Механизм окисления алкенов. Составление уравнений окислительно-восстановительных реакций с участием органических веществ. Галогенирование, гидрогалогенирование и гидратация

Санкт-Петербургский Государственный Технологический Институт

(Технический Университет)

Кафедра органической химии Факультет 4

Группа 476

Курсовая работа

Окисление алкенов

Студентка………………………………………Рытина А.И.

Преподаватель………………………………... Питерская Ю.Л.

Санкт-Петербург

Введение

1.Эпоксидирование (реакция Н.А. Прилежаева,1909 г.)

2.Гидроксилирование

2.1анти -Гидроксилирование

2.2син -Гидроксилирование

3.Окислительное расщепление алкенов

4.Озонолиз

5.Окисление алкенов в присутствии солей палладия

Заключение

Список использованных источников

Введение

Окисление - одно из наиболее важных и распространенных превращений органических соединений.

Под окислением в органической химии понимают процессы, приводящие к обеднению соединения водородом или обогащению его кислородом. При этом происходит отнятие от молекулы электронов. Соответственно, под восстановлением понимают отрыв от органической молекулы кислорода или присоединение к ней водорода.

В окислительно-восстановительных реакциях окислителями являются соединения, обладающие большим сродством к электрону (электрофилы), а восстановителями – соединения, имеющие склонность к отдаче электронов (нуклеофилы). Легкость окисления соединения возрастает вместе с ростом его нуклеофильности.

При окислении органических соединений, как правило, полной передачи электронов и соответственно изменения валентности атомов углерода не происходит. Поэтому понятие степени окисления – условного заряда атома в молекуле, вычисленного, исходя из предположения, что молекула состоит только из ионов – носит лишь условный, формальный характер.

При составлении уравнений окислительно-восстановительных реакций необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя метод электронно-ионного баланса (метод полуреакций).

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. Для уравнивания числа атомов кислорода и водорода вводят или молекулы воды и протоны (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная).

Таким образом, при написании полуреакций восстановления и окисления нужно исходить из состава ионов, действительно имеющихся в растворе. Вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

В качестве примера рассмотрим процесс окисления этилена разбавленным водным раствором перманганата калия (реакция Вагнера). В ходе данной реакции этилен окисляется до этиленгликоля, а перманганат калия восстанавливается до диоксида марганца. По месту двойной связи присоединяются два гидроксила :

3С 2 H 4 + 2KMnO 4 +4H 2 O→ 3C 2 H 6 O 2 + 2MnO 2 +2KOH

Полуреакция восстановления: MnO 4 ¯ + 2H 2 O + 3 e → MnO 2 + 4OH ¯ 2

Полуреакция окисления: С 2 H 4 + 2OH − − 2 e C 2 H 6 O 2 3

Окончательно имеем в ионном виде:

2MnO 4 ¯ + 4H 2 O + 3C 2 H 4 + 6OH ¯ → 2MnO 2 + 8OH ¯ + 3C 2 H 6 O 2

После проведения необходимых сокращений подобных членов, записываем уравнение в молекулярном виде:

3C 2 H 4 + 2KMnO 4 + 4 H 2 O = 3C 2 H 6 O 2 + 2MnO 2 + 2KOH.

Характеристика некоторых окислителей

Кислород

Кислород воздуха находит широкое применение в технологических процессах, так как является наиболее дешевым окислителем. Но окисление кислородом воздуха сопряжено с трудностями, связанными с контролем процесса, который протекает в различных направлениях. Окисление обычно проводят при высокой температуре в присутствии катализаторов.

Озон

Озон O 3 применяют для получения альдегидов и кетонов, если их затруднительно получить другими способами. Чаще всего озон применяют для установления структуры ненасыщенных соединений. Получают озон при действии тихого электрического разряда на кислород. Одним из существенных достоинств озонирования, по сравнению с хлорированием, является отсутствие токсинов после обработки .

