Фрикционная диффузия. Описание физического явления диффузия. Что такое диффузия

Диффузия

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы .

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи , однако иногда диффузионными называют также другие процессы переноса: теплопроводность , вязкое трение и т. п.

Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом , то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.

Количественно описание процессов диффузии было дано немецким физиологом А. Фиком (англ. ) в 1855 г.

Общее описание

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций , температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность , в случае потока электрических зарядов - электропроводность . Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий , продиффундировавший через металлический вольфрам при 2000 °C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение изотопов . Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение 235 U от основной массы 238 U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Уравнения Фика

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии . При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ , обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

~

В большинстве практических случаев вместо химического потенциала применяется концентрация C . Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал перестаёт быть связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D [()] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса .

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера-Планка . Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;
  • Проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения концентрации во времени, а в правой части уравнения - вторая частная производная, которая выражает пространственное распределение концентрации, в частности, выпуклость функции распределения температур, проецируемую на ось х.

См. также

  • Поверхностная диффузия - процесс, связанный с перемещением частиц, происходящий на поверхности конденсированного тела в пределах первого поверхностного слоя атомов (молекул) или поверх этого слоя.

Примечания

Литература

  • Бокштейн Б. С. Атомы блуждают по кристаллу. - М .: Наука, 1984. - 208 с. - (Библиотечка «Квант» . Вып. 28). - 150 000 экз.

Ссылки

  • Диффузия (видеоурок, программа 7 класса)
  • Диффузия примесных атомов на поверхности монокристалла

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Диффузия" в других словарях:

    - [лат. diffusio распространение, растекание] физ., хим. проникновение молекул одного вещества (газа, жидкости, твердого тела) в другое при их непосредственном соприкосновении или через пористую перегородку. Словарь иностранных слов. Комлев Н.Г.,… … Словарь иностранных слов русского языка

    Диффузия - – проникновение в среду частиц одного вещества частиц другого вещества, происхо дящее вследствие теплового движения в направлении уменьшения концентрации другого вещества. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург … Энциклопедия терминов, определений и пояснений строительных материалов

    Современная энциклопедия

    - (от лат. diffusio распространение растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие… … Большой Энциклопедический словарь

    ДИФФУЗИЯ, перемещение вещества в смеси из область с высокой концентрацией в области с низкой концентрацией, вызванное случайным перемещением отдельных атомов или молекул. Диффузия прекращается, когда исчезает градиент концентрации. Скорость… … Научно-технический энциклопедический словарь

    диффузия - и, ж. diffusion f., нем. Diffusion <лат. diffusio растекание, распространение. Взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения молекул и атомов. Диффузия газов, жидкостей. БАС 2. || перен. Они… … Исторический словарь галлицизмов русского языка

    Диффузия - (от латинского diffusio распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или установлению их равновесного распределения. Обычно диффузия определяется тепловым движением… … Иллюстрированный энциклопедический словарь

    Перемещение частиц в направлении убывания их концентрации, обусловленное тепловым движением. Д. приводит к выравниванию концентраций диффундирующего вещества и равномерному заполнению частицами объема.… … Геологическая энциклопедия

Введение
1. Понятие и закономерности протекания диффузии
1.1 Понятие диффузионных процессов ……………………………………….. 5
1.2 Закономерности протекания диффузии ……………………………………6
2. Использование диффузионных процессов
2.1 Диффузия при обработке металлов …………………………………………8
2.2 Плазмолиз…………………………………………………………………… 11
2.3 Осмос…………………………………………………………………………11
3. Применение диффузии на производстве…………………………………... 13
4. Применение диффузии в медицине. Аппарат « искусственная почка»…..15
5. Применение диффузии в технике…………………………………………...16
Заключение
Список использованной литературы

Введение

Тема моей курсовой работы звучит так: «Диффузионные процессы и их использование в технологиях» .

