Процентное содержание азота в земной атмосфере составляет. Состав и строение атмосферы. Роль Азота в атмосфере Земли

Почему в атмосфере Земли так много азота? и получил лучший ответ

Ответ от Marat[гуру]
Можно выделить несколько причин. ГЛАВНАЯ: Земля - единственная планета Солнечной системы, где сформировалась, стабилизировалась и продолжает развиваться белковая форма жизни. Состав первичной атмосферы Земли был более простым: преобладали раскалённый водяной пар и CO2 - главные продукты вулканических газов. После того, как атмосфера остыла, процессы фотосинтеза и конденсации воды привели к значительному уменьшению доли CO2 и появлению свободного кислорода. ВАЖНЫЙ момент: среди продуктов разложения белков (животный и растительный мир) важную роль играют мочевина (карбамид) и мочевая кислота. Эти вещества, в свою очередь, постепенно подвергаются необратимому (!) гидролизу с образованием аммиака (NH3). ВАЖНО: NH3 - газ легче смеси O2,СO2 и водяного пара - поэтому он постепенно поднимается в верхние слои атмосферы, где под влиянием ультрафиолетовых лучей начинает медленно окисляться молекулярным кислородом с образованием свободного АЗОТА и воды: NH3 + O2 => N2 + H2O. Поскольку азот - сравнительно тяжёлый газ, он удерживается гравитационным полем Земли. Наконец, не стоит забывать, что в ОБЫЧНЫХ условиях N2 - химически весьма инертное вещество; этот фактор также способствует накоплению молекулярного азота в атмосфере нашей планеты.
Marat
Просветленный
(25806)
Re: "Я так и не понял, почему все таки в атмосферах Марса и Венеры азота так мало".
Потому что там никогда не было биомассы в таком количестве, как на Земле.
Re: "Наверное вы хотите сказать что на других планетах азот в основном представлен амиаком".
Этого я не говорил 🙂
Re: "Амиак легкий и поэтому утекает из атмосферы".
Не утекает, а достигает зоны действия ультрафиолетовых лучей.
Re: "Но в том то и дело что амиака в атмосферах Марса и Венеры даже меньше чем гелия (уж гелий то очень легкий газ)"
Согласен.
Re "Да и не из чего там образовываться амиаку, жизни нет, органики нет".
Верно, я то же самое имел в виду.

Ответ от Ёергей Заика [гуру]
здрасти, нету, а планеты-гиганты, Юпитер и Сатурн, там что, тоже нет азота? Абзац.. . Азот сам по себе химически нейтрален и вот его так много, другие газы более химически агресивны и вступают в реакции со всем и вся, вот и есть в связаном состоянии в виде солей да минералов в породах.


Ответ от Кирилл Никитин [гуру]
Не уверен, но думаю, это связано с усилением круговорота азота под действием живых организмов (белки)


Ответ от Mikhail Levin [гуру]
Попробую подумать.. .
Азот - очень распространенный элемент, так что его должно быть много везде.
Наличие газа в атмосфере зависит от баланса прихода (из недр планеты) и ухода в открытый космос.
Азот - легче, чем СО2, потому уходит быстрее. Марс его, скорее всего, просто не может удерживать (как Земля не может удерживать водород или гелий) .
А вот с Венерой - большой вопрос. У нее в атмосфере 4% азота, но сама атмосфера - чудовищная, не факт, что в абсолютныхх числах у нее азота меньше, чем у Земли.
Другое дело, что у Земли в атмосфере очень мало углекислого газа (хотя он и выделяется из недр) . Тут дело уже в наличии воды и жизни, связывающей его.


