Плоскость - Начертательная геометрия.  Начертательная геометрия. Теория Что будем делать с полученным материалом

Рис. 3.2 Взаимное расположение прямых

Прямые в пространстве могут занимать относительно друг друга одно из трех положений:

1) быть параллельными;

2) пересекаться;

3) скрещиваться.

Параллельными называются прямые, лежащие в одной плоскости и не имеющие общих точек.

Если прямые параллельны друг другу, то на КЧ их одноименные проекции тоже параллельны (см. п. 1.2).

.

Пересекающимися называются прямые, лежащие в одной плоскости и имеющие одну общую точку.

У пересекающихся прямых на КЧ одноименные проекции пересекаются в проекциях точки А . Причем фронтальная () и горизонтальная ()проекции этой точки должны находиться на одной линии связи.

.

Скрещивающимися называются прямые, лежащие в параллельных плоскостях и не имеющие общих точек.

Если прямые скрещивающиеся, то на КЧ их одноименные проекции могут пересекаться, но точки пересечений одноименных проекций не будут лежать на одной линии связи.

На рис. 3.4 точка С принадлежит прямой b , а точка D - прямой а . Эти точки находятся на одинаковом расстоянии от фронтальной плоскости проекций. Аналогично точки E и F принадлежат разным прямым, но находятся на одном расстоянии от горизонтальной плоскости проекций. Поэтому на КЧ их фронтальные проекции совпадают.

Возможны два случая расположения точки относительно плоскости: точка может принадлежать плоскости или не принадлежать ей (рис. 3.5).

Признак принадлежности точки и прямой плоскости:

Точка принадлежит плоскости , если принадлежит прямой, лежащей в этой плоскости.

Прямая принадлежит плоскости , если имеет с ней две общие точки или имеет с ней одну общую точку и параллельна другой прямой, лежащей в этой плоскости.

На рис. 3.5 изображена плоскость и точки D и Е . Точка D принадлежит плоскости, т. к. принадлежит прямой l , имеющей с этой плоскостью две общие точки - 1 и А . Точка Е не принадлежит плоскости, т.к. через нее нельзя провести прямую, лежащую в данной плоскости.

Одной из задач, для решения которых применяются линии уровня, является задача на построение проекций точки, принадлежащей плоскости. Пусть имеется фронтальная проекция D 2 точки D принадлежащей плоскости, заданной следами k X l (рис. 111, а). Требуется найти горизонтальную проекцию D 1 точки D.

Точка принадлежит плоскости, если она принадлежит прямой, принадлежащей плоскости. Решаем задачу с помощью горизонтали h плоскости k X l. Через точку D 2 проводим фронтальную проекцию h 2 этой горизонтали, которая, как известно, должна быть параллельна оси х 12 (Рис. 111 б). Она пересечет фронтальную проекцию k 2 фронтального следа k к точке N 2 ; проведя вертикальную линию связи, найдем на оси проекций х 12 горизонтальную проекцию фронтального следа N горизонтали (см. рис. 108).

TBegin-->TEnd-->

Горизонтальная проекция h 1 горизонтали должна быть параллельна l 1 , Горизонтальную проекцию D 1 точки D найдем на горизонтальной проекции h 1 горизонтали в точке пересечения ее с вертикальной линией связи, проведенной через точку D 2 .

Эту задачу можно было бы решить также с помощью фронтали. В этом случае пришлось бы через точку D 2 провести фронтальную проекцию f 2 ||k 2 . Советуем учащимся выполнить построение самим. Результат должен быть одинаковым с первым построением.

Несколько изменим условия задачи. Пусть будет задана горизонтальная проекция Е 1 точки Е и плоскость ABC, определенная проекциями треугольника (рис, 112, а), В этой задаче нельзя воспользоваться горизонталью плоскости, поскольку отсутствует фронтальная проекция точки Е. Применяем фронталь f; через точку E 1 проводим горизонтальную проекцию (х фронтали, находим ее фронтальную проекцию l2 и на ней точку Е 1 .

Точку в плоскости можно построить не только с помощью горизонтали и фронтали, но и с помощью прямой общего положения. В некоторых случаях это даже удобнее.

TBegin-->
TEnd-->

Построение прямой общего положения, принадлежащей плоскости общего положения, принципиально не отличается от построения горизонталей и фронталей, принадлежащих плоскости. Построение основано на положении, известном из геометрии: прямая принадлежит плоскости, если она имеет две общие точки с этой плоскостью. Таким образом, если мы пересечем одну из проекций плоскости произвольной прямой и используем две точки пересечения этой прямой с линиями, принадлежащими плоскости, для построения второй проекции линии, то мы сможем решить задачу. Для примера решим предыдущую задачу с помощью прямой общего положения (рис. 112, б). Через точку Е 1 проводим прямую D 1 F 1 любого наклона; находим фронтальную проекцию D 2 F 2 линии DF, используя точки пересечения D 1 и F 1 . На пересечении фронтальной проекции D 2 F 2 с вертикальной линией связи находим фронтальную проекцию Е 1 точки Е.

