Механизмы химических реакций в неорганической химии. Классификация химических реакций в органической и неорганической химии. Карбоновые кислоты. S ромбическая S моноклинная

Темы кодификатора ЕГЭ: Классификация химических реакций в органической и неорганической химии.

Химические реакции — это такой вид взаимодействия частиц, когда из одних химических веществ получаются другие, отличающиеся от них по свойствам и строению. Вещества, которые вступают в реакцию — реагенты . Вещества, которые образуются в ходе химической реакции — продукты .

В ходе химической реакции разрушаются химические связи, и образуются новые.

В ходе химических реакций не меняются атомы, участвующие в реакции. Меняется только порядок соединения атомов в молекулах. Таким образов, число атомов одного и того же вещества в ходе химической реакции не меняется .

Химические реакции классифицируют по разным признакам. Рассмотрим основные виды классификации химических реакций.

Классификация по числу и составу реагирующих веществ

По составу и числу реагирующих веществ разделяют реакции, протекающие без изменения состава веществ, и реакции, протекающие с изменением состава веществ:

1. Реакции, протекающие без изменения состава веществ (A → B)

К таким реакциям в неорганической химии можно отнести аллотропные переходы простых веществ из одной модификации в другую:

S ромбическая → S моноклинная.

В органической химии к таким реакциям относятся реакции изомериза-ции , когда из одного изомера под действием катализатора и внешних факторов получается другой (как правило, структурный изомер).

Например , изомеризация бутана в 2-метилпропан (изобутан):

CH 3 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 3 .

2. Реакции, протекающие с изменением состава

  • Реакции соединения (A + B + … → D) — это такие реакции, в которых из двух и более веществ образуется одно новое сложное вещество. В неорганической химии к реакция соединения относятся реакции горения простых веществ, взаимодействие основных оксидов с кислотными и др. В органической химии такие реакции называются реакциями присоединения . Реакции присоединения это такие реакции, в ходе которых к рассматриваемой органической молекуле присоединяется другая молекула. К реакциям присоединения относятся реакции гидрирования (взаимодействие с водородом), гидратации (присоединение воды), гидрогалогенирования (присоединение галогеноводорода), полимеризация (присоединение молекул друг к другу с образованием длинной цепочки) и др.

Например , гидратация:

CH 2 =CH 2 + H 2 O → CH 3 -CH 2 -OH

  • Реакции разложения (A B + C + …) — это такие реакции, в ходе которых из одной сложной молекулы образуется несколько менее сложных или простых веществ. При этом могут образовываться как простые, так и сложные вещества.

Например , при разложении пероксида водорода :

2H 2 O 2 → 2H 2 O + O 2 .

В органической химии разделяют собственно реакции разложения и реакции отщепления. Реакции отщепления (элиминирования) это такие реакции, в ходе которых происходит отрыв атомов или атомных групп от исходной молекулы при сохранении ее углеродного скелета.

Например , реакция отщепления водорода (дегидрирование) от пропана :

C 3 H 8 → C 3 H 6 + H 2

Как правило, в названии таких реакций есть приставка «де». Реакции разложения в органической химии происходят, как правило, с разрывом углеродной цепи.

Например , реакция крекинга бутана (расщепление на более простые молекулы при нагревании или под действием катализатора):

C 4 H 10 → C 2 H 4 + C 2 H 6

  • Реакции замещения — это такие реакции, в ходе которых атомы или группы атомов одного вещества замещаются на атомы или группы атомов другого вещества. В неорганической химии эти реакции происходят по схеме:

AB + C = AC + B .

Например , более активные галогены вытесняют менее активные из соединений. Взаимодействие йодида калия с хлором :

2KI + Cl 2 → 2KCl + I 2 .

Замещаться могут как отдельные атомы, так и молекулы.

Например , при сплавлении менее летучие оксиды вытесняют более летучие из солей. Так, нелетучий оксид кремния вытесняет оксид углерода из карбоната натрия при сплавлении:

Na 2 CO 3 + SiO 2 → Na 2 SiO 3 + CO 2

В органической химии реакции замещения — это такие реакции, в ходе которых часть органической молекулы замещается на другие частицы . При этом замещенная частица, как правило, соединяется с частью молекулы-заместителя.

Например , реакция хлорирования метана :

CH 4 + Cl 2 → CH 3 Cl + HCl

По числу частиц и составу продуктов взаимодействия эта реакция больше похожа на реакцию обмена. Тем не менее, по механизму такая реакция является реакцией замещения.

