотидными триплетами. В то же время каждому триплету соответствует вполне определенная аминокислота в синтезируемой поли- пептидной цепи.

Т а б л и ц а 3

Генетический код

нуклеотид

Второй нуклеотид

нуклеотид

Генетический код универсален и одинаков у видов разного уровня развития (человек, животные, растения, микроорганизмы). Универсальность кода свидетельствует, что все живые организмы в прошлом имели единого предка.

Отдельные аминокислоты (оксипролин, оксилизин), например, не имеют кодона и образуются с помощью химических реакций уже после синтеза полипептидной цепи. Этот процесс получил название посттрансляционной модификации и очень важен для правильного функционирования каждого белка.

Бессмысленные кодоны (УАА, УАГ, УГА) не кодируют аминокислоты, однако реально служат сигналом окончания синтеза белковой молекулы.

Таким образом, мРНК является непосредственным переносчиком генетической информации из ядра на рибосому цитоплазмы. Одна рибосома занимает на мРНК участок длиной около 80 нуклеотидов и способна катализировать примерно 100 пептидных связей в минуту (Северин Е. С. и др., 2011).

Синтезированные белковые молекулы могут подвергаться структурным модификациям еще на уровне рибосом или после завершения синтеза в результате присоединения различных функциональных групп. В цитоплазме мРНК имеет сравнительно короткий период существования. Некоторое количество мРНК синтезируется и запасается в неактивной форме, будучи готовой для быстрого синтеза белка. Поскольку информация мРНК связана с линейной последовательностью нуклеотидов, целостность этой последовательности чрезвычайно важна. Любая потеря или изменение порядка нуклеотидов может видоизменить синтез белка. На сегодня установлен целый ряд ингибиторов репликации ДНК в клетках организма (антибиотики, химические яды, антивирусные препараты). Повреждения в последовательности пуриновых или пиримидиновых оснований в гене получили название мутации.

Замена лишь одного нуклеотида в кодоне (мутация) приводит к смене кодирования одной аминокислоты на другую. Например, мутация, связанная с заменой глутаминовой кислоты на валин в молекуле гемоглобина, приводит к синтезу гемоглобина, вызывающего серповидную анемию. Сегодня известно более 200 мутаций полипептидной цепи молекулы гемоглобина человека. Часто мутагенами являются вещества (нитроза- мины, например), изменяющие структуру азотистых оснований, что приводит к изменению характера комплементарности оснований. Ультрафиолетовое облучение вызывает конденсацию остатков тимина с образованием тиминовых димеров. К счастью, от вредного действия ультрафиолетовых лучей животные защищены слоем озона атмосферы.

Многие антибиотики, используемые в ветеринарной практике, ингибируют бактериальный синтез белка (линкомицин, эритромицин, хлорамфеникол) еще на стадии трансляции. При этом микробная клетка погибает или приостанавливает свое развитие. Такие антибиотики, как тетрациклины, не влияют на рибосомальный синтез в клетках высших животных. Пени- циллины не являются прямыми ингибиторами синтеза белка, однако их эффекты ингибирования бактерий связаны с блокированием синтеза гексапептидов клеточной стенки. Следует отметить, что синтез белка происходит не только на рибосомах, но и в митохондриях. Митохондрии имеют полный и независимый аппарат синтеза белка для своих нужд, хотя не все митохондриальные белки синтезируются в этих органеллах. РНК митохондрий составляют лишь 3% от всего количества РНК клетки. Рибосомы митохондрий меньше по размерам, чем цитоплазматические. Кодон УГА, как терминатор синтеза белка в цитоплазме, используется в митохондриях наряду с кодоном УГГ для кодирования аминокислоты.

Синтезированные на рибосомах белки еще не имеют окончательно завершенного состояния. Они представляют первичные полипептиды, которые затем претерпевают многочисленные модификации (ассоциации мономеров с образованием олигомеров, присоединения коферментов, химические превращения), модифицирующие структуру белка и, значит, его активность.

Введение

Жизнь есть способ существования белковых тел. Это определение, данное Фридрихом Энгельсом, указывает на исключительную роль белков в функционировании организмов. Биосинтез белка - чрезвычайно сложный и энергозатратный процесс. Он является основой жизнедеятельности клетки.