Перманганат калия

Перманганат калия – наиболее часто применяемый окислитель. Реактив растворим в воде (6.0% при 20ºС), а также в метаноле, ацетоне и уксусной кислоте. Для окисления применяют водные (иногда ацетоновые) растворы KMnO 4 в нейтральной, кислой или щелочной среде. При проведении процесса в нейтральной среде в реакционную массу добавляют соли магния, алюминия или пропускают углекислый газ для нейтрализации выделяющегося во время реакции гидроксида калия. Реакцию окисления KMnO 4 в кислой среде чаще всего ведут в присутствии серной кислоты. Щелочную среду при окислении создает образующийся во время реакции KOH, либо его изначально добавляют в реакционную массу. В слабощелочной и нейтральной средах KMnO 4 окисляет по уравнению:

KMnO 4 + 3 e + 2H 2 O = K + + MnO 2 + 4OH ¯

в кислой среде:

KMnO 4 + 5 e + 8H + = K + + Mn 2+ + 4H 2 O

Перманганат калия используется для получения 1,2-диолов из алкенов, при окислении первичных спиртов, альдегидов и алкиларенов до карбоновых кислот, а также для окислительного расщепления углеродного скелета по кратным связям.

На практике обычно используется довольно большой избыток (более чем 100%) KMnO 4 . Это объясняется тем, что в обычных условиях KMnO 4 частично разлагается на диоксид марганца с выделением O 2 . Разлагается концентрированной H 2 SO 4 при нагревании в присутствии восстановителей со взрывом; смеси калия перманганата с органическими веществами также взрывчаты .

Надкислоты

Перуксусную и пермуравьиную кислоты получают реакцией 25-90%-ного пероксида водорода с соответствующей карбоновой кислотой по следующей реакции:

RCOOH + H 2 O 2 = RCOOOH + H 2 O

В случае уксусной кислоты это равновесие устанавливается относительно медленно, и для ускорения образования перкислоты обычно в качестве катализатора добавляют серную кислоту. Муравьиная кислота достаточно сильна сама по себе для того, чтобы обеспечить быстрое установление равновесия.

Пертрифторуксусная кислота, получаемая в смеси с трифторуксусной кислотой реакцией трифторуксусного ангидрида с 90%-ным пероксидом водорода, еще более сильный окислитель. Аналогичным образом из уксусного ангидрида и пероксида водорода можно получить перуксусную кислоту.

Особой популярностью пользуется твердая м -хлорпербензойная кислота, поскольку она относительно безопасна в обращении, достаточно стабильна и может храниться длительное время.

Окисление происходит за счет выделяющегося атома кислорода:

RCOOOH = RCOOH + [O]

Надкислоты применяют для получения эпоксидов из алкенов, а также лактонов из алициклических кетонов.

Пероксид водорода

Пероксид водорода – бесцветная жидкость,cмешивается с водой, этанолом и диэтиловым эфиром. 30%-ный раствор H 2 O 2 называется пергидролем. Высококонцентрированный препарат может реагировать с органическими веществами со взрывом. При хранении разлагается на кислород и воду. Стойкость пероксида водорода возрастает с разбавлением. Для окисления применяют водные растворы различной концентрации (от 3 до 90%) в нейтральной, кислой или щелочной средах.

H 2 O 2 = H 2 O + [O]

Действием этого реагента на α,β-непредельные карбонильные соединения в щелочной среде получают соответствующие эпоксиальдегиды и кетоны, окислением карбоновых кислот в кислой среде синтезируют надкислоты. 30%-ный раствор H 2 O 2 в уксусной кислоте окисляет алкены в 1,2-диолы. Пероксид водорода применяют: для получения органических и неорганических пероксидов, пербората и перкарбоната Na; как окислитель в ракетных топливах; при получении эпоксидов, гидрохинона, пирокатехина, этиленгликоля, глицерина, ускорителей вулканизации группы тиурама и др.; для отбеливания масел, жиров, меха, кожи, текстильных материалов, бумаги; для очистки германиевых и кремниевых полупроводниковых материалов; как дезинфицирующее средство для обезвреживания бытовых и индустриальных сточных вод; в медицине; как источник О 2 в подводных лодках; Н 2 О 2 входит в состав реактива Фентона (Fe 2 + + Н 2 О 2), который используют как источник свободных радикалов ОН в органическом синтезе .