AB + CD = AC + BD

К реакциям обмена относятся реакции ионного обмена , протекающие в растворах; реакции, иллюстрирующие кислотно-основные свойства веществ и другие.

Пример реакции обмена в неорганической химии — нейтрализация соляной кислоты щелочью :

NaOH + HCl = NaCl + H 2 O

Пример реакции обмена в органической химии — щелочной гидролиз хлорэтана :

CH 3 -CH 2 -Cl + KOH = CH 3 -CH 2 -OH + KCl

Классификация химических реакций по изменению степени окисления элементов, образующих вещества

По изменению степени окисления элементов химические реакции делят на окислительно-восстановительные реакции , и реакции, идущие без изменения степеней окисления химических элементов.

  • Окислительно-восстановительные реакции (ОВР) — это реакции, в ходе которых степени окисления веществ изменяются . При этом происходит обмен электронами .

В неорганической химии к таким реакциям относятся, как правило, реакции разложения, замещения, соединения, и все реакции, идущие с участием простых веществ. Для уравнивания ОВР используют метод электронного баланса (количество отданных электронов должно быть равно количеству полученных) или метод электронно-ионного баланса .

В органической химии разделяют реакции окисления и восстановления, в зависимости от того, что происходит с органической молекулой.

Реакции окисления в органической химии — это реакции, в ходе которых уменьшается число атомов водорода или увеличивается число атомов кислорода в исходной органической молекуле.

Например , окисление этанола под действием оксида меди:

CH 3 -CH 2 -OH + CuO → CH 3 -CH=O + H 2 O + Cu

Реакции восстановления в органической химии — это реакции, в ходе которых увеличивается число атомов водорода или уменьшается число атомов кислорода в органической молекуле.

Например , восстановление уксусного альдегида водородом :

CH 3 -CH=O + H 2 → CH 3 -CH 2 -OH

  • Протолитические реакции и реакции обмена — это такие реакции, в ходе которые степени окисления атомов не изменяются.

Например , нейтрализация едкого натра азотной кислотой :

NaOH + HNO 3 = H 2 O + NaNO 3

Классификация реакций по тепловому эффекту

По тепловому эффекту реакции разделяют на экзотермические и эндотермические .

Экзотермические реакции — это реакции, сопровождающиеся выделением энергии в форме теплоты (+Q ). К таким реакциям относятся почти все реакции соединения.

Исключения — реакция азота с кислородом с образованием оксида азота (II) — эндотермическая:

N 2 + O 2 = 2NO – Q

Реакция газообразного водорода с твердым йодом также эндотермическая :

H 2 + I 2 = 2HI – Q

Экзотермические реакции, в ходе которых выделяется свет, называют реакциями горения .

Например , горение метана:

CH 4 + O 2 = CO 2 + H 2 O

Также экзотермическими являются:


Эндотермические реакции — это реакции, сопровождающиеся поглощением энергии в форме теплоты (— Q ). Как правило, с поглощением теплоты идет большинство реакций разложения (реакции, требующие длительного нагревания).

Например , разложение известняка :

CaCO 3 → CaO + CO 2 – Q

Также эндотермическими являются:

  • реакции гидролиза ;
  • реакции, идущие только при нагревании ;
  • реакции, протекающие только при очень высоких температурах или под действием электрического разряда.

Например , превращение кислорода в озон:

3O 2 = 2O 3 — Q

В органической химии с поглощением теплоты идут реакции разложения. Например , крекинг пентана :

C 5 H 12 → C 3 H 6 + C 2 H 6 – Q .

Классификация химических реакций по агрегатному состоянию реагирующих веществ (по фазовому составу)

Вещества могут существовать в трех основных агрегатных состояниях — твердом , жидком и газообразном . По фазовому состоянию разделяют реакции гомогенные и гетерогенные .

  • Гомогенные реакции — это такие реакции, в которых реагирующие вещества и продукты находятся в одной фазе , и столкновение реагирующих частиц происходит во всем объеме реакционной смеси. К гомогенным реакциям относят взаимодействия жидкость-жидкость и газ-газ .

Например , окисление сернистого газа :

2SO 2(г) + O 2(г) = 2SO 3(г)

  • Гетерогенные реакции — это реакции, в которых реагирующие вещества и продукты находятся в разных фазах . При этом столкновение реагирующих частиц происходит только на границе соприкосновения фаз . К таким реакциям относятся взаимодействия газ-жидкость, газ-твердая фаза, твердая-твердая, и твердая фаза — жидкость .