Ответ от АРТЁМ. [мастер]
Фиксация атмосферного азота в природе происходит по двум основным направлениям - абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры) . Эти условия достигаются при разрядах молний, когда температура достигает 25000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь) .
Однако основная часть молекулярного азота (около 1,4·108 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли) : бактерии Azotobacter и Clostridium, клубеньковые бактерии бобовых растений Rhizobium, цианобактерии Anabaena, Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубнях ольхи и других деревьев (всего 160 видов) . Все они превращают молекулярный азот в соединения аммония (NH4+). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы) . Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий - первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» - глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.
Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации) . Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками) , недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и в конце концов попадают в мировой океан (этот поток оценивается в 2,5-8·107 т/год) .
Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации, то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.
В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

Азот относится к умеренно активным элементам, слабо вступающим в реакции с природными неорганическими соединениями. Поэтому существует большая вероятность того, что и в первичной атмосфере содержалось заметное количество этого газа. В этом случае значительная часть азота современной атмосферы является реликтовой, сохранившейся ещё со времён формирования Земли около 4,6 млрд лет назад, хотя другая его часть могла дегазироваться из мантии уже на геологической стадии развития нашей планеты. Необходимо учитывать, что с появлением жизни на Земле около 4,0-3,8 млрд лет назад постоянно происходило связывание этого газа в органическом веществе и его захоронение в океанических осадках, а после выхода жизни на сушу (около 400 млн лет назад) - и в континентальных отложениях. Поэтому жизнедеятельность организмов за длительное время развития земной жизни могла существенно снизить парциальное давление азота в земной атмосфере, тем самым меняя климаты Земли. Рассчитывая эффект поглощения азота, надо учитывать, что органический азот (N орг) океанических осадков вместе с осадками через зоны скучивания океанической коры в архее или через зоны поддвига плит в протерозое и фанерозое постоянно выводился из акваторий океанов. После этого он частично включался в гранит-метаморфические породы континентальной коры или уходил в мантию, но частично вновь дегазировался и снова поступал в атмосферу.

Помимо биогенного процесса связывания атмосферного азота, по-видимому, существует достаточно эффективный абиогенный механизм этой же направленности. Так, по расчётам Я. Юнга и М. МакЕлроя (Yung, McElroy, 1979), фиксация азота в почвах может происходить во время гроз благодаря образованию при электрических разрядах во влажном воздухе азотной и азотистой кислот.

Оценить количество выведенного из атмосферы азота сложно, но возможно. Содержание азота в осадочных породах обычно прямо коррелируется с концентрацией захороненного в них органического углерода. Поэтому оценить количество захороненного в океанических осадках азота, по-видимому, можно по данным о массе погребённого в них органического углерода C орг. Для этого следует только определить коэффициент пропорциональности между H орг и C орг. В донных осадках открытого океана C орг: N орг: P орг приблизительно равно 106: 20: 0,91 (Лисицын, Виноградов, 1982), но при этом до 80 % азота быстро уходит из органического вещества, поэтому отношение C орг: N орг в осадках может повышаться до 1: 0,04. По данным Г. Фора (1989), это отношение в осадках приблизительно равно 1: 0,05. Примем, по данным А. Б. Ронова и А. А. Ярошевского (1978, 1993), что в осадках океанов (пелагиаль плюс шельфы) законсервировано около (2,7-2,86)×10 21 г C орг, а в осадках континентов - около (9,2-8,09)×10 21 г C орг. В след за Г. Фором мы приняли значения отношений C орг: N орг близкими к 20:1, тогда содержание H орг в осадках океанического дна и шельфах примерно равно 1,36×10 20 г, а в континентальных осадках - 5,0×10 20 г.

В первом приближении будем считать, что развитие жизни в океане ограничивается содержанием в океанических водах растворенного фосфора, а его концентрация с течением времени менялась незначительно (Шопф, 1982). Отсюда следует, что биомасса океана всегда оставалась приблизительно пропорциональной массе воды в самом океане. Эволюция массы воды в Мировом океане была рассмотрена на рис. 112, кривая 2). Учитывая сделанное предположение о пропорциональности биомассы в океанах - массе самих океанических вод, можно приближённо учесть удаление N орг вместе с океаническими осадками через зоны скучивания и субдукции литосферных плит за время геологического развития Земли. Соответствующие расчёты (Сорохтин, Ушаков, 1998) показали, что за время геологического развития Земли (т.е. за последние 3,8-4 млрд лет) благодаря рассматриваемому процессу из атмосферы Земли было удалено около 19,2×10 20 г азота. К этому количеству азота надо добавить ещё массу N орг ≈ 5,0×10 20 г, законсервированного в осадках континентов и накопившегося там за время порядка 400 млн лет. Таким образом, всего за время жизни Земли из её атмосферы было удалено приблизительно 24,2×10 20 г азота, что эквивалентно снижению давления атмосферы уже на 474 мбар (для сравнения, парциальное давление азота в современной атмосфере 765 мбар).