Синтез белка осуществляется в рибосомах и проходит в несколько этапов по схеме ДНКРНК белок . Двухцепочечная молекула ДНК на основе принципа комплементарности транскрибируется в одноцепочечную молекулу РНК. В результате получается матричная РНК, которая содержит информацию об аминокислотной последовательности белка. Далее мРНК поступает в рибосому и по ней, как по матрице, синтезируется белок, путем перевода генетической информации с языка нуклеотидной последовательности на язык аминокислотной последовательности. Шаг за шагом строится полипептидная цепь, которая в процессе синтеза и после него модифицируется в биологически активный протеин. Синтезированный белок транспортируется в разные участки клетки для выполнения своих функций.

Кодирование аминокислотной последовательности белков осуществляется по определенным правилам, называемых генетическим кодом . Расшифровка генетического кода - очень значимое достижение науки. Код объясняет механизм синтеза белка, происхождение мутаций и другие биологические явления.

Рентгеноструктурный анализ и другие современные методы исследования позволили далеко продвинутся в изучении биосинтеза белка и других аспектов молекулярной биологии. Но тем не менее все еще не установлены пространственные структуры некоторых жизненно важных макромолекул. Науке предстоит ответить на многие вопросы, касающиеся белкового синтеза.

Общая схема биосинтеза белка

Общая схема биосинтеза белков в клетке: ДНКРНКбелок (Рисунок 1).

Рисунок 1. Общая схема биосинтеза белков в клетке

Транскрипция. Отдельные участки двухцепочечной ДНК (гены) служат матрицами для синтеза на них однотяжевых цепей РНК по принципу комплементарности. Транскрипция проходит в три стадии: инициация, элонгация, терминация.

Процессинг и транспорт. В процессе синтеза РНК подвергается изменениям, в результате которых превращается в зрелую молекулу, пригодную для синтеза белка. Получающаяся информационная (матричная) РНК (мРНК) затем поступает к рибосомам в качестве программы, определяющей аминокислотную последовательность в синтезируемом белке.

Активация и акцептирование аминокислот. Белки состоят из аминокислот, но свободные аминокислоты клетки не могут быть непосредственно использованы рибосомой. Каждая аминокислота сначала активируется с помощью АТФ, а затем присоединяется к специальной молекуле РНК - трансферной (транспортной) РНК (тРНК) вне рибосомы. Получающаяся аминоацил-тРНК поступает в рибосому в качестве субстрата для синтеза белка.

Трансляция. Поток информации в виде мРНК и поток материала в виде аминоацил-тРНК поступают в рибосомы, которые осуществляют перевод (трансляцию) генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной. Каждая рибосома движется вдоль мРНК от одного конца к другому и соответственно выбирает из среды те аминоацил-тРНК, которые соответствуют (комплементарны) триплетным комбинациям нуклеотидов, находящимся в данный момент в рибосоме. Аминокислотный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи, а деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно строится полипептидная цепь.

Формирование функционального белка. По ходу синтеза полипептидная цепь высвобождается из рибосомы и сворачиваться в глобулу. Сворачивание и транспорт белка сопровождаются ферментативными модификациями (процессинг белка).

Несмотря на большую сложность аппарата биосинтеза белков, он протекает с чрезвычайно высокой скоростью. Синтез тысяч различных белков в каждой клетке строго упорядочен - при данных условиях метаболизма синтезируется лишь необходимое число молекул каждого белка.

Важнейшие функции организма - обмен веществ, рост, развитие, передача наследственности, движение и др. - осуществляются в результате множества химических реакций с участием белков, нуклеиновых кислот и других биологически активных веществ. При этом в клетках непрерывно синтезируются разнообразные соединения: строительные белки, белки-ферменты, гормоны. В ходе обмена эти вещества изнашиваются и разрушаются, а вместо них образуются новые. Поскольку белки создают материальную основу жизни и ускоряют все реакции обмена веществ, жизнедеятельность клетки и организма в целом определяется способностью клеток синтезировать специфические белки. Их первичная структура предопределена генетическим кодом в молекулеДНК.

Молекулы белков состоят из десятков и сотен аминокислот (точнее, из аминокислотных остатков). Например, в молекуле гемоглобина их около 600, и они распределены в четыре полипептидные цепочки; в молекуле рибонуклеазы таких аминокислот 124 и т. д.