Например , взаимодействие углекислого газа и гидроксида кальция :

CO 2(г) + Ca(OH) 2(р-р) = CaCO 3(тв) + H 2 O

Для классификации реакций по фазовому состоянию полезно уметь определять фазовые состояния веществ . Это достаточно легко сделать, используя знания о строении вещества, в частности, о .

Вещества с ионной , атомной или металлической кристаллической решеткой , как правило твердые при обычных условиях; вещества с молекулярной решеткой , как правило, жидкости или газы при обычных условиях.

Обратите внимание, что при нагревании или охлаждении вещества могут переходить из одного фазового состояния в другое. В таком случае необходимо ориентироваться на условия проведения конкретной реакции и физические свойства вещества.

Например , получение синтез-газа происходит при очень высоких температурах, при которых вода — пар:

CH 4(г) + H2O (г) = CO (г) + 3H 2(г)

Таким образом, паровая конверсия метана гомогенная реакция .

Классификация химических реакций по участию катализатора

Катализатор — это такое вещество, которое ускоряет реакцию, но не входит в состав продуктов реакции. Катализатор участвует в реакции, но практичсеки не расходуется в ходе реакции. Условно схему действия катализатора К при взаимодействии веществ A + B можно изобразить так: A + K = AK; AK + B = AB + K.

В зависимости от наличия катализатора различают каталитические и некаталитические реакции.

  • Каталитические реакции — это реакции, которые идут с участием катализаторов. Например, разложение бертолетовой соли: 2KClO 3 → 2KCl + 3O 2 .
  • Некаталитические реакции — это реакции, которые идут без участия катализатора. Например, горение этана: 2C 2 H 6 + 5O 2 = 2CO 2 + 6H 2 O.

Все реакции, протекающие с участием в клетках живых организмов, протекают с участием особых белковых катализаторов — ферментов. Такие реакции называют ферментативными.

Более подробно механизм действия и функции катализаторов рассматриваются в отдельной статье.

Классификация реакций по направлению

Обратимые реакции — это реакции, которые могут протекать и в прямом, и в и обратном направлении, т.е. когда при данных условиях продукты реакции могут взаимодействовать друг с другом. К обратимым реакциям относятся большинство гомогенных реакций, этерификация; реакции гидролиза; гидрирование-дегидрирование, гидратация-дегидратация; получение аммиака из простых веществ, окисление сернистого газа, получение галогеноводородов (кроме фтороводорода) и сероводорода; синтез метанола; получение и разложение карбонатов и гидрокарбонатов, и т.д.

Необратимые реакции — это реакции, которые протекают преимущественно в одном направлении, т.е. продукты реакции не могут взаимодействовать друг сдругом при данных условиях. Примеры необратимых реакций: горение; реакции, идущие со взрывом; реакции, идущие с образованием газа, осадка или воды в растворах; растворение щелочных металлов в воде; и др.

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1

Каждый учитель сталкивается с проблемой нехватки учебного времени. Точнее даже не сталкивается, а постоянно работает в условиях его хронического недостатка. Причем с годами последний неуклонно увеличивается вследствие уплотнения учебного материала, сокращения числа часов, отводимых на изучение химии, и усложнения задач обучения, призванного обеспечивать разностороннее развивающее воздействие на личность учащегося.

Для разрешения этого постоянно усиливающегося противоречия важно, с одной стороны, убедительно раскрыть перед учеником значимость образования, необходимость личностной заинтересованности в нем и перспективности самодвижения в его приобретении. С другой стороны – интенсифицировать осуществляемый в школе учебно – воспитательный процесс (УВП). Первого можно достигнуть в том случае, если обучение будет построено так, что ученик ЗАХОЧЕТ и СМОЖЕТ осознать себя СУБЪЕКТОМ УЧЕНИЯ, то есть таким участником УВП, который понимает и принимает его цели, владеет способами их достижения и стремится к расширению спектра этих способов. Таким образом, ведущими условиями превращения учащегося в субъект учения (в рамках предметного обучения химии) является его компетентность в содержании рассматриваемых учебных вопросов и способах овладения им и ориентация на достижение целостных знаний по предмету.

Скачать:


Предварительный просмотр:

Классификация химических реакций в неорганической и органической химии.

