Применение мощный ультразвука. Ультразвук. Основы теории распространения ультразвуковых волн. Применение в технике ультразвука кратко

Ультразвуком называют упругие волны (волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил), частота которых лежит за пределами слышимого для человека диапазона - приблизительно от 20 кГц и выше.

Полезные особенности ультразвуковых волн

И хотя физически ультразвук имеет ту же природу, что и слышимый звук, отличаясь лишь условно (более высокой частотой), именно благодаря более высокой частоте ультразвук оказывается применим по ряду полезных направлений. Так, при измерении скорости ультразвука в твердом, жидком или газообразном веществе, получают очень незначительные погрешности при мониторинге быстропротекающих процессов, при определении удельной теплоемкости (газа), при измерении упругих постоянных твердых тел.

Высокая частота при малых амплитудах дает возможность достигать повышенных плотностей потоков энергии, ибо энергия упругой волны пропорциональна квадрату ее частоты. Кроме того ультразвуковые волны, используемые правильным образом позволяют получить ряд совершенно особенных акустических эффектов и явлений.

Одно из таких необычных явлений - акустическая кавитация, возникающая при направлении мощной ультразвуковой волны в жидкость. В жидкости, в поле действия ультразвука, крохотные пузырьки пара или газа (субмикроскопического размера) начинают расти до долей миллиметров в диаметре, при этом пульсируя с частотой волны и схлопываясь в положительной фазе давления.

Захлопывающийся пузырек порождает локально высокий импульс давления, измеряемый тысячами атмосфер, становясь источником ударных сферических волн. Акустические микропотоки, образующиеся возле таких пульсирующих пузырьков, возымели полезное применение для получения эмульсий, очистки деталей и т. д.

Фокусируя ультразвук, получают звуковые изображения в акустической голографии и в системах звуковидения, концентрируют звуковую энергию с целью формирования направленных излучений с заданными и управляемыми характеристиками направленности.

Используя ультразвуковую волну в качестве дифракционной решетки для света, можно для тех или иных целей изменять показатели преломления света, поскольку плотность в ультразвуковой волне, как и в упругой волне в принципе, периодически изменяется.

Наконец, особенности, связанные со скоростью распространения ультразвука. В неорганических средах ультразвук распространяется со скоростью, зависящей от упругости и плотности сред.

Что касается сред органических, то здесь на скорость влияют границы и их характер, то есть фазовая скорость зависит от частоты (дисперсия). Ультразвук затухает с удалением фронта волны от источника - фронт расходится, ультразвук рассеивается, поглощается.

Внутреннее трение среды (сдвиговая вязкость) приводит к классическому поглощению ультразвука, кроме того релаксационное поглощение для ультразвука превосходит классическое. В газе ультразвук затухает сильнее, в твердых и в жидких телах - гораздо слабее. В воде, например, затухает в 1000 раз медленнее чем в воздухе. Так, промышленные области применения ультразвука почти целиком связаны с твердыми и жидкими телами.

Ультразвук в эхолокации и гидролокации (пищевая, оборонная, добывающая промышленности)

Первый прообраз гидролокатора был создан для предотвращения столкновений судов со льдинами и айсбергами, русским инженером Шиловским вместе с французским физиком Ланжевеном в далеком 1912 году.

Прибор использовал принцип отражения и приема звуковой волны. Сигнал направлялся в определенную точку, а по задержке ответного сигнала (эхо), зная скорость звука, можно было судить о расстоянии до отразившего звук препятствия.

Шиловский и Ланжевен стали глубоко исследовать гидроакустику, и вскоре создали прибор, способный обнаруживать вражеские подводные лодки в Средиземном море на расстоянии до 2 километров. Все современные гидролокаторы, в том числе военные, - потомки того самого прибора.

Современные эхолоты для исследования рельефа дна состоят из четырех блоков: передатчика, приемника, преобразователя и экрана. Функция передатчика - отправлять вглубь воды ультразвуковые импульсы (50 кГц, 192 кГц или 200 кГц), которые распространяются в воде со скоростью 1,5 км/с, где отражаются от рыб, камней, других предметов и дна, затем эхо достигает приемника, обрабатывается преобразователем и результат отображается на дисплее в удобной для зрительного восприятия форме.