Тетраоксиды рутения и осмия

Тетраоксид осмия OsO 4 – порошок от белого до бледно-желтого цвета с т. пл. 40.6ºС; т. кип. 131.2ºС. Возгоняется уже при комнатной температуре, растворим в воде (7.47 г в 100 мл при 25ºС), ССl 4 (250 г в 100 г растворителя при 20ºС). В присутствии органических соединений чернеет вследствие восстановления до OsO 2 .

RuO 4 представляет собой золотисто-желтые призмы с т. пл. 25.4ºС, заметно возгоняется при комнатной температуре. Умеренно растворим в воде (2.03 г в 100 мл при 20ºС), очень хорошо растворим в CCl 4 . Более сильный окислитель, чем OsO 4 . Выше 100ºС взрывается. Как и тетраоксид осмия обладает большой токсичностью и высокой стоимостью.

Данные окислители применяются для окисления алкенов в α-гликоли в мягких условиях.

Алкены – это углеводороды, в молекулах которых есть ОДНА двойная С=С связь.

Номенклатура алкенов: в названии появляется суффикс -ЕН.

Первый член гомологического ряда – С2Н4 (этен).

Для простейших алкенов применяются также исторически сложившиеся названия:

· этилен (этен),

· пропилен (пропен),

В номенклатуре часто используются следующие одновалентные радикалы алкенов:

СН2-СН=СН2

Виды изомерии алкенов:

1. Изомерия углеродного скелета: (начиная с С4Н8 – бутен и 2-метилпропен)

2. Изомерия положения кратной связи: (начиная с С4Н8): бутен-1 и бутен-2.

3. Межклассовая изомерия: с циклоалканами (начиная с пропена):

C4H8 - бутен и циклобутан.

4. Пространственная изомерия алкенов:

Из-за того, что вокруг двойной связи невозможно свободное вращение, становится возможной цис-транс- изомерия .

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители , могут существовать в виде двух изомеров, отличающихся расположением заместителей относительно плоскости π-связи:

Химические свойства алкенов.

Для алкенов характерны:

· реакции присоединения к двойной связи,

· реакции окисления,

· реакции замещения в «боковой цепи».

1. Реакции присоединения по двойной связи: менее прочная π-связь разрывается, образуется насыщенное соединение.

Это реакции электрофильного присоединения - АЕ.

1) Гидрирование:

СН3-СН=СН2 + Н2 à CH3-CH2-CH3

2) Галогенирование:

СН3-СН=СН2 + Br2 (раствор)à CH3-CHBr-CH2Br

Обесцвечивание бромной воды – качественная реакция на двойную связь.

3) Гидрогалогенирование:

СН3-СН=СН2 + НBr à CH3-CHBr-CH3

(ПРАВИЛО МАРКОВНИКОВА: водород присоединяется к наиболее гидрированному атому углерода).

4) Гидратация - присоединение воды:

СН3-СН=СН2 + НОН à CH3-CH-CH3

(присоединение также происходит по праилу Марковникова)

2. Присоединение бромоводорода в присутствии пероксидов (эффект Хараша) - это радикальное присоединение - АR

СН3-СН=СН2 + HBr -(Н2О2)à СН3-СН2-СН2Br

(реакция с бромоводородом в присутствии пероксида протекает против правила Марковникова )

3. Горение полное окисление алкенов кислородом до углекислого газа и воды.

С2Н4 + 3О2 = 2СО2 + 2Н2О

4. Мягкое окисление алкенов – реакция Вагнера : реакция с холодным водным раствором перманганата калия.

