Сила трения имеет. Что такое сила трения? Пример расчета коэффициента трения скольжения

ОПРЕДЕЛЕНИЕ

Из второго уравнения:

Сила трения:

Подставив выражение для силы трения в первое уравнение, получим:

При торможении до полной остановки скорость автобуса падает от значения до нуля, поэтому автобуса:

Приравнивая правые части соотношений для ускорения автобуса при аварийном торможении, получим:

откуда время до полной остановки автобуса:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Ответ Автобус остановится через c.

ПРИМЕР 2

Задание Небольшое тело положили на наклонную плоскость, составляющую угол с горизонтом, и отпустили. Какое расстояние пройдет тело за 3 с, если коэффициент трения между ним и поверхностью 0,2?
Решение Выполним рисунок и укажем все силы, действующие на тело.

На тело действуют сила тяжести , сила реакции опоры и сила трения

Выберем систему координат, как показано на рисунке, и спроектируем это векторное равенство на оси координат:

Из второго уравнения:

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой , направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

где – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления); – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения . Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где – модуль силы трения скольжения; N – сила реакции опоры (нормального давления); – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению. При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя. Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

Главная особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

От размеров тела и его геометрической формы (рис. 14);

Состояния поверхности тела (рис. 15);

Свойства жидкости или газа (рис. 16);

Относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

где – величина относительной скорости; – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

где – величина относительной скорости; – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

Цель : Закрепить полученные знания о трении и о видах трения.

Ход работы:

1. Изучить теоретическую часть
2. Заполнить таблицу 1.
3. Решить задачу по варианту из таблицы 2.
4. Ответить на контрольные вопросы.

Таблица 1

Таблица 2

Конькобежец проезжает по гладкой горизонтальной поверхности льда по инерции 80 м. Определить силу трения и начальную скорость, если масса конькобежца 60 кг, а коэффициент трения 0,015

Тело массой 4,9 кг лежит на горизонтальной плоскости. Какую силу надо приложить к телу в горизонтальном направлении, чтобы сообщить ему ускорение 0,5 м/с 2 при коэффициенте трения 0,1?

На горизонтальном столе лежит деревянный брусок массой 500 г, который приводится в движение грузом массой 300 г, подвешенным на вертикальном конце нити, перекинутой через блок, закрепленный на конце стола. Коэффициент трения при движении бруска равен 0,2. С каким ускорением будет двигаться брусок?

Сила трения - это сила, возникающая между поверхностями соприкасающихся тел. Если между поверхностями отсутствует смазка, то трение называется сухим. Сила сухого трения прямо пропорциональна силе, прижимающей поверхности друг к другу и направлена в сторону, противоположную возможному движению. Коэффициент пропорциональности называется коэффициентом трения. Прижимающая сила перпендикулярна поверхности. Она называется нормальной реакцией опоры.

Законы трения в жидкостях и газах отличаются от законов сухого трения. Трение в жидкости и газе зависит от скорости движения: при малых скоростях оно пропорциональной квадрату, а при больших - кубу скорости.

Формулы для решения:

Где "k" - коэффициент трения, "N" - нормальная реакция опоры.

Второй закон Ньютона и уравнения движения в векторной форме. F = ma

По третьему закону Ньютона N = - mg

выражение для скорости

Уравнения движения для равноускоренного кинематического движения

; 0 - V = a t где 0 – конечная скорость V – начальная скорость

Алгоритм решения типовой задачи:

1. Кратко записываем условие задачи.

2. Изображаем условие графически в произвольной системе отсчета, указав действующие на тело (точку) силы, в том числе, нормальную реакцию опоры и силу трения, скорость и ускорение тела.

3. Корректируем и обозначаем на рисунке систему отсчета, вводя начало отсчета времени и уточняя оси координат для сил и ускорения. Лучше направить одну из осей вдоль нормальной реакции опоры, а отсчет времени начать в момент нахождения тела (точки) в нуле координат.

4. Записываем в векторной форме второй закон Ньютона и уравнения движения. Уравнения движения и скорости - это зависимости перемещения (пути) и скорости от времени.