Ультразвук в электронной и электроэнергетической промышленности

Без ультразвука не обходятся многие области современной физики. Физика твердого тела и полупроводников, а также акустоэлектроника, во многом тесно сопряжены с ультразвуковыми методами исследований, - с воздействиями на частоте от 20 кГц и выше. Особенное место занимает здесь акустоэлектроника, где ультразвуковые волны взаимодействуют с электрическими полями и электронами внутри твердых тел.

Объемные ультразвуковые волны используются на линиях задержки и в кварцевых резонаторах с целью стабилизации частоты в современных радиоэлектронных системах обработки и передачи информации. Поверхностные акустические волны занимают особое место в полосовых фильтрах для телевидения, в синтезаторах частот, в устройствах переноса заряда акустической волной, в устройствах памяти и считывания изображений. Наконец, корреляторы и конвольверы - используют в своей работе поперечный акустоэлектрический эффект.

Радиоэлектроника и ультразвук

Для задержки одного электрического сигнала относительно другого полезны ультразвуковые линии задержки. Электрический импульс преобразуется в импульсное механическое колебание ультразвуковой частоты, которое распространяется многократно медленнее электромагнитного импульса; затем механическое колебание обратно преобразуется в электрический импульс, и получается сигнал, задержанный относительно подаваемого изначально.

Для такого преобразования обычно применяют пьезоэлектрические или магнитострикционные преобразователи, поэтому и линии задержки называются пьезоэлектрическими или магнитострикционными.


В пьезоэлектрической линии задержки электрический сигнал подается на кварцевую пластинку (пьезоэлектрический преобразователь), соединенную жестко с металлическим стрежнем.

К другому концу стержня присоединен второй пьезоэлектрический преобразователь. Входной преобразователь принимает сигнал, создает механические колебания, распространяющиеся по стрежню, и когда колебания достигают через стержень второго преобразователя, вновь получается электрический сигнал.

Скорость распространения колебаний по стержню сильно меньше чем просто у электрического сигнала, поэтому сигнал, прошедший через стержень задерживается относительно подаваемого на величину, связанную с разностью скоростей электромагнитных и ультразвуковых колебаний.

Магнитострикционная линия задержки сдержит входной преобразователь, магниты, звукопровод, выходной преобразователь и поглотители. Входной сигнал подается на первую катушку, в стержневом звукопроводе из магнитострикционного материала начинаются колебания ультразвуковой частоты - механические колебания - магнит создает здесь постоянное подмагничивание в зоне преобразования и начальную магнитную индукцию.

Ультразвук в обрабатывающей промышленности (резка и сварка)

Между источником ультразвука и деталью располагают абразивный материал (кварцевый песок, алмаз, камень и т. д.). Ультразвук действует на частицы абразива, которые в свою очередь с частотой ультразвука ударяют о деталь. Материал детали под воздействием огромного количества крохотных ударов абразивных зерен разрушается, - так происходит обработка.

Резание складывается с движением подачи, при этом продольные колебания резания являются основными. Точность ультразвуковой обработки зависит от зернистости абразива, и достигает 1 мкм. Таким путем делают сложные вырезы, необходимые в изготовлении металлических деталей, шлифовке, гравировке и сверлении.


Если необходимо сварить разнородные металлы (или даже полимеры) или толстую деталь объединить с тонкой пластиной - на помощь опять же приходит ультразвук. Это так называемая . Под действием ультразвука в области сварки металл становится очень пластичным, детали можно очень легко вращать во время соединения под любыми углами. И стоит отключить ультразвук - детали мгновенно соединятся, схватятся.

Особенно примечательно, что сварка происходит при температуре ниже температуры плавления деталей, и соединение их происходит фактически в твердом состоянии. Но так сваривают и стали, и титан, и даже молибден. Тонкие листы свариваются проще всего. Данный метод сварки не предполагает особой подготовки поверхности деталей, это касается и металлов и полимеров.

Ультразвук в металлургии (ультразвуковая дефектоскопия)

Ультразвуковая дефектоскопия является одним из эффективнейших методов контроля качества металлических деталей без разрушения. В однородных средах ультразвук распространяется без быстрых затуханий направленно, и на границе сред ему свойственно отражение. Так металлические детали проверяют на наличие внутри них раковин и трещин (граница сред воздух-металл), выявляют повышенную усталость металла.

Ультразвук способен проникнуть в деталь на глубину до 10 метров, причем размеры выявляемых дефектов имеют порядок 5 мм. Существуют: теневой, импульсный, резонансный, структурного анализа, визуализации, - пять методов ультразвуковой дефектоскопии.