3СН3-СН=СН2 + 2KMnO4 + 4H2O à 2MnO2 + 2KOH + 3СН3 - СН - СН2

OH OH

(образуется диол)

Обесцвечивание алкенами водного раствора перманганата калия – качественная реакция на алкены.

5. Жесткое окисление алкенов – горячим нейтральным или кислым раствором перманганата калия. Идёт с разрывом двойной связи С=С.

1. При действии перманганата калия в кислой среде в зависимости от строения скелета алкена образуется:

Фрагмент углеродной цепи у двойной связи

Во что превращается

= СН – R

R C OOH карбоновая кислота

= C R

кетон R C R

СН3-С -1 Н =С-2 Н2 +2 KMn+7O4 + 3H2SO4 à

CH3-C +3 OOH + C+4 O2 + 2Mn+2SO4 + K2SO4 + 4H2O

2. Если реакция протекает в нейтральной среде ПРИ нагревании, то соответственно получаются калиевые соли :

Фрагмент цепи у двойной связи

Во что превращается

К2СО3

= СН – R

R C OO К - соль карбоновой кислоты

= C R

кетон R C R

3СН3С -1Н =С -2Н2 +10K MnO4 - tà 3CH 3 C +3OOK + + 3K 2C +4O3 + 10MnO2 +4Н2О+ K OH

6. Окисление кислородом этилена в присутствии солей палладия.

СН2=СН2 + O2 –(kat)à CН3СНО

(уксусный альдегид)

7. Хлорирование и бромирование в боковую цепь: если реакция с хлором проводится на свету или при высокой температуре – идёт замещение водорода в боковой цепи.

СН3-СН=СН2 + Cl2 –(свет)à СН2-СН=СН2 +HCl

8. Полимеризация:

n СН3-СН=СН2 à(-CH–CH2-)n

пропилен ô полипропилен

ПОЛУЧЕНИЕ АЛКЕНОВ

I. Крекинг алканов:

С7Н16 –(t)à CH3- CH=CH2 + C4H10

Алкен алкан

II. Дегидрогалогенирование галогеналканов при действии спиртового раствора щелочи - реакция ЭЛИМИНИРОВАНИЯ.

Правило Зайцева: Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

III . Дегидратация спиртов при повышенной температуре (выше 140°C) в присутствии в одоотнимающих реагентов - оксида алюминия или концентрированной серной кислоты – реакция элиминирования.

CH3-CH-CH2 -CH3 (H2SO4,t>140o)à

à H2O +CH3-CH=CH -CH3

(также подчиняется правилу Зайцева)

IV . Дегалогенирование дигалогеналканов , имеющих атомы галогена у соседних атомов углерода , при действии активных металлов.

CH2Br -CHBr -CH3 +Mg àCH2=CH-CH3+MgBr2

Также может использоваться цинк.

V . Дегидрирование алканов при 500°С:

VI . Неполное гидрирование диенов и алкинов

С2Н2 + Н2 (недостаток) –(kat)à С2Н4


АЛКАДИЕНЫ.


Это углеводороды, содержащие две двойные связи. Первый член ряда – С3Н4 (пропадиен или аллен). В названии появляется суффикс – ДИЕН .

Типы двойных связей в диенах:

1.Изолированные двойные связи разделены в цепи двумя или более σ-связями:

СН2=СН–СН2–СН=СН2 . Диены этого типа проявляют свойства, характерные для алкенов.

2. Кумулированные двойные связи расположены у одного атома углерода: СН2=С=СН2 (аллен)

Подобные диены (аллены) относятся к довольно редкому и неустойчивому типу соединений.

3.Сопряженные двойные связи разделены одной σ-связью: СН2=СН–СН=СН2

Сопряженные диены отличаются характерными свойствами, обусловленными электронным строением молекул, а именно, непрерывной последовательностью четырех sp2-атомов углерода.

Изомерия диенов

1. Изомерия положения двойных связей :

2. Изомерия углеродного скелета :

3. Межклассовая изомерия с алкинами и циклоалкенами . Например, формуле С4Н6 соответствуют следующие соединения:

4. Пространственная изомерия

Диены, имеющие различные заместители при углеродных атомах у двойных связей, подобно алкенам, проявляют цис-транс-изомерию .