5. Записываем в эти же уравнения в скалярной форме: в проекциях на оси координат. Записываем выражение для силы трения.

6. Решаем уравнения в общем виде.

7. Подставляем величины в общее решение, вычисляем.

8. Записываем ответ.

Теоретическая часть
Трением называется сопротивление соприкасающихся тел движению друг относительно друга. Трением сопровождается каждое механическое движение, и это обстоятельство имеет существенное следствие в современном техническом прогрессе.
Сила трения есть сила сопротивления движению соприкасающихся тел друг относительно друга.Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости. Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е. неровностью, шероховатостью поверхностей трущихся тел.Тела, перемещающиеся с трением друг относительно друга, должны соприкасаться поверхностями или двигаться одно в среде другого. Движения тел друг относительно друга может и не возникнуть из-за наличия трения, если движущая сила меньше максимальной силы трения покоя. Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.

Рассмотрим более детально процесс возникновения сил трения скольжения и покоя на стыке двух соприкасающихся тел. Если посмотреть на поверхности тел под микроскопом, то будут видны микронеровности, которые мы изобразим в увеличенном виде (рис. 1, а).Рассмотрим взаимодействие соприкасающихся тел на примере одной пары неровностей (гребень и впадина) (рис. 3, б). В случае, когда сила, пытающаяся вызвать движение, отсутствует, характер взаимодействия на обоих склонах микронеровностей аналогичный. При таком характере взаимодействия все горизонтальные составляющие силы взаимодействия уравновешивают друг друга, а все вертикальные про суммируются и составляют силу N (реакция опоры) (рис. 2, а).

Иная картина взаимодействия тел получается, когда на одно из тел начинает действовать сила. В этом случае точки контакта будут преимущественно на левых по рисунку «склонах». Первое тело будет давить на второе. Интенсивность этого давления характеризуется силой R". Второе тело в соответствии с третьим законом Ньютона будет действовать на первое тело. Интенсивность этого действия характеризуется силой R (реакция опоры). Силу R

можно разложить на составляющие: силу N, направленную перпендикулярно поверхности соприкосновения тел, и силу Fсц, направленную против действия силы F (рис. 2, б).


После рассмотрения взаимодействия тел следует обратить внимание на два момента.
1) При взаимодействии двух тел в соответствии с третьим законом Ньютона возникают две силы R и R"; силу R для удобства ее учета при решении задач мы раскладываем на составляющие N и Fсц (Fтр в случае движения).
2) Силы N и F Tp имеют одну и ту же природу (электромагнитное взаимодействие); иначе и быть не могло, так как это составляющие одной и той же силы R.
Весьма важное значение в современной технике для снижения вредного влияния сил трения имеет замена трения скольжения трением качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:


где F-сила трения качения; к-коэффициент трения качения; Р-сила давления катящегося тела на опору и R-радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.
Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины - метрах.
Заменяется трение скольжения трением качения, в необходимых и возможных случаях, заменой подшипников скольжения на подшипники качения.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. Слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение) и кинематическое трение. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.
Виды сил трения.
Силы трения имеют электромагнитную природу, т.е. в основе сил трения лежат электрические силы взаимодействия молекул. Они зависят от скорости движения тел относительно друг друга.
Существует 2 вида трения: сухое и жидкое.
1.Жидкое трение – это сила, возникающая при движении твёрдого тела в жидкости или газе или при движении одного слоя жидкости(газа) относительно другого и тормозящая это движение.

В жидкостях и газах сила трения покоя отсутствует.
При малых скоростях движения в жидкости (газе):
Fтр= k1v,
где k1– коэффициент сопротивления, зависящий от формы, размеров тела и от св-в среды. Определяется опытным путём.