Простейший метод - теневая ультразвуковая дефектоскопия, данный метод строится на ослаблении ультразвуковой волны, когда она наталкивается на дефект при прохождении сквозь деталь, поскольку дефект создает ультразвуковую тень. Работают два преобразователя: первый излучает волну, второй - принимает.

Данный метод малочувствителен, дефект обнаруживается лишь в случае, если его влияние изменяет сигнал минимум на 15%, к тому же нельзя определить глубину, где в детали находится дефект. Более точные результаты дает импульсный ультразвуковой метод, он показывает еще и глубину.

Метод ультразвуковой дефектоскопии металлов и других материалов впервые был разработан и практически осуществлен в Советском Союзе в 1928-1930 гг. проф. С. Я. Соколовым.

Ультразвуковые волны представляют собой упругие колебания материальной среды, частота которых лежит за пределами слышимости в диапазоне от 20 кгц (волны низкой частоты) до 500 Мгц (волны высокой частоты).

Ультразвуковые колебания бывают продольные и поперечные. Если частицы среды перемещаются параллельно направлению распространения волны, то такая волна является продольной, если перпендикулярно-поперечной. Для отыскания дефектов в сварных швах используют в основном поперечные волны, направленные под углом к поверхности свариваемых деталей.

Ультразвуковые волны способны проникать в материальные среды на большую глубину, преломляясь и отражаясь при попадании на границу двух материалов с различной звуковой проницаемостью. Именно эта способность ультразвуковых волн используется в ультразвуковой дефектоскопии сварных соединений.

Ультразвуковые колебания могут распространяться в самых различных средах - воздухе, газах, дереве, металле, жидкостях.

Скорость распространения ультразвуковых волн C определяют по формуле:

где f - частота колебаний, гц; λ - длина волны, см.

Для выявления мелких дефектов в сварных швах следует пользоваться коротковолновыми ультразвуковыми колебаниями, так как волна, длина которой больше размера дефекта, может не выявить его.

Получение ультразвуковых волн

Ультразвуковые волны получают механическим, термическим, магнитострикционным (Магнитострикция - изменение размеров тела при намагничивании) и пьезоэлектрическим (Приставка «пьезо» означает «давить») способами.

Наиболее распространенным является последний способ, основанный на пьезоэлектрическом эффекте некоторых кристаллов (кварца, сегнетовой соли, титаната бария): если противоположные грани пластинки, вырезанной из кристалла, заряжать разноименным электричеством с частотой выше 20 000 гц, то в такт изменениям знаков зарядов пластинка будет вибрировать, передавая механические колебания в окружающую среду в виде ультразвуковой волны. Таким образом электрические колебания преобразовываются в механические.

В различных системах ультразвуковых дефектоскопов применяют генераторы высокой частоты, задающие на пьезоэлектрические пластинки электрические колебания от сотен тысяч до нескольких миллионов герц.

Пьезоэлектрические пластинки могут служить не только излучателями, но и приемниками ультразвука. В этом случае под действием ультразвуковых волн на гранях кристаллов-приемников возникают электрические заряды малой величины, которые регистрируются специальными усилительными устройствами.

Методы выявления дефектов ультразвуком

Существуют в основном два метода ультразвуковой дефектоскопии: теневой и эхо-импульсный (метод отраженных колебаний.)

Рис. 41. Схемы проведения ультразвуковой дефектоскопии а - теневым; б - эхо импульсным методом; 1 - щуп-излучатель; 2 - исследуемая деталь; 3 - щуп приемник; 4 - дефект

При теневом методе (рис. 41, а) ультразвуковые волны, идущие через сварной шов от источника ультразвуковых колебаний (щупа-излучателя), при встрече с дефектом не проникают через него, так как граница дефекта является границей двух разнородных сред (металл - шлак или металл - газ). За дефектом образуется область так называемой «звуковой тени». Интенсивность ультразвуковых колебаний, принятых щупом-приемником, резко падает, а изменение величины импульсов на экране электронно-лучевой трубки дефектоскопа указывает на наличие дефектов. Этот метод имеет ограниченное применение, так как необходим двусторонний доступ к шву, а в ряде случаев требуется снимать усиление шва.