программа передач на сегодня : Animal Planet, Bloomberg, 3 канал, CNN, Ajara TV, Classic Sport, Amazing Life, AB Moteurs Luxe HD, Jetix, Jetix Play, Mezzo, HD Кино, Discovery Channel, MCM, MGM, HD Life, Discovery Science.

Точка принадлежит прямой, если её проекции лежат на одноимённых проекциях этой прямой (рис. 21а).

Точка принадлежит плоскости, если она лежит на прямой, лежащей в этой плоскости (рис.21б).

Прямая принадлежит плоскости, если она проходит через две точки, лежащие в этой плоскости (рис.21в).

Прямая параллельна плоскости, если она параллельна любой прямой, лежащей в этой плоскости. На рисунке 22 изображена прямая t, параллельная прямой b, принадлежащей плоскости Σ: t // b Î Σ (aÇ b).


Рисунок 22

Через любую точку пространства можно провести бесконечное множество прямых, параллельных данной плоскости.

Это задача на определение общей точки прямой и плоскости. Её называют также точкой встречи. Рассмотрим пересечение прямой с плоскостью частного положения.

Плоскость Σ задана треугольником АВС и является горизонтально проецирующей плоскостью. Точка встречи прямой k с плоскостью Σ определяется по горизонтальной проекции. Фронтальная проекция точки К достраивается с помощью линии связи. Символическая запись будет выглядеть следующим образом: k Ç Σ (ABC) = K.

Видимость прямой относительно плоскости определяется при помощи фронтально-конкурирующих точек 1 и 2.


Рисунок 23

Пересечение прямой с плоскостью общего положения изображено на рисунке 24. В этом случае нужно заключить прямую в проецирующую плоскость.

t Î Σ ^ П 2 - прямая t принадлежит плоскости Σ, которая перпендикулярна горизонтальной плоскости проекций. Линия пересечения этой плоскости с данной - линия (1, 2). Затем находится точка пересечения этой линии с прямой t , которая и будет являться точкой встречи прямой и плоскости. Видимость прямой относительно плоскости определяется при помощи конкурирующих точек. Возьмем горизонтально конкурирующие точки 3 и 4. Так как точка 3, принадлежащая прямой, оказалась ниже чем точка 4, следовательно, прямая на горизонтальной плоскости справа от точки пересечения невидима. Затем берем фронтально конкурирующие точки 1 и 5. Точка 1, принадлежащая плоскости, лежит ближе, следовательно, прямая находится за плоскостью, и она на фронтальной проекции невидима от точки 1 до точки К.


Рисунок 24

К особым прямым, принадлежащим плоскости, относятся горизонталь, фронталь и профильная прямая. Построение этих прямых используется при решении многих задач по начертательной геометрии. Их изображение дано на рисунке 25. Причём на горизонтальной плоскости горизонталь имеет натуральную величину, на фронтальной плоскости - фронталь и на профильной плоскости - профильная прямая.


Рисунок 25

1. Сформулируйте условия принадлежности точки плоскости и прямой плоскости.

2. Как построить прямую параллельную заданной плоскости?

3. Вспомните этапы решения задачи на определение точки пересечения прямой и плоскости.

4. Какие точки называются конкурирующими?

5. Как провести в плоскости горизонталь и фронталь?

6. Какие еще особые прямые плоскости вы знаете?

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а || )

Признак параллельности прямой и плоскости.

Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.

Выводы.

Случаи взаимного расположения прямой и плоскости:

А) прямая лежит в плоскости;
б) прямая и плоскость имеют только одну общую точку;
в) прямая и плоскость не имеют ни одной общей точки.

Случаи взаимного расположения плоскостей:

Свойства параллельных плоскостей:

Задачи и тесты по теме "Тема 3. "Параллельность прямой и плоскости; параллельность плоскостей"."

  • Параллельность плоскостей

    Уроков: 1 Заданий: 8 Тестов: 1

  • Параллельность прямых, прямой и плоскости - Параллельность прямых и плоскостей 10 класс
  • Признаки параллельности двух прямых. Аксиома параллельных прямых - Параллельные прямые 7 класс

    Уроков: 2 Заданий: 11 Тестов: 1

  • Взаимное расположение прямых в пространстве. Угол между прямыми - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 9 Тестов: 1

  • Перпендикулярность прямой и плоскости - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

Тема "Аксиомы стереометрии" играет важную роль в развитии пространственных представлений, поэтому старайтесь привлекать больше моделей (картон и спицы), рисунков.