При больших скоростях движения:
Fтр= k2v,
где k2– коэффициент сопротивления.
2.Сухое трение – это сила, возникающая при непосредственном соприкосновении тел, и всегда направлена вдоль поверхностей соприкосновения электромагнитных тел именно разрывом молекулярных связей.
Трение покоя.
Рассмотрим взаимодействие бруска с поверхностью стола.Поверхность, соприкасающихся тел не является абсолютно ровной.Наибольшая сила притяжения возникает между атомами веществ, находящимися на минимальном расстоянии друг от друга, то есть на микроскопических выступах. Суммарная сила притяжения атомов, соприкасающихся тел столь значительна, что даже под действием внешней силы, приложенной к бруску параллельно поверхности его соприкосновения со столом, брусок остаётся в покое. Это означает, что на брусок действует сила равная по модулю внешней силе, но противоположно направленная. Эта сила является силой трения покоя.Когда приложенная сила достигает максимального критического значения, достаточного для разрыва связей между выступами, брусок начинает скользить по столу. Максимальная сила трения покоя не зависит от площади соприкосновения поверхности.По третьему закону Ньютона сила нормального давления равна по модулю силе реакции опоры N.
Максимальная сила трения покоя пропорциональна силе нормального давления:

где μ – коэффициент трения покоя.

Коэффициент трения покоя зависит от характера обработки поверхности и от сочетания материалов, из которых состоят соприкасающиеся тела. Качественная обработка гладких поверхностей контакта приводит к увеличению числа притягивающихся атомов и соответственно к увеличению коэффициента трения покоя.

Максимальное значение силы трения покоя пропорционально модулю силы F д давления, производимого телом на опору.
Определить значение коэффициента трения покоя можно следующим образом. Пусть тело (плоский брусок) лежит на наклонной плоскости АВ (рис. 3). На него действуют три силы: сила тяжести F, сила трения покоя Fп и сила реакции опоры N. Нормальная составляющая Fп силы тяжести представляет собой силу давления Fд, производимого телом на опору, т. е.
FН=Fд. Тангенциальная составляющая Fт силы тяжести представляет собой силу, стремящуюся сдвинуть тело вниз по наклонной плоскости.
При малых углах наклона a сила Fт уравновешивается силой трения покоя Fп и тело на наклонной плоскости покоится (сила N реакции опоры по третьему закону Ньютона равна по модулю и противоположна по направлению силе Fд, т. е. уравновешивает ее).
Будем увеличивать угол наклона a до тех пор, пока тело не начнет скользить вниз по наклонной плоскости. В этот момент
Fт=FпmaxИз рис. 3 видно, чтоFт=Fsin = mgsin; Fн=Fcos = mgcos.
получим
fн=sin/cos=tg.
Измерив угол, при котором начинается скольжение тела, можно по формуле вычислить значение коэффициента трения покоя fп.


Рис. 3. Трение покоя.
Трения скольжения

Трение скольжения возникает при относительном перемещении соприкасающихся тел.
Сила трения скольжения всегда направлена в сторону, противоположную относительной скорости соприкасающихся тел.
Когда одно тело начинает скользить по поверхности другого тела, связи между атомами (молекулами) первоначально неподвижных тел разрываются, трение уменьшается. При дальнейшем относительном движении тел постоянно образуются новые связи между атомами. При этом сила трения скольжения остаётся постоянной, несколько меньшей силы трения покоя. Как и максимальная сила трения покоя, сила трения скольжения пропорциональна силе нормального давления и, следовательно, силе реакции опоры:
,где - коэффициент трения скольжения (), зависящий от свойств соприкасающихся поверхностей.


Рис. 3. Трение скольжения

Контрольные вопросы

  1. Что такое внешнее и внутреннее трение?
  2. Какое трение называют трением покоя?
  3. что такое сухое и жидкое трение?
  4. Что такое максимальная сила трения покоя?
  5. Как определить значение коэффициента трения покоя?

Трения возникает при непосредственном соприкосновении тел, препятствуя их относительному движению, и всегда направлена вдоль поверхности соприкосновения.

Силы трения имеют электромагнитную природу, как и силы упругости. Трение между поверхностями двух твердых тел называют сухим трением. Трение между твердым телом и жидкой или газообразной средой называют вязким трением.

Различают трение покоя , трение скольжения и трения качения .

Трение покоя - возникает не только при скольжении одной поверхности по другой, но и при попытках вызвать это скольжение. Трение покоя удерживает от соскальзывания находящиеся на движущейся ленте транспортера грузы, удерживает вбитые в доску гвозди и т. д.