Диффузия – фундаментальное явление природы. Оно лежит в основе превращений вещества и энергии. Его проявления имеют место на всех уровнях организации природных систем на нашей планете, начиная с уровня элементарных частиц, атомов и молекул, и заканчивая геосферой. Оно широко используется в технике, в повседневной жизни.
Сущность диффузии – движение частиц среды, приводящее к переносу веществ и выравниванию концентраций или к установлению равновесного распределения частиц данного вида в среде. Диффузия молекул и атомов обусловленным их тепловым движением. .
Процесс диффузии представляет собой один из механизмов проявления II закона термодинамики, согласно которому любая система стремится перейти в более равновесное состояние, то есть устойчивое состояние, характеризующееся возрастанием энтропии и минимума энергии.
Диффузия является одним из важнейших технологических процессов при изготовлении любых видов электронных приборов и микросхем.

Диффузия является фундаментальным процессом, лежащим в основе функционирования живых систем любого уровня организации, начиная с уровня элементарных частиц (электронная диффузия) и заканчивая биосферным уровнем (круговоротом веществ в биосфере).

Явление диффузии широко используется и на практике. В повседневной жизни – заварка чая, консервирование овощей, изготовление варений. В производстве – цементация (…стальных деталей, для повышения их твердости и жаростойкости) процессы алитирования и оксидирования.

Цель данной курсовой работы состоит в том чтобы ознакомиться с понятием диффузии и диффузионных процессов, проанализировать использование ее в производстве, техники, медицине. С учетом специфики данной темы и круга затронутых вопросов структура работы позволяет последовательно ответить в первой части на теоретические вопросы, а во второй узнать практическое использование диффузионных процессов.

1. Понятие и закономерности протекания диффузии

1.1 Понятие диффузионных процессов

Процесс проникновения частиц (молекул, атомов, ионов) одного вещества между частицами другого вещества вследствие хаотичного движения называется диффузией. Таким образом, диффузия – результат хаотичного движения всех частиц вещества, всякого механического воздействия.

Так как частицы движутся и в газах, и в жидкостях, и в твердых телах, то в этих веществах возможна диффузия. Диффузия – перенос вещества, обусловленный самопроизвольным выравниванием неоднородной концентрации атомов или молекул разного вида. Если в сосуд впустить порции различных газов, то через некоторое время все газы равномерно перемешиваются: число молекул каждого вида в единице объёма сосуда станет постоянным, концентрация выравнивается (рис.1)

Диффузия объясняется так. Сначала между двумя телами чётко видна граница раздела двух сред (рис.1а). Затем, вследствие своего движения отдельные частицы веществ, находящихся около границы, обмениваются местами. Граница между веществами расплывается (рис.1б). Проникнув между частицами другого вещества, частицы первого начинают обмениваться местами с частицами второго, находящимися во всё более глубоких слоях. Граница раздела веществ становится ещё более расплывчатой. Благодаря непрерывному и беспорядочному движению частиц этот процесс приводит в конце концов к тому, что раствор в сосуде становится однородным (рис.1в).

Рис.1. Объяснение явления диффузии.

Диффузия крупных частиц, взвешенных в газе или жидкости (например, частиц Дыма или Суспензии), осуществляется благодаря их броуновскому движению. В дальнейшем, если специально не оговорено, имеется в виду молекулярная диффузия.

Диффузия играет важную роль в химической кинетике и технологии. При протекании химической реакции на поверхности катализатора или одного из реагирующих веществ (например, горении угля) диффузия может определять скорость подвода др. реагирующих веществ и отвода продуктов реакции, т. е. являться определяющим (лимитирующим) процессом. Для испарения и конденсации, растворения кристаллов и кристаллизации определяющей оказывается обычно диффузия. Процесс диффузии газов через пористые перегородки или в струю пара используется для изотопов разделения. Диффузия лежит в основе многочисленных технологических процессов - адсорбции, цементации и др.Широко применяются диффузионная сварка, диффузионная металлизация.

В жидких растворах диффузия молекул растворителя через полупроницаемые перегородки (мембраны) приводит к возникновению осмотического давления что используется в физико-химическом методе разделения веществ.