Рассмотрим два крайних случая. Сначала предположим, что дегазация азота из мантии не происходила вовсе, тогда можно определить начальное эффективное давление атмосферы Земли в катархее (т.е. на интервале 4,6-4,0 млрд лет). Оно оказывается приблизительно равным 1,23 бар (1,21 атм).

Во втором случае будем считать, как это делалось в работе (Сорохтин, Ушаков, 1991), что почти весь азот атмосферы был дегазирован из мантии за последние 4 млрд лет. Расчёт процесса дегазации азота из мантии проводился по выражениям (29) и (30) с учётом того, что в настоящее время в атмосфере содержится 3,87×10 21 г азота, в горных породах и осадках его содержание достигает 3,42×10 20 г, а в мантии азота приблизительно 4,07×10 21 г (Сорохтин, Ушаков, 1998). Показатель подвижности азота не должен был меняться со временем и приблизительно равнялся χ(N 2) ≈ 0,934. После расчёта накопления азота во внешних геосферах Земли в полученные результаты вносились поправки за поглощение этого газа в органическом веществе и его захоронения в горных породах и осадках. Оставшаяся часть характеризовала эволюцию массы азота в земной атмосфере при условии его полной дегазации из мантии.

Для обоих вариантов затем были рассчитаны кривые эволюции парциального давления азота в земной атмосфере (рис. 117, кривые 1 и 3). Реальной картине изменения этого давления тогда должна была бы соответствовать некоторая промежуточная кривая, определить положение которой можно, только привлекая дополнительную информацию по климатам Земли, существовавшим в прошлые геологические эпохи. Такой реперной точкой, например, может служить информация о развитии наиболее грандиозного оледенения континентов в раннем протерозое, около 2,5-2,3 млрд лет назад. Как было показано в гл. 8, континентальные массивы тогда располагались в низких широтах (см. рис. 98), но одновременно с этим и высоко стояли над уровнем океана (со средними высотами около 4-3 км). Поэтому возникновение такого оледенения могло произойти только в том случае, если средняя температура земной поверхности на уровне моря тогда не превышала +6 ... +7 °С, т.е. приблизительно равнялась 280 К.

Рисунок 117.
1 — по гипотезе первичности азотной атмосферы; 2 — принятый вариант; 3 — по гипотезе дегазации азотной атмосферы из мантии.

Рисунок 98.
1 — тиллиты и тиллоиды; 2 — консолидированная континентальная кора; стрелками на Канадском щите показаны выявленные направления ледниковой штриховки; белым цветом — область покровного оледенения. Ав — Австралия; САм и ЮАм — Северная и Южная Америка; Ан — Антарктида; ЗАф — Западная Африка; Аф — Африка; Ев — Европа; Ин — Индия; К — Северный и Южный Китай; Сб — Сибирь.

Ниже будет показано, что в раннем протерозое атмосфера практически состояла только из азота с небольшой добавкой аргона, тогда как парциальные давления кислорода и углекислого газа не превышали соответственно 10 -6 и 10 -2 атм, а солнечная постоянная равнялась S = 1,14×10 6 эрг/см 2 ×с. Принимая для той холодной эпохи T s ≈ 280 К ≈ 7 °С, мы по адиабатической теории парникового эффекта, изложенной ниже, нашли, что давление азотной атмосферы в это время приблизительно равнялось p N 2 = 1,09 атм, тогда как по гипотезе первичности азотной атмосферы в это время должно было бы быть p N 2 ≈ 1,19 атм, а по гипотезе полностью дегазированного из мантии азота p N 2 ≈ 0,99 атм. Отсюда видно, что азот современной атмосферы приблизительно на 54 % состоит из реликтового газа и только на 46% дегазирован из мантии, а наиболее вероятная закономерность эволюции давления азота в земной атмосфере изображена на рис. 117, кривая 2.