(1)Цис-изомер (2) Транс-изомер

Электронное строение сопряженных диенов.

Молекула бутадиена-1,3 СН2=СН-СН=СН2 содержит четыре атома углерода в sp 2 - гибридизованном состоянии и имеет плоское строение.

π-Электроны двойных связей образуют единое π-электронное облако (сопряженную систему ) и делокализованы между всеми атомами углерода.

Кратность связей (число общих электронных пар) между атомами углерода имеет промежуточное значение: нет чисто одинарной и чисто двойных связей. Строение бутадиена более точно отражает формула с делокализованными «полуторными» связями.

ХИМИЧЕСКИЕ СВОЙСТВА СОПРЯЖЕННЫХ АЛКАДИЕНОВ.

РЕАКЦИИ ПРИСОЕДИНЕНИЯ К СОПРЯЖЕННЫМ ДИЕНАМ.

Присоединение галогенов, галогеноводородов, воды и других полярных реагентов происходит по электрофильному механизму (как в алкенах).

Помимо присоединения по одной из двух двойных связей (1,2-присоединение), для сопряженных диенов характерно так называемое 1,4-присоединение, когда в реакции участвует вся делокализованная системы из двух двойных связей:

Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции (с повышением температуры обычно увеличивается вероятность 1,4-присоединения).

1. Гидрирование.

CН3-СН2-СН=СН2 (1,2-продукт)

СН2=СН-СН=СН2 + Н2

СН3-СН=СН-СН3 (1,4-продукт)

В присутствии катализатора Ni получается продукт полного гидрирования:

CH2=CH-CH=CH2 + 2 H2 –(Ni, t)à CH3-CH2-CH2-CH3

2. Галогенирование, гидрогалогенирование и гидратация

1,4-присоединение.

1,2-присоединение.

При избытке брома присоединяется еще одна его молекула по месту оставшейся двойной связи с образованием 1,2,3,4-тетрабромбутана.

3. Реакция полимеризации.

Реакция протекает преимущественно по 1,4-механизму, при этом образуется полимер с кратными связями, называемый каучуком :

nСН2=СН-СН=СН2 à (-СН2-СН=СН-СН2-)n

полимеризация изопрена:

nCH2=C–CH=CH2 à(–CH2 –C =CH –CH2 –)n

CH3 CH3 (полиизопрен)

РЕАКЦИИ ОКИСЛЕНИЯ – мягкое, жесткое, а также горение.

Протекают так же, как и в случае алкенов – мягкое окисление приводит к многоатомному спирту, а жесткое окисление – к смеси различных продуктов, зависящих от строения диена:

СН2=СН –СН=СН2 + KMnO4 + H2O à СН2 – СН – СН – СН2 +MnO2 + KOH

Алкадиены горят – до углекислого газа и воды. С4Н6 + 5,5О2 à 4СО2 + 3Н2О

ПОЛУЧЕНИЕ АЛКАДИЕНОВ.

1. Каталитическое дегидрирование алканов (через стадию образования алкенов). Этим путем получают в промышленности дивинил из бутана, содержащегося в газах нефтепереработки и в попутных газах:

Каталитическим дегидрированием изопентана (2-метилбутана) получают изопрен:

2. Синтез Лебедева:

(катализатор – смесь оксидов Al2O3,MgO, ZnO

2 C2H5OH –(Al2O3,MgO, ZnO, 450˚C)à CH2=CH-CH=CH2 + 2H2O + H2

3. Дегидратация двухатомных спиртов:

4. Действие спиртового раствора щелочи на дигалогеналканы (дегидрогалогенирование ):

В заданиях категории С3 ЕГЭ особые трудности вызывают реакции окисления органических веществ перманганатом калия KMnO 4 в кислой среде, протекающие с разрывом углеродной цепочки. Например, реакция окисления пропена, протекающая согласно уравнению:

CH 3 CH = CH 2 + KMnO 4 + H 2 SO 4 CH 3 COOH + CO 2 + MnSO 4 + K 2 SO 4 + H 2 O.