1.2 Закономерности протекания диффузии

Разница концентрации является движущей силой диффузии. Если концентрация всюду одинакова, диффузный перенос вещества отсутствует. Выравнивание концентрации в результате диффузии происходит только в отсутствие внешних сил. Если разница концентраций существует наряду с разницей температур, в электрическом поле или в условиях, когда существенна сила тяжести (при большой разнице высот), выравнивание концентрации необязательно. Примером может служить уменьшение плотности воздуха с высотой.

Обратимся к опыту. В двух стаканах налита вода, но в одном холодная, а в другом – горячая. Опустим одновременно в стаканы пакетики с чаем. Нетрудно заметить, что в горячей воде чай быстрее окрашивает воду, диффузия протекает быстрее. Скорость диффузии увеличивается с ростом температуры, так как молекулы взаимодействующих тел начинают двигаться быстрее.

Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Неупорядоченность движения приводит к тому, что каждая частица постепенно удаляется от места, где она находилась, причём её смещение по прямой гораздо меньше пути, пройденного по ломаной линии. Поэтому диффузионное проникновение значительно медленнее свободного движения (скорость диффузионного распространения запахов, например, много меньше скорости молекул). В жидкостях, в соответствии с характером теплового движения молекул, диффузия осуществляется перескоками молекул из одного временного положения равновесия в другое. Каждый скачок происходит при сообщении молекуле энергии, достаточной для разрыва её связей с соседними молекулами и перехода в окружение др. молекул (в новое энергетически выгодное положение). В среднем скачок не превышает межмолекулярного расстояния. Диффузионное движение частиц в жидкости можно рассматривать как движение с трением. Коэффициент диффузии в жидкости увеличивается с температурой, что обусловлено «разрыхлением» структуры жидкости при нагреве и соответствующим увеличением числа перескоков в единицу времени.

В твёрдом теле могут действовать несколько механизмов обмен местами атомов с вакансиями (незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов замещения, второй - твёрдых растворов внедрения. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле, диффузия и приводит к росту коэффициента диффузии. Для коэффициента, диффузии в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент, диффузии цинка в медь при повышении температуры от 20 до 300°С возрастает в 1014 раз.

Все экспериментальные методы определения коэффициента диффузии содержат два основных момента: приведение в контакт диффундирующих веществ и анализ состава веществ, изменённого диффузии. Состав (концентрацию продиффундировавшего вещества) определяют химически, оптически (по изменению показателя преломления или поглощения света), масс-спектроскопически, методом меченых атомов и др.

2.Использование диффузионных процессов

2.1 Диффузия при обработке металлов

Диффузионная металлизация – процесс диффузионного насыщения поверхности изделий металлами или металлоидами. Диффузионное насыщение проводят в порошкообразной смеси, газовой среде или расплавленном металле (если металл имеет низкую температуру плавления).

Борирование – диффузионное насыщение поверхности металлов и сплавов бором для повышения твердости, коррозионной стойкости, износостойкости проводят путем электролиза в расплавленной соли бора. Борирование обеспечивает особенно высокую твердость поверхности, сопротивление износу, повышает коррозионную стойкость и теплостойкость. Борированные стали обладают высокой коррозионной стойкостью в водных растворах соляной, серной и фосфорной кислот. Борирование применяют для чугунных и стальных деталей, работающих в условиях трения в агрессивной среде (в химическом машиностроении).

Алитирование – это процесс диффузионного насыщения поверхностного слоя алюминием, проводят в порошкообразных смесях алюминия или в расплавленном алюминии. Цель – получение высокой жаростойкости поверхности стальных деталей. Алитирование проводят в твердых и жидких средах.

Силицирование – диффузионное насыщение кремнием проводят в газовой атмосфере. Насыщенный кремнием слой стальной детали имеет не очень высокую твердость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах. Силицированные детали применяют в химической, целлюлозно-бумажной и нефтяной промышленности. Для повышения жаростойкости силицирование применяют для изделий из сплавов на основе молибдена и вольфрама, обладающих высокой жаропрочностью.