При эхо-импульсном методе (рис. 41,6) щуп-излучатель посылает через сварной шов импульсы ультразвуковых волн, которые при встрече с дефектом отражаются от него и улавливаются щупом-приемником. Эти импульсы фиксируются на экране электроннолучевой трубки дефектоскопа в виде пиков, свидетельствующих о наличии дефекта. Измеряя время от момента посылки импульса до приема обратного сигнала, можно определить и глубину залегания дефектов. Основное достоинство этого метода состоит в том, что контроль можно проводить при одностороннем доступе к сварному шву без снятия усиления или предварительной обработки шва. Этот метод получил наибольшее применение при ультразвуковой дефектоскопии сварных швов.

Ультразвук

Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц . Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов XX века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в полицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это во-первых- сделать как можно больше отверстий в роторе, во-вторых- достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз , остеохондроз , артриты , бурситы , эпикондилиты, пяточная шпора , состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоты и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Ультразвук - это звуковые волны, которые имеют частоту не воспринимаемые человеческим ухом, обычно, частотой выше 20 000 герц.

В природной среде ультразвук может генерироваться в различных естественных шумах (водопад, ветер, дождь). Многие представители фауны используют ультразвук для ориентирования в пространстве (летучие мыши, дельфины, киты)

Источники ультразвука можно подразделить на две большие группы.

  1. Излучатели-генераторы — колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости.
  2. Электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

Наука об ультразвуке относительно молода. В конце 19 века русский ученый – физиолог П. Н. Лебедев впервые провел исследования ультразвука.

В настоящее время применение ультразвука достаточно велико. Так как ультразвук довольно легко направить концентрированным «пучком», то его применяют в различных областях: при этом применение основано на различных свойствах ультразвука.

Условно можно выделить три направления использования ультразвука:

  1. Передача и обработка сигналов
  2. Получение с помощью УЗ волн различной информации
  3. Воздействие ультразвука на вещество.

В этой статье мы затронем лишь малую часть возможностей применения УЗ.

  1. Медицина. УЗ используется как в стоматологии, так и в хирургии, а так же применятся для Ультразвуковых исследований внутренних органов.
  2. Очистка с помощью ультразвука. Особенно наглядно это демонстрируется на примере центра ультрозвукового оборудования ПСБ-Галс. В частности можно рассмотреть применение ультразвуковых ванн http://www.psb-gals.ru/catalog/usc.html , которые используются для очистки, смешивания, перемешивания, измельчения, дегазации жидкостей, ускорения химических реакций, экстракции сырья, получения стойких эмульсий и так далее.
  3. Обработка хрупких или сверхтвердых материалов. Преобразование материалов происходит посредством множества микроударов

Это только малейшая часть использования ультразвуковых волн. Если вам интересно – оставляйте комментарии и мы раскроем тему более подробно.

Три основных направления применения ультразвука в медицине - это ультразвуковая диагностика, «ультразвуковой скальпель» и ультразвуковая физиотерапия. Начнем рассказ с двух последних.

«Ультразвуковой скальпель» используют прежде всего там, где необходимо точное и ограниченное воздействие, где каждый лишний миллиметр разрушенной ткани может вызвать тяжелые последствия, как, например, при хирургическом лечении глазных болезней, при пластических операциях лица и т. п. Фокусировка ультразвука в небольшой по размерам заданной области дает возможность воздействовать на глубоко расположенные структуры организма. Это особенно важно при проведении нейрохирургических операций на головном мозге, при операциях разрушения добавочных проводящих путей сердца. С повышением частоты ультразвука его действие предельно локализуется. Например, при частоте 4 мГц можно подвергнуть разрушению участок ткани объемом всего 0,05 мм куб., причем окружающие ткани остаются неповрежденными.

Для лечения глазных болезней ультразвук впервые применили медики в Одесском НИИ глазных болезней и тканевой терапии им. В. П. Филатова, известном разработкой ряда новых методов лечения помутнения роговицы, катаракты травматического происхождения, отслойки сетчатки и др. Низкочастотный ультразвук частотой 20-40 кГц был использован для расширения слезного канала, а также при операциях на роговице.

Операцию при катаракте (помутнении хрусталика) обычно делают только после ее созревания, когда зрение уже утрачено полностью. В естественных условиях этот процесс иногда длится годами. «Озвучивание» ультразвуком ускоряет его до нескольких минут, что позволяет провести операцию в более ранние сроки и с лучшими результатами. Для проведения этой операции был разработан оригинальный ультразвуковой инструмент в виде пустотелой иглы толщиной 1 мм, заключенной в тонкую силиконовую оболочку и соединенной с ультразвуковым генератором. Наблюдая в микроскоп за движением иглы, хирург подводит ее вплотную к хрусталику и включает ультразвук. Под действием ультразвука через несколько мгновений помутневший хрусталик разжижается. Образующаяся жидкость вымывается из капсулы дезинфицирующим раствором, поступающим через зазор между иглой и ее футляром, и отсасывается через внутренний канал иглы. Течение послеоперационного периода после такой операции значительно сокращается.