Чтобы расставить коэффициенты в сложных уравнениях окислительно-восстановительных реакций, подобных этой, стандартная методика предлагает составить электронный баланс, но после очередной попытки становится очевидно, что этого недостаточно. Корень проблемы здесь кроется в том, что коэффициент перед окислителем, взятый из электронного баланса, необходимо заменить. Данная статья предлагает два способа, которые позволяют выбрать правильный коэффициент перед окислителем, чтобы, наконец, уравнять все элементы. Способ подстановки для замены коэффициента перед окислителем больше подходит тем, кто способен долго и кропотливо считать, поскольку расстановка коэффициентов этим способом может оказаться длительной (в данном примере понадобилось 4 попытки). Способ подстановки применяется совместно с методом "ТАБЛИЦА", который также подробно рассматривается в этой статье. Способ "алгебраический" позволяет не менее просто и надёжно, но гораздо быстрее заменить коэффициент перед окислителем KMnO 4 по сравнению со способом подстановки, однако имеет более узкую область применения. Способ "алгебраический" может быть использован только для замены коэффициента перед окислителем KMnO 4 в уравнениях реакций окисления органических веществ, протекающих с разрывом углеродной цепочки.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

По теме: методические разработки, презентации и конспекты

Расстановка коэффициентов в химических уравнениях

Преподаватель, являясь главным действующим лицом в организации познавательной деятельности учащихся, постоянно находится в поиске путей повышения эффективности обучения. Организация эффективного обуче...

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем. Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности , что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

3C 2 H 4 + 2KMnO 4 + 4H 2 O → 3CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O

3) CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 10KOH → CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 8K 2 MnO 4

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH → CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:


Окисление алкинов

Алкины окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные кратной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C≡CH + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

3CH≡CH +8KMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +2Н 2 О

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

5CH≡CH +8KMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +12Н 2 О
CH≡CH + 2KMnO 4 +3H 2 SO 4 → 2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 → C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

C 6 H 5 CH 2 CH 3 + 4KMnO 4 → C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

5С 6 Н 5 СН 3 +6КMnO 4 +9 H 2 SO 4 → 5С 6 Н 5 СООН+6MnSO 4 +3K 2 SO 4 + 14H 2 O

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O


Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

5C 2 H 5 OH + 4KMnO 4 + 6H 2 SO 4 → 5CH 3 COOH + 4MnSO 4 + 2K 2 SO 4 + 11H 2 O

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

5СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +22Н 2 О

3СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +8Н 2 О

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH, Cu(OH) 2 . Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 → CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O

3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O

CH 3 CHO + 2KMnO 4 + 3KOH → CH 3 COOK + 2K 2 MnO 4 + 2H 2 O

5CH 3 CHO + 2KMnO 4 + 3H 2 SO 4 → 5CH 3 COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O

CH 3 CHO + Br 2 + 3NaOH → CH 3 COONa + 2NaBr + 2H 2 O

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

CH 3 CH=O + 2OH → CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

CH 3 –CH=O + 2Cu(OH) 2 → CH 3 COOH + Cu 2 O + 2H 2 O

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

5HCOH + 4KMnO 4 (изб ) + 6H 2 SO 4 → 4MnSO 4 + 2K 2 SO 4 + 5CO 2 + 11H 2 O

3СН 2 О + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CO 2 +2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

HCHO + 4OH → (NH 4) 2 CO 3 + 4Ag↓ + 2H 2 O + 6NH 3

HCOH + 4Cu(OH) 2 → CO 2 + 2Cu 2 O↓+ 5H 2 O

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl 2 =CO 2 + Hg + 2HCl

HCOOH+ Cl 2 = CO 2 +2HCl

HOOC-COOH+ Cl 2 =2CO 2 +2HCl

Муравьиная кислота , кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2 + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