Процессы диффузии в металлах играют значительную роль. Если два металла приводятся в тесное соприкосновение лучом наплавления или спрессовывания порошка одного металла с другим и подвергаются действию достаточно высоких температур, то каждый из этих двух металлов диффундирует в другой. Если один из металлов жидкий, то он одновременно диффундирует в твердый и растворяет его.

Если мы исходим при этом из чистых металлов, то в промежуточном слое образуется целая гамма фаз обоих металлов, обычно отдельно от смеси пограничных фаз. Перепад концентраций в отдельных слоях очень различен; скорость диффузии, следовательно, сильно зависит от структуры решетки. В случае непрерывного ряда твердых растворов скорость диффузии равным образом зависит от состава основной массы; так, диффузия меди в никель с высокой точкой плавления происходит намного медленнее, чем диффузия никеля в медь. В один и тот же металл другие металлы диффундируют, как показали опыты Гевеза и Септса со свинцом, с тем большей скоростью, чем далее отстоят они в своих группах в периодической системе друг от друга (чем далее они по своей валентности). Применяя радиоактивный изотоп свинца, можно установить также, что однородные атомы особенно медленно обмениваются местами. Факт этой автодиффузии наглядно свидетельствует о движении металлических атомов при высоких температурах, на котором основаны также кристаллизация и рост кристаллов.

Диффузия - это (дословно) рассеивание, растекание, распространение. Физически характеризует процесс переноса энергии или материи из высококонцентрированной области в область с пониженной концентрацией. Наиболее распространенное явление, с которым связана диффузия - это перемешивание молекул газов (например, когда аромат духов распространяется в воздухе) или жидкостей. Этот же процесс можно наблюдать и в твердых телах. Например, если конец стержня зарядить электрически или нагреть, то тепло (или заряд) постепенно будет распространяться от горячего участка к холодному. При этом если взять металлический предмет, то тепло будет распространяться достаточно быстро, а электрический ток - мгновенно. Если же стержень из синтетического материала, то тепловое распространение будет протекать медленно, а электрическое - еще медленнее. Диффузия твердых тел происходит с еще более низкой скоростью.

Следует отметить, что этот термин (как и многие другие) применяется сегодня не только в физике.

Существует, например, такое понятие, как диффузия инноваций. Это такой процесс, при помощи которого во времени осуществляется передача нововведения хозяйствующим субъектам по коммуникационным каналам. В этом случае диффузия - это информационное распространение, скорость и форма которого зависят от используемых Большое значение имеют и особенности восприятия информации субъектами, ведущими хозяйственную деятельность, а также их способность к практическому применению полученных сведений. При диффузии инновации, уже освоенной однажды и примененной в другой местности, в новых местах и условиях возрастает количество потребителей и производителей. Непрерывность процесса формирует границы и формы распространения нововведений в рыночной экономике.

Эксперты отмечают, что в условиях ведения хозяйственной деятельности диффузия имеет характер циклический. При этом осуществление всего процесса внедрения, распространения нововведений разделен на определенные стадии: фундаментальное и прикладное исследование, разработка и проектирование, строительство, освоение, а также промышленное производство, маркетинг и сбыт.

Культурная диффузия - это понятие, которое используется в социальной сфере. Характеризует процесс взаимного проникновения некоторых черт из одной социальной группы в другую при их соприкосновении. При этом диффузия может и не оставить никакого отпечатка ни на одной из взаимодействующих культур. Может, однако, случиться и так, что это проникновение спровоцирует сильное и равное (или одностороннее) влияние. Каналы, по которым проходит диффузия, - это главным образом туризм, война, торговля, научные конференции, ярмарки и выставки, обмен специалистами и студентами.

Распространение нововведений в социальной сфере может осуществляться по двум направлениям: горизонтально или вертикально.

Горизонтальное проникновение (межгрупповая диффузия) отмечается между индивидами, группами, равными по статусу.

Вертикальное распространение происходит между субъектами, обладающими неравным статусом. Этот процесс называют стратификационной диффузией.