/в помощь молодому учителю/

Цель: систематизировать знания учащихся о подходах к классификации химических реакций. Образовательные задачи: · повторить и обобщить сведения о классификации химических реакций по признаку – числу исходных и полученных веществ; рассмотреть законы сохранения массы веществ и энергии при химических реакциях как частный случай проявления всеобщего закона природы.

Воспитательные задачи: · доказать ведущую роль теории в познании практики; · показать учащимся взаимосвязь противоположных процессов; · доказать материальность изучаемых процессов;

Развивающие задачи: · развитие логического мышления путем сравнения, обобщения, анализа, систематизации.

Тип урока: урок комплексного применения знаний.

Методы и приемы: беседа, письменная работа, фронтальный опрос.

Ход урока I. Организационный момент

II. Мотивация учебной деятельности учащихся, сообщение темы, цели, задач урока.

III. Проверка знаний учащимися фактического материала.

Фронтальная беседа: 1. Какие типы химических реакций вам известны? (реакции разложения, соединения, замещения и обмена). 2. Дайте определение реакции разложения? (Реакции разложения – реакции, при которых из одного сложного вещества образуются два и более новых простых или менее сложных веществ). 3. Дайте определение реакции соединения? (Реакции соединения – реакции, при которых два или несколько веществ образуют одно более сложное вещество). 4. Дайте определение реакции замещения? (Реакции замещения – реакции, при которых атомы простого вещества замещают атомы одного из элементов в сложном веществе). 5 Дайте определение реакции обмена? (Реакции обмена – реакции, при которых два сложных вещества обмениваются своими составными частями). 6. Какова основа этой классификации? (основой классификации является число исходных и образовавшихся веществ)

IV. Проверка знаний учащимися основных понятий, законов, теорий, умений объяснять их сущность.

  1. Объясните сущность протекания химических реакций. (Сущность химических реакций сводится к разрыву связей в исходных веществах и возникновению новых химических связей в продуктах реакции. При этом общее число атомов каждого элемента остается постоянным, следовательно, масса веществ в результате химических реакций не изменяется.)
  2. Кем и когда была установлена эта закономерность? (В 1748 году русским ученым М.В.Ломоносовым – закон сохранения массы веществ).

V. Проверка глубины осмысления знаний, степени обобщения.

Задание: определите тип химической реакции (соединения, разложения, замещения, обмена). Дайте объяснения сделанным вами заключения. Расставьте коэффициенты. (ИКТ)

1 ВАРИАНТ

2 ВАРИАНТ

3 ВАРИАНТ

Mg + O 2 =MgO

Fe + CuCl 2 =

Cu + FeCl 2

Cu + O 2 = CuO

K + H 2 O =

KOH + H 2

P + O 2 = P 2 O 5

Fe 2 O 3 + HCl = FeCl 3 + H 2 O

Fe + H 2 SO 4 = FeSO 4 +H 2

Mg + HCl =

MgCl 2 + H 2

Ba + H 2 O = Ba(OH) 2 + H 2

Zn + Cu(NO 3 ) 2 =Cu+Zn(NO 3 ) 2

Al 2 O 3 + HCl =

AlCl 3 +H 2 O

SO 2 + H2O ↔ H 2 SO 3

CaO + H 2 O = Ca(OH) 2

P 2 O 5 + H 2 O = H 3 PO 4

CuCl 2 + KOH= Cu(OH) 2 +KCl

CaO + H 3 PO 4 = Ca 3 (PO 4 ) 2 + H 2 O

Ba(OH) 2 + HNO 3 = Ba(NO 3 ) 2 + H 2 O

Ca(OH) 2 + HNO 3 = Ca(NO 3 ) 2 + H 2 O

NaOH + H 2 S =

Na 2 S + H 2 O

Ca + H 2 O =

Ca(OH) 2 +H 2

AgNO 3 + NaBr = AgBr↓ + NaNO 3

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓+ NaCl

AgNO 3 + KCl = AgCl +KNO 3

Cu + Hg(NO 3 ) 2 = Cu(NO 3 ) 2 + Hg

CO 2 + H2O ↔ H 2 CO 3

Fe(OH) 3 =

Fe 2 O 3 + H 2 O

Mg + HCl =

MgCl 2 + H 2

VI Классификация химических реакций в органической химии.