Силой трения покоя называют силу, препятствующую возникновению движения одного тела относительно другого, всегда направленную против силы, приложенной извне параллельно поверхности соприкосновения, стремящейся сдвинуть предмет с места.

Чем больше сила, стремящаяся сдвинуть тело с места, тем больше сила трения покоя. Однако, для любых двух соприкасающихся тел она имеет некоторое максимальное значение (F тр.п.) max , больше которого она быть не может, и которая не зависит от площади соприкосновения поверхностей:

(F тр.п.) max = μ п N,

где μ п - коэффициент трения покоя, N - сила реакции опоры.

Максимальная сила трения покоя зависит от материалов тел и от качества обработки соприкасающихся поверхностей.

Трение скольжения . приложим к телу силу, превышающую максимальную силу трения покоя - тело сдвинется с места и начнет двигаться. Трение покоя сменится трением скольжения.

Сила трения скольжения также пропорциональна силе нормального давления и силе реакции опоры:

F тр = μN.

Трение качения . Если тело не скользит по поверхности другого тела, а, подобно колесу, катится, то трение, возникающее в месте их контакта, называют трением качения. Когда колесо катится по полотну дороги, оно все время вдавливается в него, поэтому перед ним постоянно оказывается бугорок, которых необходимо преодолеть. Этим и обусловлено трение качения. Трение качения тем меньше, чем тверже дорога.

Сила трения качения также пропорциональна силе реакции опоры:

F тр.кач = μ кач N,

где μ кач - коэффициент трения качения.

Поскольку μ кач << μ , при одинаковых нагрузках сила трения качения намного меньше силы трения скольжения.

Причинами возникновения силы трения являются шероховатость поверхностей соприкасающихся тел и межмолекулярное притяжение в местах контакта трущихся тел. В первом случае поверхности, кажущиеся гладкими, на самом деле имеют микроскопические неровности, которые при скольжении зацепляются друг за друга и мешают движению. Во втором случае притяжение проявляется даже при хорошо отполированных поверхностях.

На движущееся в жидкости или газе твердое тело действует сила сопротивления среды , направленная против скорости тела относительно среды и тормозящая движение.

Сила сопротивления среды появляется только во время движения тела в этой среде. Здесь нет ничего подобного силе трения покоя. Наоборот, предметы в воде сдвигать намного легче, чем на твердой поверхности.

Сила трения скольжения - сила , возникающая между соприкасающимися телами при их относительном движении.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения. Так как никакое тело не является абсолютно ровным, сила трения не зависит от площади соприкосновения, и истинная площадь соприкосновения гораздо меньше наблюдаемой; кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.

Величина, характеризующая трущиеся поверхности, называется коэффициентом трения , и обозначается чаще всего латинской буквой k {\displaystyle k} или греческой буквой μ {\displaystyle \mu } . Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то k {\displaystyle k} можно считать постоянным. В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

F = k N {\displaystyle F=kN}

K {\displaystyle k} - коэффициент трения скольжения ,

N {\displaystyle N} - сила нормальной реакции опоры.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда в большей или меньшей степени происходит преобразование механического движения в другие формы движения материи - чаще всего в тепловую форму движения, и происходит нагревание взаимодействующих тел.

Энциклопедичный YouTube

    1 / 3

    ✪ Урок 67. Сила трения

    ✪ Сила трения

    ✪ Статика. Трение скольжения. Лекция (28)

    Субтитры

Типы трения скольжения

Если между телами отсутствует жидкая или газообразная прослойка (смазочный материал), то такое трение называется сухим . В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя .

По физике взаимодействия трение скольжения принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазочными материалами - очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения - наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазочного материала) различной толщины - как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и т. д.) - наиболее распространённый случай при трении скольжения.

Также можно классифицировать трение по его области. Силы трения, возникающие при относительном перемещении различных тел, называются силами внешнего трения. Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

Измерение

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики. Поэтому нет точной формулы для коэффициента трения. Его оценка производится на основе эмпирических данных: так как по первому закону Ньютона тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения, то для измерения действующей на тело силы трения достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.