Характеризуется ярко выраженной символической поляризацией населения. По мнению ряда культурологов, примером образа жизни и стиля сегодня (как для высшего, так и для низшего класса) считается средний класс.

Приносит в общество как позитивные, так и негативные черты. Так, распространение высоких представлений о жизни в средние и (в особенности) низшие слои означает, с одной стороны, просвещение и демократизацию народа. С другой же стороны, высокая культура в этом случае может быть воспринята примитивно и пошло.

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Вконтакте

Одноклассники

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

Среди многочисленных явлений в физике процесс диффузии относится к одним из самых простых и понятных. Ведь каждое утро, готовя себе ароматный чай или кофе, человек имеет возможность наблюдать эту реакцию на практике. Давайте узнаем больше об этом процессе и условиях его протекания в разных агрегатных состояниях.

Что такое диффузия

Данным словом именуется проникновение молекул или атомов одного вещества между аналогичными структурными единицами другого. При этом концентрация проникающего соединений выравнивается.

Впервые этот процесс был подробно описан немецким ученым Адольфом Фиком в 1855 г.

Название данного термина было образовано от латинского diffusio (взаимодействие, рассеивание, распространение).

Диффузия в жидкости

Рассматриваемый процесс может происходить с веществами во всех трех агрегатных состояниях: газообразном, жидком и твердом. Чтобы отыскать практические примеры этого, стоит просто заглянуть на кухню.

Варящийся на плите борщ - это один из них. Под действием температуры молекулы глюкозинбетанина (вещества, благодаря которому свекла обладает таким насыщенным алым цветом) равномерно реагируют с молекулами воды, придавая ей неповторимый бордовый оттенок. Данный случай - это в жидкостях.

Помимо борща, данный процесс можно увидеть и в стакане чая или кофе. Оба эти напитка имеют столь равномерный насыщенный оттенок благодаря тому, что заварка или частички кофе, растворяясь в воде, равномерно распространяются между ее молекулами, окрашивая ее. На этом же принципе построено действие всех популярных растворимых напитков девяностых: Yupi, Invite, Zuko.

Взаимопроникновение газов

Атомы и молекулы, переносящие запах, находятся в активном движении и вследствие него перемешиваются с частицами, уже содержащимися в воздухе, и довольно равномерно рассеиваются в объеме помещения.

Это проявление диффузии в газах. Стоит отметить, что само вдыхание воздуха тоже относится к рассматриваемому процессу, как и аппетитный запах свежеприготовленного борща на кухне.

Диффузия в твердых телах

Кухонный стол, на котором стоят цветы, застелен скатертью яркого желтого цвета. Подобный оттенок она получила благодаря способности диффузии проходить в твердых телах.

Сам процесс придания полотну какого-то равномерного оттенка проходит в несколько этапов следующим образом.

  1. Частички желтого пигмента диффундировали в красильной емкости по направлению к волокнистому материалу.
  2. Далее они были впитаны внешней поверхностью окрашиваемой ткани.
  3. Следующим шагом была снова диффузия красителя, но на этот раз уже внутрь волокон полотна.
  4. В финале ткань зафиксировала частички пигмента, таким образом окрасившись.

Диффундирование газов в металлах

Обычно, говоря об этом процессе, рассматривают взаимодействия веществ в одинаковых агрегатных состояниях. Например, диффузия в твердых телах, твердых веществах. Для доказательства этого явления проводится опыт с двумя прижатыми друг к другу металлическими пластинами (золото и свинец). Взаимопроникновение их молекул происходит довольно долго (один миллиметр за пять лет). Этот процесс используется для изготовления необычных украшений.

Однако диффундировать способны и соединения в разных агрегатных состояниях. К примеру, существует диффузия газов в твердых телах.

В процессе экспериментов было доказано, что подобный процесс протекает в атомарном состоянии. Для его активации, как правило, нужно значительно повышение температуры и давления.

Примером такой газовой диффузии в твердых телах является водородная коррозия. Она проявляется в ситуациях, когда возникшие в процессе какой-нибудь химической реакции атомы водорода (Н 2) под действием высоких температур (от 200 до 650 градусов Цельсия) проникают между структурными частицами металла.