А: В неорганической химии реакции соединения, а в органической химии такие реакции часто называют реакциями присоединения (Реакции, в результате которых две и более молекул реагирующих веществ соединяются в одну) В них обычно участвуют соединения, содержащие двойную или тройную связь. Разновидности реакций присоединения: гидрирование, гидратация, гидрогалогенирование, галогенирование, полимеризация. Примеры данных реакций:

1.Гидрирование – реакция присоединения молекулы водорода по кратной связи:

Н 2 С = СН 2 + Н 2 → CН 3 – СН 3

этилен этан

НС ≡ СН + Н 2 → CН 2 = СН 2

ацетилен этилен

2.Гидрогалогенирование – реакция присоединения галогеноводорода по кратной связи

Н 2 С = СН 2 + НCl→ CН 3 ─CH 2 Cl

этилен хлорэтан

(по правилу В.В.Марковникова)

Н 2 С = СН─СН 3 + НCl→ CН 3 ─CHCl─СН 3

пропилен 2 - хлорпропан

HC≡CH + HCl → H 2 C=CHCl

ацетилен хлорвинил

HC≡C─СН 3 + HCl → H 2 C=CCl─СН 3

пропин 2-хлорпропен

3.Гидратация – реакция присоединения воды по кратной связи

Н 2 С = СН 2 + Н 2 О→ CН 3 ─CH 2 ОН (первичный спирт)

этен этанол

(при гидратации пропена и других алкенов образуются вторичные спирты)

HC≡CH + H 2 О → H 3 C─CНО

ацетилен альдегид – этаналь (реакция Кучерова)

4.Галогенирование – реакция присоединения молекулы галогена по кратной связи

Н 2 С = СН─СН 3 + Cl 2 → CН 2 Cl─CHCl─СН3

пропилен 1,2 – дихлорпропан

HC≡C─СН 3 + Cl 2 → HCCl=CCl─СН 3

пропин 1,2-дихлорпропен

5.Полимеризация – реакции, в ходе которых молекулы веществ с небольшой молекулярной массой соединяются друг с другом с образованием молекул веществ с высокой молекулярной массой.

n СН 2 =СН 2 → (-СН 2 -СН 2 -)n

Этилен полиэтилен

Б: В органической химии к реакциям разложения (отщепления) относятся: дегидратация, дегидрирование, крекинг, дегидрогалогенирование.

Соответствующие уравнения реакций:

1.Дегидратация (отщепление воды)

С 2 Н 5 ОН → C 2 H 4 + Н 2 O (H 2 SO 4 )

2.Дегидрирование (отщепление водорода)

С 6 Н 14 → С 6 Н 6 + 4Н 2

гексан бензол

3.Крекинг

C 8 H 18 → C 4 H 10 + C 4 H 8

октан бутан бутен

4. Дегидрогалогенирование (отщепление галогеноводорода)

C 2 H 5 Br → C 2 H 4 + НВг (NaOH,спирт)

Бромэтан этилен

В: В органической химии реакции замещения понимаются шире, то есть замещать может не один атом, а группа атомов или замещается не атом, а группа атомов. К разновидности реакции замещения можно отнести нитрование и галогенирование предельных углеводородов, ароматических соединений, спиртов и фенола:

С 2 Н 6 + Cl 2 → C 2 H 5 Cl +HCl

этан хлорэтан

С 2 Н 6 + HNO 3 → C 2 H 5 NO 2 +H 2 O (реакция Коновалова)

этан нитроэтан

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr

бензол бромбензол

С 6 Н 6 + HNO 3 → C 6 H 5 NO 2 +H 2 O

бензол нитробензол

C 2 H 5 OH + HCl → C 2 H 5 Cl + H 2 O

Этанол хлорэтан

C 6 H 5 ОН + 3Br 2 → C 6 H 2 Br 3 + 3HBr

фенол 2,4,6 - трибромфенол

Г: Реакции обмена в органической химии характерны для спиртов и карбоновых кислот

НСООН + NaOH → HCOONa + Н 2 O

муравьиная кислота формиат натрия

(реакция нейтрализации)

CH 3 COOH + C 2 H 5 OH↔ CH 3 COOC 2 H 5 + H 2 O

уксусная этанол этиловый эфир уксусной кислоты

(реакция этерификации ↔ гидролиз)

VII Закрепление ЗУН

  1. При нагревании гидроксида железа (3) происходит реакция
  2. Взаимодействие алюминия с серной кислотой относится к реакции
  3. Взаимодействие уксусной кислоты с магнием относится к реакции
  4. Определите тип химических реакций в цепочке превращений:

(использование ИКТ)

А) Si→SiO 2 →Na 2 SiO 3 →H 2 SiO 3 →SiO 2 →Si

Б) СН 4 →С 2 Н 2 →С 2 Н 4 →С 2 Н 5 ОН→С 2 Н

Классификация химических реакций

Реферат по химии ученика 11 класса средней шк.№ 653 Николаева Алексея

В качестве классификационных признаков могут быть выбраны следующие:

1. Число и состав исходных веществ и продуктов реакции.