HCOOH →(t) CO + H2O

Каталитическое окисление алканов:

Каталитическое окисление алкенов:

Окисление фенолов:

4.5.б. Окислительное расщепление алкенов

При окислении алкенов щелочным водным раствором перманганата калия при нагревании или раствором KMnO 4 в водной серной кислоте, а также при окислении алкенов раствором оксида хрома (VI) CrO 3 в уксусной кислоте или дихроматом калия и серной кислотой первоначально образующийся гликоль подвергается окислительной деструкции. Конечным результатом является расщепление углеродного скелета по месту двойной связи и образование в качестве конечных продуктов кетонов и (или) карбоновых кислот в зависимости от заместителей при двойной связи. Если оба атома углерода при двойной связи содержат только по одной алкильной группе, конечным продуктом исчерпывающего окисления будет смесь карбоновых кислот, тетразамещенный при двойной связи алкен окисляется до двух кетонов. Однозамещанные алкены с концевой двойной связью расщепляются до карбоновой кислоты и углекислого газа.

Из-за невысоких выходов карбоновых кислот и кетонов, реакции исчерпывающего окисления алкенов в классическом варианте не нашли широкого применения и ранее использовались, в основном, для установления строения исходного алкена по продуктам деструктивного окисления. В настоящее время окисление алкенов (R-CH=CH-R и R-CH=CH 2) до карбоновых кислот (RCOOH) с помощью перманганата или дихромата калия проводят в условиях межфазного катализа. Выходы карбоновых кислот при этом превышают 90%.

4.5.в. Озонолиз алкенов

Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи. В течение многих десятилетий эта реакция служила основным методом определения строения исходного углеводорода, а также находила применение в синтезе разнообразных карбонильных соединений. Реакция алкена с озоном проводится пропусканием тока ~5%-ной смеси озона и кислорода в раствор алкена в хлористом метилене или этилацетате при -80 0 -100 0 С. Окончание реакции контролируется пробой на свободный озон с иодидом калия. Механизм этой своеобразной и сложной реакции установлен главным образом благодаря работам Р Криге. Первым продуктом 1,3-диполярного циклоприсоединения к двойной связи является так называемый мольозонид (1,2,3-триоксолан). Этот аддукт нестабилен и далее самопроизвольно разлагается с раскрытием цикла и образованием в качестве конечного продукта нормального озонида (1,2,4-триоксолана).

В настоящее время общепризнано, что превращение мольозонида в обычный озонид происходит по механизму расщепления - рекомбинации. Мольозонид претерпевает самопроизвольное раскрытие нестабильного 1,2,3-триоксоланового цикла с образованием карбонильного соединения и биполярного иона, которые далее реагируют между собой также по схеме 1,3-диполярного циклоприсоединения.

Приведенная схема перегруппировки мольозонида в нормальный озонид подтверждается тем, что если до полного образования озонида в реакционной смеси присутствует в качестве "перехватчика" биполярного иона другое карбонильное соединение, то образуется так называемый "смешанный озонид". Так, например, при озонилизе цис -стильбена в присутствии бензальдегида, меченного изотопом 18 О, метка входит в состав эфирного, а не перекисного мостика озонида:

Этот результат хорошо согласуется с образованием смешанного озонида при рекомбинации биполярного иона с меченным бензальдегидом:

Озониды представляют собой очень нестабильные соединения, разлагающиеся со взрывом. Их не выделяют в индивидуальном виде, а расщепляют при действии самых разнообразных регентов. Следует различать восстановительное и окислительное расщепление. При гидролизе озониды медленно расщепляются на карбонильные соединения и перекись водорода. Перекись водорода окисляет альдегиды до карбоновых кислот. Это так называемое окислительное разложение озонидов:

Таким образом, при окислительном разложении озонидов образуются карбоновые кислоты и (или) кетоны в зависимости от строения исходного алкена. В качестве окислителей можно использовать кислород воздуха, перекись водорода, перкислоты или гидроокись серебра. Наиболее часто в синтетической практике для этой цели используют перекись водорода в уксусной или муравьиной кислоте, а также перекись водорода в щелочной среде.