Страница 6 из 10

Роль Азота в атмосфере Земли.

Азот – главный элемент атмосферы Земли. Основная его роль – регулировка темпов окисления путем разбавления кислорода. Таким образом азот влияет на скорость и напряженность биологических процессов.

Существует два взаимосвязанных между собой пути извлечения азота из атмосферы Земли:

  • 1) неорганический,
  • 2) биохимический.

Рисунок 1. Геохимический круговорот азота (В.А. Вронский, Г.В. Войткевич)

Неорганическое извлечение азота из атмосферы Земли.

В атмосфере Земли под действием электрических разрядов (во время грозы) или в процессе фотохимических реакций (солнечная радиация) образуются соединения азота (N 2 O, N 2 O 5 , NO 2 , NH 3 и др.). Эти соединения, растворяясь в дождевой воде, вместе с осадками выпадают на землю, попадая в почву и воду океанов .

Биологическое связывание азота

Биологическое связывание атмосферного азота осуществляется:

  • — в почве — клубеньковыми бактериями в симбиозе с высшими растениями,
  • — в воде — микроорганизмами планктона и водорослями.

Количество биологически связанного азота значительно больше неорганически зафиксированного.

Как азот попадает обратно в атмосферу Земли?

Остатки живых организмов разлагаются в результате воздействия многочисленных микроорганизмов. В процессе этого азот, входящий в состав белков организмов, претерпевает ряд превращений:

  • — в процессе разложения белков образуются аммиак и его производные, попадающие затем в воздух и в воду океанов,
  • — в дальнейшем аммиак и другие азотосодержащие органические соединения под воздействием бактерий Nitrosomonas и нитробактерий образуют различные окислы азота (N 2 O, NO, N 2 O 3 и N 2 O 5). Этот процесс называется нитрификацией ,
  • азотная кислота при взаимодействии с металлами дает соли. Эти соли подвергаются влиянию денитрифицирующих бактерий,
  • — в процессе денитрификации образуется элементарный азот, возвращающийся обратно в атмосферу (примером могут служить подземные газовые струи, состоящие из чистого N 2).

Где содержится азот?

Азот в атмосферу Земли поступает в процессе извержения вулканов в виде аммиака. Попадая в верхние слои атмосферы аммиак (NH 3) окисляется и высвобождает азот (N 2).

Азот также захороняется в осадочных горных породах и содержится в больших количествах в битуминозных отложениях. Однако этот азот также попадает в атмосферу в процессе регионального метаморфизма этих пород.

  • Таким образом, главной формой присутствия азота на поверхности нашей планеты является молекулярный азот (N 2) в составе атмосферы Земли.

Это была статья «Азот в составе атмосферы Земли – содержание в атмосфере 78%. «. Далее читайте: «Кислород в составе атмосферы Земли — содержание в атмосфере 21%. «

Статьи по теме «Атмосфера Земли»:

  • Воздействие атмосферы Земли на организм человека с увеличением высоты.
  • Высота и границы атмосферы Земли .

Строение и состав атмосферы Земли, нужно сказать, не всегда были постоянными величинами в тот или иной период развития нашей планеты. Сегодня вертикальное строение этого элемента, имеющего общую «толщину» 1,5-2,0 тыс. км, представлено несколькими основными слоями, в том числе:

  1. Тропосферой.
  2. Тропопаузой.
  3. Стратосферой.
  4. Стратопаузой.
  5. Мезосферой и мезопаузой.
  6. Термосферой.
  7. Экзосферой.

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там - до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.

Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

Азот - около 78 процентов;

Кислород - почти 21 процент;

Аргон - около одного процента;

Углекислый газ - менее 0.05 %.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10 -4), ксенон (8.7 х 10 -7), водород (5.0 х 10 -5), метан (около 1.7 х 10 -4), закись азота (5.0 х 10 -5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев

Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором - около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой - стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура - около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

В термосфере - плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера - это место возникновения полярных сияний.