2. Агрегатное состояние реагентов и продуктов реакции.

3. Число фаз, в которых находятся участники реакции.

4. Природа переносимых частиц.

5. Возможность протекания реакции в прямом и обратном направлении.

6. Тепловой эффект.

7. Явление катализа.

Классификация по числу и составу исходных веществ и продуктов реакции.

Реакции соединения.

При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

A + B + C = D

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Неорганическая химия.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

Органическая химия.

В органической химии такие реакции часто называют реакциями присоединения. В них обычно участвуют соединения, содержащие двойную или тройную связь. Разновидности реакций присоединения: гидрирование, гидратация, гидрогалогенирование, полимеризация. Примеры данных реакций:

T o

Н 2 С = СН 2 + Н 2 → CН 3 – СН 3

этилен этан

T o

HC=CH + HCl → H 2 C=CHCl

ацетилен хлорвинил

T o

n СН 2 =СН 2 → (-СН 2 -СН 2 -)n

Этилен полиэтилен

Реакции разложения.

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Неорганическая химия.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

t o

CuSO 4 5H 2 O

CuSO 4 + 5H 2 O

t o

4HNO 3

2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 ,

(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Органическая химия.

В органической химии к реакциям разложения относятся: дегидратация, дегидрирование» крекинг, дегидрогалогенирование, а также реакции деполимеризации, когда из полимера образуется исходный мономер. Соответствующие уравнения реакций:

T o

С 2 Н 5 ОН → C 2 H 4 + Н 2 O

T o

С 6 Н 14 → С 6 Н 6 + 4Н 2

гексан бензол

C 8 H 18 → C 4 H 10 + C 4 H 8

Октан бутан бутен

C 2 H5Br → C 2 H 4 + НВг

бромэтан этилен

(-СН 2 – СН = С - СН 2 -)n → n СН 2 = СН – С = СН 2

\СНз \ СНз

природный каучук 2-метилбутадиен-1,3

Реакции замещения.

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Неорганическая химия.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3

Zn + 2НСl = ZnСl 2 + Н 2

2КВr + Сl 2 = 2КСl + Вr 2

2 КС lO 3 + l 2 = 2KlO 3 + С l 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5

Органическая химия.

В органической химии реакции замещения понимаются шире, то есть замещать может не один атом, а группа атомов или замещается не атом, а группа атомов. К разновидности реакции замещения можно отнести нитрование и галогенирование предельных углеводородов, ароматических соединений и спиртов:

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr

бензол бромбензол

C 2 H 5 OH + HCl → C 2 H 5 Cl + H 2 O

Этанол хлорэтан

Реакции обмена.

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Неорганическая химия

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О

AgNО 3 + КВr = АgВr + КNО 3

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации:

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О

Органическая химия

НСООН + NaOH → HCOONa + Н 2 O

муравьиная кислота формиат натрия

реакции гидролиза:

Na 2 CO3 + Н 2 О
NaHCO 3 + NaOH

карбонат натрия гидрокарбонат натрия

СО 3 + Н 2 О
НСО 3 + ОН

реакции этерификации:

CH 3 COOH + C 2 H 5 OH
CH 3 COOC 2 H 5 + H 2 O

уксусная этанол этиловый эфир уксусной кислоты

Агрегатное состояние реагентов и продуктов реакции.

Газовые реакции

t o

H 2 + Cl 2

2HCl.

Реакции в растворах

NaОН(рр) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)

Реакции между твердыми веществами

t o

СаО (тв ) +SiO 2 (тв )

СаSiO 3 (тв)

Число фаз, в которых находятся участники реакции.

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Гомогенные (однофазные) реакции.

К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.

Гетерогенные (многофазные) реакции.

К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:

газожидкофазные реакции

CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).

газотвердофазные реакции

СO 2 (г) + СаО(тв) = СаСO 3 (тв).

жидкотвердофазные реакции

Na 2 SO 4 (рр) + ВаСl 3 (рр) = ВаSО 4 (тв)↓ + 2NaСl(p-p).