Фокусированный ультразвук был применен для того, чтобы задержать грозящую слепотой отслойку сетчатки. Его направленное воздействие в нескольких точках фиксирует сетчатку к подлежащим тканям. Во многих случаях ультразвук помогает обойтись без операции при глаукоме. Основной симптом при этом заболевании - повышение внутриглазного давления. Склеру глаза «озвучивают» ультразвуком в нескольких точках, после чего внутриглазное давление снижается. По данным американских врачей, этот метод эффективен в 80% случаев.

Разрушающее действие ультразвука также используют для удаления тромбов из крупных сосудов. Через отверстие, сделанное специальной иглой, хирург вводит в сосуд тонкий ультразвуковой волновод и осторожно продвигает его к тромбу. После 10-12 с «озвучивания» тромб перестает существовать, а из просвета сосуда вымывают образовавшееся жидкое содержимое и отсасывают его через ту же иглу. Инструмент извлекают, а отверстие «запаивают» ультразвуковым сварным швом.

Применяют ультразвук и при хирургическом лечении заболеваний уха, горла, носа. Операции по удалению набухших тканей хронически воспаленной слизистой оболочки носа и по исправлению искривления носовой перегородки делают в большинстве случаев при помощи скальпеля, долота и молотка. Позже разработали ультразвуковую аппаратуру для этой операции. Ультразвуковой инструмент позволил проводить ее бескровно, почти безболезненно и к тому же во много раз быстрее. Та же группа российских медиков разработала ультразвуковой скальпель для проведения трахеотомии (рассечения трахеи). Эту операцию производят обычно по жизненным показаниям - при внезапно наступившем удушье. Здесь дорого каждое мгновение, а применение ультразвука позволяет сэкономить целых 10 минут.

По мнению многих медиков, ультразвуковой метод, несомненно, расширяет возможности хирургического лечения больных с различной патологией легких и плевры. Врачи проводят операции на грудной клетке с помощью ультразвука. Ультразвуковой инструмент разрезает и соединяет грудину, ребра, бронхи, бужирует суженные артерии. В практику внедряются длинные гибкие ультразвуковые волноводы для манипуляций на трахее и бронхах, разработанные впервые в мире группой советских ученых. Проводятся экспериментальные исследования по соединению лоточной ткани и закрытию культи бронха при помощи ультразвука.

Ученые разработали и применили метод ультразвуковой резки и соединения костной ткани при помощи ультразвуковой сварки - сначала в многочисленных опытах на животных, а позже и в клинике. Чтобы резать кость обыкновенной пилой, надо отслоить от нее мягкие ткани на довольно большом протяжении, а для ультразвуковой пилы достаточно отверстия в мягких тканях диаметром 1 см. Это имеет особое значение при трепанации черепа, резекции ребер и др.

Метод ультразвуковой наплавки костной ткани состоит в том, что полость, образовавшуюся в кости после удаления патологического очага, заполняют костной стружкой, которую пропитывают специальным присадочным материалом и «озвучивают» ультразвуком. После «озвучивания» вся эта масса превращается в конгломерат, прочно спаянный с костью. Также ультразвук применяется для соединения тканей печени, селезенки, эндокринных желез.

Уже много лет ультразвуковые аппараты используют в стоматологии для снятия зубного камня, а в последние годы - также для лечения кариеса и его осложнений. Между рабочим концом ультразвукового вибратора и зубом помещают абразив (взвешенный в воде порошок окиси алюминия, бора и т. п.). Частицы абразива, ударяясь о ткань зуба, постепенно снимают с нее слой за слоем. Полученная полость воспроизводит форму конца вибратора. Ее стенки гладко отполированы. Качество пломбирования также лучше, так как под влиянием «озвучивания» меняется структура и повышается плотность пломбировочного материала. Ультразвуковое лечение зуба бесшумно. Выделение тепла, а значит, и нагрев зуба при нем слабее, чем при сверлении вращающимся бором. Поэтому болевые ощущения у большинства пациентов отсутствуют или минимальны. В данном случае это несомненное достоинство ультразвука оборачивается его недостатком. При практически безболезненном ультразвуковом лечении пульпита врачу трудно определить момент приближения к нерву. Поэтому ультразвуковые бормашины могут использовать только опытные специалисты.