Главная роль в определении первичной структуры белка принадлежит молекулам ДНК. Разные ее участки кодируют синтез разных белков, следовательно, одна молекула ДНК участвует в синтезе многих индивидуальных белков. Свойства белков зависят от последовательности аминокислот в полипептидной цепи. В свою очередь чередование аминокислот определяется последовательностью нуклеотидов в ДНК, и каждой аминокислоте соответствует определенный триплет. Экспериментально доказано, что, например, участок ДНК с триплетом ААЦ соответствует аминокислоте лейцину, триплет АЦЦ - триптофану, триплет АЦА-цистеину и т.д. Распределив молекулу ДНК на триплеты, можно представить, какие аминокислоты и в какой последовательности будут располагаться в молекуле белка. Совокупность триплетов составляет материальную основу генов, а каждый ген содержит информацию о структуре специфического белка (ген - это основная биологическая единица наследственности; в химическом отношении ген есть участок ДНК, включающий несколько сотен пар нуклеотидов).

Генетический код - исторически сложившаяся организация молекул ДНК и РНК, при которой последовательность нуклеотидов в них несет информацию о последовательности аминокислот в белковых молекулах. Свойства кода: триплетность (кодон), неперекрываемость (кодоны следуют друг за другом), специфичность (один кодон может определять в полииептидной цепи только одну аминокислоту), универсальность (у всех живых организмов один и тот же кодон обусловливает включение в полипептид одну и ту же аминокислоту), избыточность (для большинства аминокислот существует несколько кодонов). Триплеты, не несущие информации об аминокислотах, являются стоп триплетами, обозначающими место начала синтеза и-РНК. (В.Б. Захаров. Биология. Справочные материалы. М.,1997)

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником служит и РНК, на которую нуклеотидная последовательность переписывается, в точном соответствии с таковой на ДНК - по принципу комплементарности. Этот процесс получил название транскрипции и протекает как реакция матричного синтеза. Он характерен только для живых структур и лежит в основе важнейшего свойства живого - самовоспроизведения. Биосинтезу белка предшествует матричный синтез иРНК на нити ДНК. Возникшая при этом иРНК выходит из ядра клетки в цитоплазму, где на нее нанизываются рибосомы, сюда же с помощью тРЙК доставляются аминокислоты.

Синтез белка - сложный многоступенчатый процесс, в котором участвуют ДНК, иРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Вначале аминокисдоты в цитоплазме активируются с помощью ферментов и присоединяются к тРНК (к участку, где расположен нуклеотид ЦЦА). На следующем этапе идет соединение аминокислот в таком порядке, в каком чередование нуклеотидов с ДНК передано на иРНК. Этот этап называется трансляцией. На нити иРНК размещается не одна рибосома, а группа их - такой комплекс называется полисома (Н.Е. Ковалев, Л.Д. Шевчук, О.И. Щуренко. Биология для подготовительных отделений медицинских институтов).

Схема Биосинтез белка

Синтез белка состоит из двух этапов - транскрипции и трансляции.

I. Транскрипция (переписывание) - биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК). Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.

II. Трансляция (передача) - синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями:

1. Образование функционального центра рибосомы - ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) - центр узнавания аминокислоты и П (пептидный) - центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарностн возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс "кодон рРНК и тРНК с аминокислотой" перемещается в активный центр П, где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматиче-ской сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) --> РНК (трансляция) --> белок.

Завершив один цикл, полисомы могут принять участие в синтезе новых молекул белка.

Отделившаяся от рибосомы молекула белка имеет вид нити, которая биологически неактивна. Биологически функциональной она становится после того, как молекула приобретает вторичную, третичную и четвертичную структуру, т. е. определенную пространственно специфическую конфигурацию. Вторичная и последующие структуры белковой молекулы предопределены в информации, заложенной в чередовании аминокислот, т. е. в первичной структуре белка. Иначе говоря, программа образования глобулы, ее уникальная конфигурация определяются первичной структурой молекулы, которая в свою очередь строится под контролем соответствующего гена.

Скорость синтеза белка обусловлена многими факторами: температурой среды, концентрацией водородных ионов, количеством конечного продукта синтеза, присутствием свободных аминокислот, ионов магния, состоянием рибосом и др.