жидкогазотвердофазные реакции

Са(НСО 3) 2 (рр) + Н 2 SО 4 (рр) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.

Природа переносимых частиц.

Протолитические реакции.

К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.

В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием - вещество, способное присоединять протон, например:

К протолитическим реакциям относят реакции нейтрализации и гидролиза.

Окислительно-восстановительные реакции.

Все химические реакции подразделяются на такие, в которых степени окисления не изменяются (например, реакция обмена) и на такие, в которых происходит изменение степеней окисления. Их называют окислительно-восстановительными реакциями. Ими могут быть реакции разложения, соединения, замещения и другие более сложные реакции. Например:

Zn + 2 H + → Zn 2 + + H 2

FeS 2 + 8HNO 3 (конц ) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O

Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.

Лиганднообменные реакции.

К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорноакцепторному механизму. Например :

Cu(NO 3) 2 + 4NH 3 = (NO 3) 2

Fe + 5CO =

Al(OH) 3 + NaOH =

Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.

Возможность протекания реакции в прямом и обратном направлении.

Необратимые реакции.

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:

2КСlО 3 → 2КСl + ЗО 2 ,

или окисление глюкозы кислородом воздуха:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Обратимые реакции.

Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.

Для обратимых реакций уравнение принято записывать следующим образом:

А + В
АВ.

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:

СН 3 СООН + С 2 Н 5 ОН
СН 3 СООС 2 Н 5 + Н 2 О.

2SO 2 +O 2
2SO 3 + Q

Следовательно, данные реакции не идут до конца, потому, что одновременно происходят две реакции - прямая (между исходными веществами) и обратная (разложение продукта реакции).

Классификация по тепловому эффекту.

Количество теплоты, которое выделяется или поглощается в результате реакции, называется тепловым эффектом данной реакции. По тепловому эффекту реакции делят:

Экзотермические.

Протекают с выделением тепла

СН 4 + 2O 2 → СО 2 + 2Н 2 O + Q

Н 2 + Cl 2 → 2HC l + Q

Эндотермические.

Протекают с поглощением тепла

N 2 + О 2 → 2NO-Q

2Н 2 O → 2Н 2 + O 2 - Q

Классификация с учетом явления катализа.

Каталитические.

К ним относятся все процессы с участием катализаторов.

Кат .

2SO 2 + O 2
2SO 3

Некаталитические.

К ним относятся любые мгновенно протекающие реакции в растворах

BaCl 2 + H 2 SO 4 = 2HCl + BaSO 4 ↓

Список литературы

Ресурсы Интернет:

http://chem.km.ru – «Мир Химии»

http :// chemi . org . ru – «Пособие для абитуриентов. Химия»

http :// hemi . wallst . ru – «Альтернативный учебник по химии для 8-11 классов»

«Руководство по химии. Поступающим в ВУЗы» - Э.Т. Оганесян, М. 1991г.

Большой Энциклопедический Словарь. Химия» - М. 1998г.

Лекция: Классификация химических реакций в неорганической и органической химии

Виды химических реакций в неорганической химии


А) Классификация по количеству начальных веществ:

Разложение – вследствие данной реакции, из одного имеющегося сложного вещества, образуются два или несколько простых, а так же сложных веществ.

Пример: 2Н 2 O 2 → 2Н 2 O + O 2

Соединение – это такая реакция, при которой из двух и более простых, а также сложных веществ, образуется одно, но более сложное.

Пример: 4Al+3O 2 → 2Al 2 O 3

Замещение – это определенная химическая реакция, которая проходит между некоторыми простыми, а так же сложными веществами. Атомы простого вещества, в данной реакции, замещаются на атомы одного из элементов, находящегося в сложном веществе.

Пример: 2КI + Cl2 → 2КCl + I 2

Обмен – это такая реакция, при которой два сложных по строению вещества обмениваются своими частями.

Пример: HCl + KNO 2 → KCl + HNO 2

Б) Классификация по тепловому эффекту:

Экзотермические реакции – это определенные химические реакции, при которых происходит выделение тепла.
Примеры:

S +O 2 → SO 2 + Q

2C 2 H 6 + 7O 2 → 4CO 2 +6H 2 O + Q


Эндотермические реакции – это определенные химические реакции, при которых происходит поглощение тепла. Как правило, это реакции разложения.

Примеры:

CaCO 3 → CaO + CO 2 – Q
2KClO 3 → 2KCl + 3O 2 – Q

Теплота, которая выделяется или поглощается в результате химической реакции, называется тепловым эффектом.