Помимо водорода, в твердых телах диффузия кислорода и других газов также способна происходить. Этот незаметный глазу процесс приносит немало вреда, ведь из-за него могут рушиться металлические сооружения.

Диффундирование жидкостей в металлах

Однако не только молекулы газов могут проникать в твердые тела, но и жидкостей. Как и в случае с водородом, чаще всего такой процесс приводит к коррозии (если речь идет о металлах).

Классическим примером диффузии жидкости в твердых телах является коррозия металлов под воздействием воды (Н 2 О) или растворов электролитов. Для большинства этот процесс более знаком под названием ржавления. В отличие от водородной коррозии, на практике с ним приходится сталкиваться значительно чаще.

Условия ускорения диффузии. Коэффициент диффузии

Разобравшись с тем, в каких веществах может происходить рассматриваемый процесс, стоит узнать об условиях его протекания.

В первую очередь быстрота диффузии зависит от того, в каком агрегатном состоянии пребывают взаимодействующие вещества. Чем больше в котором происходит реакция, тем медленнее ее скорость.

В связи с этим диффузия в жидкостях и газах всегда будет проходить более активно, нежели в твердых телах.

К примеру, если кристаллы перманганата калия KMnO 4 (марганцовка) бросить в воду, они в течение нескольких минут придадут ей красивый малиновый цвет. Однако если посыпать кристаллами KMnO 4 кусочек льда и положить все это в морозилку, по прошествии нескольких часов перманганат калия так и не сможет полноценно окрасить замороженную Н 2 О.

Из предыдущего примера можно сделать еще один вывод об условиях диффузии. Помимо агрегатного состояния, на скорость взаимопроникновения частиц влияет также и температура.

Чтобы рассмотреть зависимость от нее рассматриваемого процесса, стоит узнать о таком понятии, как коэффициент диффузии. Так называется количественная характеристика ее скорости.

В большинстве формул она обозначается при помощи большой латинской литеры D и в системе СИ измеряется в квадратных метрах на секунду (м²/с), иногда - в сантиметрах за секунду (см 2 /м).

Коэффициент диффузии равен количеству вещества, рассеивающегося через единицу поверхности на протяжении единицы времени, при условии, что разность плотностей на обеих поверхностях (расположенных на расстоянии равном единице длины) равна единице. Критерии, определяющие D, - это свойства вещества, в котором происходит сам процесс рассеивания частиц, и их тип.

Зависимость коэффициента от температуры можно описать при помощи уравнения Аррениуса: D = D 0exp (-E/TR).

В рассмотренной формуле Е - минимальная энергия, необходимая для активации процесса; Т - температура (измеряется по Кельвину, а не Цельсию); R - постоянная газовая, характерная для идеального газа.

Помимо всего вышеперечисленного, на скорость диффузии в твердых телах, жидкости в газах влияет давление и излучение (индукционное или высокочастотное). Кроме того, многое зависит от наличия катализирующего вещества, часто именно оно выступает в роли пускового механизма для начала активного рассеивания частиц.

Уравнение диффузии

Данное явление - частный вид уравнения дифференциального при частных производных.

Его цель - отыскать зависимость концентрации вещества от размеров и координат пространства (в котором оно диффундирует), а также времени. При этом заданный коэффициент характеризует проницаемость среды для реакции.

Чаще всего уравнение диффузии записывают следующим образом: ∂φ (r,t)/∂t = ∇ x .

В нем φ (t и r) — плотность рассеивающегося вещества в точке r во время t. D (φ, r) — диффузии обобщенный коэффициент при плотности φ в точке r.

∇ — векторный дифференциальный оператор, компоненты которого по координатам относятся к частным производным.

Когда коэффициент диффузии зависим от плотности, уравнение является нелинейным. Когда нет — линейным.

Рассмотрев определение диффузии и особенности данного процесса в разных средах, можно отметить, что он имеет как положительные, так и отрицательные стороны.