Выше термосферы находится экзосфера - внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода - в верхних. Здесь господствуют высокие температуры - около 3000 К и отсутствует атмосферное давление.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н 2 , СН 4 , СО, Н 2 О, N 2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H 2 S), соединений азота, водород, метан (СН 4), пары аммиака (NH 3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

Атмосфера (от греч. atmos — пар и spharia — шар) — воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов.

Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.

Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.

Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.

Строение атмосферы

В атмосфере можно выделить несколько слоев, различающихся по и плотности (рис. 1).

Тропосфера

Тропосфера — самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах — 10-12 км, а над экватором — 16-18 км.

Рис. 1. Строение атмосферы Земли

Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С.

В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха.

Можно сказать, что погода в основном формируется в тропосфере.

Стратосфера

Стратосфера — слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются.

В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч.

В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С.

Между мезосферой и стратосферой расположена переходная зона — стратопауза.

Мезосфера

Мезосфера — слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С.

На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера — слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов. Для этого слоя характерна высокая наэлектризован- ность, и от него, как от зеркала, отражаются длинные и средние радиоволны.

В ионосфере возникают полярные сияния — свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц — и наблюдаются резкие колебания магнитного поля.

Экзосфера

Экзосфера — внешний слой атмосферы, расположенный выше 1000 км. Этот слой еще называют сферой рассеивания, так как частицы газов движутся здесь с большой скоростью и могут рассеиваться в космическое пространство.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.

Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Объемная концентрация. %

Молекулярная масса, ед.

Кислород

Углекислый газ

Закись азота

от 0 до 0,00001

Двуокись серы

от 0 до 0,000007 летом;

от 0 до 0,000002 зимой

От 0 ло 0,000002

46,0055/17,03061

Двуокись азога

Окись углерода

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.

Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.

Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.

Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.

Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат.condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.

Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.

Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.

Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.

Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.

Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.

В 1 м 3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.

Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.

Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м 3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.

Абсолютная влажность — это количество водяного пара, содержащегося в 1 м 3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 м Л содержится 15 г водяного пара.

Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м 3 воздуха к тому количеству водяного пара, которое может содержаться в 1 м Л при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.

Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.

Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.

Особенно низкая относительная влажность воздуха в пустынях: 1 м 1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.

Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).

При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.

Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.

В образовании облаков участвуют и твердые частицы , находящиеся в тропосфере во взвешенном состоянии.

Облака могут иметь различную форму, которая зависит от условий их образования (табл. 14).

Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.

Семейства

Роды облаков

Внешний облик

А. Облака верхнего яруса — выше 6 км

I. Перистые

Нитевидные, волокнистые, белые

II. Перисто-кучевые

Слои и гряды из мелких хлопьев и завитков, белые

III. Перисто-слоистые

Прозрачная белесая вуаль

Б. Облака среднего яруса — выше 2 км

IV. Высококучевые

Пласты и гряды белого и серою цвета

V. Высокослоистые

Ровная пелена молочно-серого цвета

В. Облака нижнего яруса — до 2 км

VI. Слоисто-дождевые

Сплошной бесформенный серый слой

VII. Слоисто-кучевые

Непросвечиваемые слои и гряды серого цвета

VIII. Слоистые

Непросвечиваемая пелена серого цвета

Г. Облака вертикального развития — от нижнего до верхнего яруса

IX. Кучевые

Клубы и купола ярко-бе- лого цвета, при ветре с разорванными краями

X. Кучево-дождевые

Мощные кучевообразные массы темно-свинцового цвета

Охрана атмосферы

Главным источником являются промышленные предприятия и автомобили. В больших городах проблема загазованности главных транспортных магистралей стоит очень остро. Именно поэтому во многих крупных городах мира, в том числе и в нашей стране, введен экологический контроль токсичности выхлопных газов автомобилей. Поданным специалистов, задымленность и запыленность воздуха может наполовину сократить поступление солнечной энергии к земной поверхности, что приведет к изменению природных условий.