Химические уравнения, в которых указан тепловой эффект реакции, называют термохимическими .


В) Классификация по обратимости:

Обратимые реакции – это реакции, которые протекают при одинаковых условиях во взаимопротивоположных направлениях.

Пример: 3H 2 + N 2 ⇌ 2NH 3

Необратимые реакции – это реакции, которые протекают только в одном направлении, а так же завершающиеся полным расходом всех исходных веществ. При этих реакциях выделяе тся газ, осадок, вода.
Пример: 2KClO 3 → 2KCl + 3O 2

Г) Классификация по изменению степени окисления:

Окислительно - восстановительные реакции – в процессе данных реакций происходит изменение степени окисления.

Пример: Сu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 + 2H 2 O.

Не окислительно - восстановительные – реакции без изменения степени окисления.

Пример: HNO 3 + KOH → KNO 3 + H 2 O.

Д) Классификация по фазе:

Гомогенные реакции реакции, протекающие в одной фазе, когда исходные вещества и продукты реакции имеют одно агрегатное состояние.

Пример: Н 2 (газ) + Cl 2 (газ) → 2HCL

Гетерогенные реакции – реакции, протекающие на поверхности раздела фаз, при которых продукты реакции и исходные вещества имеют разное агрегатное состояние.
Пример: CuO+ H 2 → Cu+H 2 O

Классификация по использованию катализатора:

Катализатор – вещество, которое ускоряет реакцию. Каталитическая реакция протекает в присутствии катализатора, некаталитическая – без катализатора.
Пример: 2H 2 0 2 MnO 2 2H 2 O + O 2 катализатор MnO 2

Взаимодействие щелочи с кислотой протекает без катализатора.
Пример: КOH + HCl КCl + H 2 O

Ингибиторы – вещества, замедляющие реакцию.
Катализаторы и ингибиторы сами в ходе реакции не расходуются.

Виды химических реакций в органической химии


Замещение – это реакция, в процессе которой происходит замена одного атома/группы атомов, в исходной молекуле, на иные атомы/группы атомов.
Пример: СН 4 + Сl 2 → СН 3 Сl + НСl

Присоединение – это реакции, при которых несколько молекул вещества соединяются в одну. К реакциям присоединения относятся:

  • Гидрирование – реакция, в процессе которой происходит присоединение водорода по кратной связи.

Пример: СН 3 -СН = СН 2 (пропен) + Н 2 → СН 3 -СН 2 -СН 3 (пропан)

    Гидрогалогенирование – реакция, присоединяющая галогенводород.

Пример: СН 2 = СН 2 (этен) + НСl → СН 3 -СН 2 -Сl (хлорэтан)

Алкины реагируют с галогеноводородами (хлороводородом, бромоводородом) так же, как и алкены. Присоединение в химической реакции проходит в 2 стадии, и определяется правилом Марковникова:


При присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода.

Механизм данной химической реакции. Образующийся в 1 - ой, быстрой стадии, p- комплекс во 2 - ой медленной стадии постепенно превращается в s-комплекс - карбокатион. В 3 - ей стадии происходит стабилизация карбокатиона – то есть взаимодействие с анионом брома:

И1, И2 - карбокатионы. П1, П2 - бромиды.


Галогенирование – реакция, при которой присоединяется галоген. Галогенированием так же, называют все процессы, в результате которых в органические соединения вводятся атомы галогена. Данное понятие употребляется в "широком смысле". В соответствии с данным понятием, различают следующие химические реакции на основе галогенирования: фторирование, хлорирование, бромирование, йодирование.

Галогенсодержащие органические производные считаются важнейшими соединениями, которые применяются как в органическом синтезе, так и в качестве целевых продуктов. Галогенпроизводные углеводородов, считаются исходными продуктами в большом количестве реакций нуклеофильного замещения. Что касается практического использования соединений, содержащих галоген, то они применяются в виде растворителей, например хлорсодержащие соединения, холодильных агентов - хлорфторпроизводные, фреоны, пестицидов, фармацевтических препаратов, пластификаторов, мономеров для получения пластмасс.


Гидратация – реакции присоединения молекулы воды по кратной связи.

Полимеризация – это особый вид реакции, при которой молекулы вещества, имеющие относительную невеликую молекулярную массу, присоединяются друг к другу, впоследствии образовывая молекулы вещества с высокой молекулярной массой.