Дробящее действие ультразвука может быть использовано и для разрушения камней мочеточника. Ультразвуковой инструмент дробит камень за 5-60 с, в зависимости от размеров и плотности камня.

Ультразвуковой скальпель ни по виду, ни по принципу действия не похож на хирургический. Внешне он напоминает миниатюрную двухступенчатую ракету, которая легко умещается в руке. Первая ее ступень содержит ультразвуковой вибратор, действие которого основано на принципе магнитострикции (от латинского слова «стрикцио» - сжатие).

Суть явления магнитострикции заключается в том, что некоторые металлы, попадая в магнитное поле, изменяют свои геометрические размеры. Если на стержень из такого ферромагнитного материала намотать медную проволоку и пропустить через нее переменный ток с частотой, соответствующей частотам ультразвука, то стержень с той же частотой будет изменять свои размеры. Так как амплитуда изменений размеров вибратора очень мала, то для ее усиления предназначен концентратор ультразвука (вторая ступень «ракеты»). Концентратор сужается от основания к верхушке, размах колебаний которой в десятки раз больше, чем у основания, меняющего положение вместе с вибратором. Амплитуда колебаний верхушки концентратора достигает 50-60 мк, а частота - 25-50 кГц. Ультразвуковой скальпель работает как острая микропила. За счет энергии ультразвуковых колебаний он разделяет ткань на границах контакта клеточных мембран, почти не повреждая самих клеток, что способствует лучшему и более быстрому заживлению. Слегка повернув инструмент и тем самым изменив направление ультразвукового луча, можно изменить направление разреза без расширения оперативного доступа. При рассечении ткани ультразвук останавливает капиллярное кровотечение. Важно также и то, что применение ультразвука заметно снижает болезненность хирургического вмешательства.

Хирургическая ультразвуковая техника в настоящее время входит в арсенал практической медицины. Она используется наряду с традиционными хирургическими инструментами, электрокоагуляционными, лазерными и другими методами, с учетом особенностей заболевания, показаний и противопоказаний. По мере усовершенствования и увеличения выпуска ультразвуковой аппаратуры для хирургических вмешательств внедрение ее в практику будет расширяться.

Физические явления, возникающие при воздействии ультразвука на жидкости, были положены в основу новой методики лечения ран, разработанной российскими учеными. В рану вводят растворы антибиотиков или антисептиков, которые «озвучивают» с помощью ультразвукового волновода. Озвученная жидкость удаляет омертвевшие ткани, производит массаж раневой поверхности, улучшает кровообращение в ней. Улучшается и диффузия лекарственных веществ, уменьшаются болезненные ощущения при перевязке, снижается бактериальная загрязненность раны, что способствует более быстрому и гладкому заживлению. Заметно сокращаются сроки лечения таких больных в стационаре.

Отдельным направлением применения ультразвука в медицине является ультразвуковая физиотерапия.

Механизм физиологического действия лечебного ультразвука на ткани живого организма пока выяснен не полностью. Принято различать три основных фактора влияния ультразвука: механический, тепловой и физико-химический. Механическое действие заключается в вибрационном микромассаже тканей на клеточном и субклеточном уровнях, повышающем проницаемость клеточных мембран и обмен веществ в клетках и тканях организма. Тепловое действие ультразвука при его малых интенсивностях, применяемых с лечебной целью, незначительно. Тепло может накапливаться в основном в тканях, больше всего поглощающих ультразвуковую энергию (нервной, костной), а также границах сред с различным акустическим сопротивлением (на границе кости с мягкими тканями) и в местах с недостаточным кровообращением.

Физико-химическое действие ультразвука связано главным образом с тем, что применение акустической энергии вызывает механический резонанс в веществе живых тканей. При этом ускоряется движение молекул, усиливается их распад на ионы, изменяется электрическое состояние клеток и околоклеточной жидкости, образуются новые электрические поля, усиливается диффузия через биологические мембраны, активизируются обменные процессы,

При воздействии ультразвука на кожу улучшается ее барьерно-защитная функция, усиливается деятельность потовых и сальных желез, активизируются процессы регенерации. Интересно, что чувствительность кожи различных областей тела к ультразвуку неодинакова: в области лица и живота она выше, чем в области конечностей.