В теме "Параллельность в пространстве" даются знания о параллельности прямых и плоскостей в пространстве. В данном материале обобщаются известные из планиметрии сведения о параллельности прямых. На примере теоремы о существовании и единственности прямой, параллельной данной, Вы получаете представление о необходимости заново доказать известные из планиметрии факты в тех случаях, когда речь идет о точках и прямых пространства, а не о конкретной плоскости.

Задачи на доказательство решаются во многих случаях по аналогии с доказательством теорем. Для решения задач на вычисление длин отрезков необходимо провести повторение курса планиметрии: равенства и подобия треугольников, определений, свойств и признаков прямоугольника, параллелограмма, ромба, квадрата, трапеции.

Признаки принадлежности хорошо известны из курса планиметрии. Наша задача рассмотреть их применительно к проекциям геометрических объектов.

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Принадлежность прямой плоскости определяется по одному из двух признаков:

а) прямая проходит через две точки, лежащие в этой плоскости;

б) прямая проходит через точку и параллельна прямой, лежащим в этой плоскости.

Используя эти свойства, решим в качестве примера задачу. Пусть плоскость задана треугольником АВС . Требуется построить недостающую проекцию D 1 точки D , принадлежащей этой плоскости. Последовательность построений следующая (рис. 2.5).

Рис. 2.5. К построению проекций точки, принадлежащей плоскости

Через точку D 2 проводим проекцию прямой d , лежащей в плоскости АВС , пересекающую одну из сторон треугольника и точку А 2 . Тогда точка 1 2 принадлежит прямым А 2 D 2 и C 2 В 2 . Следовательно, можно получить ее горизонтальную проекцию 1 1 на C 1 В 1 по линии связи. Соединив точки 1 1 и А 1 , получаем горизонтальную проекцию d 1 . Ясно, что точка D 1 принадлежит ей и лежит на линии проекционной связи с точкой D 2 .

Достаточно просто решаются задачи на определение принадлежности точки или прямой плоскости. На рис. 2.6 показан ход решения таких задач. Для наглядности изложения задачи плоскость задаем треугольником.

Рис. 2.6. Задачи на определение принадлежности точки и прямой плоскости.

Для того, чтобы определить принадлежит ли точка Е плоскости АВС , проведем через ее фронтальную проекцию Е 2 прямую а 2 . Считая, что прямая а принадлежит плоскости АВС , построим ее горизонтальную проекцию а 1 по точкам пересечения 1 и 2. Как видим (рис. 2.6, а), прямая а 1 не проходит через точку Е 1 . Следовательно, точка Е  АВС .

В задаче на принадлежность прямой в плоскости треугольника АВС (рис. 2.6, б), достаточно по одной из проекций прямой в 2 построить другую в 1 * считая, что в  АВС . Как видим, в 1 * и в 1 не совпадают. Следовательно, прямая в АВС .

2.4. Линии уровня в плоскости

Определение линий уровня было дано ранее. Линии уровня, принадлежащие данной плоскости, называются главными . Эти линии (прямые) играют существенную роль при решении ряда задач начертательной геометрии.

Рассмотрим построение линий уровня в плоскости, заданной треугольником (рис. 2.7).

Рис. 2.7. Построение главных линий плоскости, заданной треугольником

Горизонталь плоскости АВС начинаем с вычерчивания ее фронтальной проекции h 2 , которая, как известно, параллельна оси ОХ . Поскольку эта горизонталь принадлежит данной плоскости, то она проходит через две точки плоскости АВС , а именно, точки А и 1. Имея их фронтальные проекции А 2 и 1 2 , по линии связи получим горизонтальные проекции (А 1 уже есть) 1 1 . Соединив точки А 1 и 1 1 , имеем горизонтальную проекцию h 1 горизонтали плоскости АВС . Профильная проекция h 3 горизонтали плоскости АВС будет параллельна оси ОХ по определению.

Фронталь плоскости АВС строится аналогично (рис. 2.7) с той лишь разницей, что ее вычерчивание начинается с горизонтальной проекции f 1 , так как известно, что она параллельна оси ОХ. Профильная проекция f 3 фронтали должна быть параллельна оси ОZ и пройти через проекции С 3 , 2 3 тех же точек С и 2.

Профильная линия плоскости АВС имеет горизонтальную р 1 и фронтальную р 2 проекции, параллельные осям OY и OZ , а профильную проекцию р 3 можно получить по фронтальной, используя точки пересечения В и 3 с АВС .

При построении главных линий плоскости необходимо помнить лишь одно правило: для решения задачи всегда нужно получить две точки пересечения с данной плоскостью. Построение главных линий, лежащих в плоскости, заданной иным способом, ничуть не сложнее рассмотренного выше. На рис. 2.8 показано построение горизонтали и фронтали плоскости, заданной двумя пересекающимися прямыми а ив .

Рис. 2.8. Построение главных линий плоскости, заданной пересекающимися прямыми.