На практике метод окислительного разложения озонидов используется, в основном, для получения карбоновых кислот.

Более важное значение имеет восстановительное расщепление озонидов. В качестве восстановителей наиболее часто используются цинк и уксусная кислота, трифенилфосфин или диметилсульфид. В этом случае конечными продуктами озонолиза оказываются альдегиды или кетоны в зависимости от строения исходного алкена.

Из приведенных выше примеров видно, что тетразамещенный при двойной связи алкен при озонолизе и последующем восстановительном разложении озонида образует два кетона, тогда как тризамещенный алкен дает кетон и альдегид. Дизамещенный симметричный алкен при озонолизе образует два альдегида, а алкены с концевой связью - альдегид и формальдегид.

Интересной модификацией озонолиза является метод, где в качестве восстановителя озонида используется боргидрид натрия, В этом случае конечными продуктами реакции оказываются первичные или вторичные спирты, образующиеся при восстановлении соответственно альдегидов и кстонов.

Озонолиз алкенов - это сложный, трудоемкий и взрывоопасный процесс, требующий применения специальной аппаратуры. По этой причине были разработаны другие методы окислительного расщепления алкенов до карбонильных соединений и карбоновых кислот, которые с успехом заменяют реакцию озонолиза в синтетической практике.

Один из современных препаративных методов окислительной деструкции алкенов был предложен в 1955 г Р. Лемье. В основе этого метода лежит гидроксилирование алкенов с помощью перманганата калия с последующим расщеплением вицинального гликоля периодатом натрия NaIO 4 при рН ~ 7 8. Периодат сам по себе не взаимодействует с алкеном. Продуктами этого двухстадийного окислительного расщепления являются кетоны или карбоновые кислоты, поскольку альдегиды в этих условиях также окисляются до карбоновых кислот. В методе Лемье не возникает трудоемкой проблемы отделения одного из продуктов реакции, - двуокиси марганца, так как и двуокись, и манганат вновь окисляются периодатом до перманганат-иона. Это позволяет использовать только каталитические количества перманганата калия. Ниже приведены некоторые типичные примеры окислительного расщепления алкенов по методу Лемье.

Цитронеллол - спирт, входящий в состав розового масла, масла герани и лимона, - окисляется смесью перманганата калия и периодата натрия в водном ацетоне при 5 10 0 С до 6-гидрокси-4-метилгексанкарбоновой кислоты с количественным выходом.

В другой разновидности этого метода вместо перманганата калия используют каталитические количества тетраоксида осмия (Лемье, Джонсон 1956 г). Особое достоинство комбинации OsO 4 и NaIO 4 заключается в том, что она позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи алкена с образованием осмата, который окисляется периодатом натрия до карбонильных соединений с регенерацией четырехокиси осмия.

Вместо тетраоксида осмия можно использовать и тетраоксид рутения RuO 4 . Окислительная деструкция алкенов по Лемье-Джонсону приводит к тем же продуктам, что и озонолиз с восстановительным расщеплением озонидов.

В терминах, характерных для современной органической химии, это означает, что комбинация OsO 4 -NaIO 4 представляет собой синтетический эквивалент реакции озонолиза алкенов с последующим восстановительным расщеплением. Аналогично, окисление алкенов смесью перманганата и периодата - это синтетический эквивалент озонолиза с окислительным разложением озонидов.

Таким образом, окисление алкенов - это не только совокупность препаративных методов получения спиртов, эпоксидов, диолов, альдегидов, кетонов и карбоновых кислот, это также один из возможных путей установления структуры исходного алкена. Так, по результату, окислительной деструкции алкена можно определить положение двойной связи в молекуле, тогда как стереохимический результат син- или анти- гидроксилирования алкена позволяет сделать вывод о его геометрии.