При воздействии ультразвука на нервную систему мощностью 0,5 Вт/см кв. увеличивается скорость проведения возбуждения по нервным волокнам, а при более высокой интенсивности - 1 Вт/см кв. - она уменьшается. Ультразвук умеренной интенсивности обладает противоспазматическим действием - он снимает спазмы бронхов, желче- и мочевыводящих путей, кишок, усиливает мочеотделение. Под его влиянием нормализуется тонус сосудов и улучшается кровоснабжение тканей, повышается усвоение ими кислорода.

Ультразвук применяют для лечения хронического тонзиллита. Пораженные миндалины «озвучивают» ультразвуком малой интенсивности, благодаря чему снижается активность болезнетворных микроорганизмов, улучшается питание тканей, активизируются иммунобиологические процессы. В итоге такое амбулаторное лечение помогает сохранить миндалины, играющие важную роль в защитных реакциях организма. Ростовские медики разработали оригинальную методику ультразвукового массажа глаз. На глаз больного после закапывания обезболивающего препарата накладывают рамку-кольцо и включают ультразвук. После десятка сеансов такого ультразвукового массажа у больных с начальной формой глаукомы внутриглазное давление нормализуется.

В гинекологии ультразвук используют для лечения эрозии шейки матки. Уже после двух-трех ультразвуковых процедур, проводимых с промежутком 1-2 дня, эрозия начинала заживать, а через месяц у большинства больных она полностью исчезала.

Одной из специализаций ультразвуковой терапии становится лечение аденомы предстательной железы. Этому заболеванию подвержены мужчины преимущественно пожилого возраста. Лечение и большинстве случаев оперативное. Применение ультразвуковой терапии при аденоме предстательной железы и простатите дает хороший результат: после нескольких процедур у больных почти полностью исчезла боль, нормализовалось мочеиспускание, улучшилось общее состояние. «Озвучивание», проведенное после операции удаления железы, способствует лучшему течению послеоперационного периода.

Наиболее широко используют ультразвуковую терапию при остеохондрозе, артрозе, радикулите и других заболеваниях периферической нервной системы и опорно-двигательного аппарата.

Ультразвуковое лечение не рекомендуется применять при острых инфекционных заболеваниях, стенокардии, аневризме сердца, гипертонической болезни II Б и III стадий, болезнях крови, склонности к кровотечениям, а также при беременности. Раньше к противопоказаниям относили также наличие злокачественных опухолей. Но в последнее время изучается вопрос о применении ультразвуковой терапии для их лечения как отдельно, так и в сочетании с рентгенотерапией.

Иногда ультразвук применяют в сочетании с различными лекарственными веществами. Этот метод назван фонофорезом, хотя правильнее было бы назвать его ультрафонофорезом. В основе метода лежит повышение проницаемости кожи, слизистых оболочек, клеточных мембран и улучшение местной микроциркуляции под влиянием ультразвука. Все это помогает введению ряда лекарственных веществ через кожу и слизистые.

В настоящее время применяют фонофорез многих лекарственных препаратов, таких как гидрокортизон, анальгин, аминазин, интерферон, компламин, гепарин, экстракт алоэ, ФиБС, целый ряд антибиотиков и др. Вместе с тем было установлено, что некоторые лекарственные вещества, например, эуфиллин, аскорбиновая кислота, тиамин (витамин B1) и другие при «озвучивании» ультразвуком или не проникают в организм, или разрушаются. Иногда при фонофорезе сначала озвучивают кожу или слизистую оболочку ультразвуком, а затем после удаления контактной среды наносят лекарственное вещество в виде примочки или мази. Но чаще процедура производится так же, как обычное ультразвуковое облучение. Лекарственные вещества предварительно накладывают на поверхность кожи или слизистой оболочки в виде водного раствора, эмульсии или мази. Они выполняют также роль контактной среды при озвучивании. При фонофорезе, так же как и при «озвучивании» без применения лекарств, используют две методики: стабильную и лабильную. При первой вибратор во время процедуры остается неподвижным, при второй - он медленно передвигается по поверхности кожи или слизистой.

В последние годы изучаются возможности применения ультрафонопунктуры, фокусированного ультразвука, биоуправляемого и биосинхронизированного ультразвукового воздействия. Сфера применения ультразвуковой терапии продолжает расширяться.