Числовая последовательность xn называется. Предел числовой последовательности. Рассчитаем всё по каплям

Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

x1, х2, …, хn = {xn}

Общий элемент последовательности является функцией от n.

Таким образом последовательность может рассматриваться как функция.

Задать последовательность можно различными способами - главное, чтобы был указан способ получения любого члена последовательности.

Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …

{xn} = {sinn/2} или {xn} = 1; 0; 1; 0; …

Для последовательностей можно определить следующие операции:

Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …

Сложение (вычитание) последовательностей: {xn} {yn} = {xn yn}.

Произведение последовательностей: {xn}{yn} = {xnyn}.

Частное последовательностей: при {yn} 0.

Ограниченные и неограниченные последовательности.

Определение. Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство:

т.е. все члены последовательности принадлежат промежутку (-М; M).

Определение. Последовательность {xn}называется ограниченной сверху, если для любого n существует такое число М, что xn M.

Определение. Последовательность {xn}называется ограниченной снизу, если для любого n существует такое число М, что xn M

Пример. {xn} = n - ограничена снизу {1, 2, 3, … }.

Определение. Число а называется пределом последовательности {xn}, если для любого положительного >0 существует такой номер N, что для всех n > N выполняется условие: Это записывается: lim xn = a.

В этом случае говорят, что последовательность {xn}сходится к а при n.

Свойство: Если отбросить какое- либо число членов последовательности, то получаются новые последовательности, при этом если сходится одна из них, то сходится и другая.

Пример. Доказать, что предел последовательности lim .

Пусть при n > N верно, т.е. . Это верно при, таким образом, если за N взять целую часть от, то утверждение, приведенное выше, выполняется.

Пример. Показать, что при n последовательность 3, имеет пределом число 2.

Итого: {xn}= 2 + 1/n; 1/n = xn - 2

Очевидно, что существует такое число n, что, т.е. lim {xn} = 2.

Теорема. Последовательность не может иметь более одного предела.

Доказательство. Предположим, что последовательность {xn}имеет два предела a и b, не равные друг другу.

xn a; xn b; a b.

Тогда по определению существует такое число >0, что

Если функция определена на множестве натуральных чисел N, то такая функция называется бесконечной числовой последовательностью. Обычно числовые последовательность обозначают как(Xn), где n принадлежит множеству натуральных чисел N.

Числовая последовательность может быть задана формулой. Например, Xn=1/(2*n). Таким образом мы ставим в соответствие каждому натуральному числу n некоторый определенный элемент последовательности (Xn).

Если теперь последовательно брать n равными 1,2,3, …., мы получим последовательность (Xn): ½, ¼, 1/6, …, 1/(2*n), …

Виды последовательности

Последовательность может быть ограниченной или неограниченной, возрастающей или убывающей.

Последовательность (Xn) называет ограниченной, если существуют два числа m и M такие, что для любого n принадлежащего множеству натуральных чисел, будет выполняться равенство m<=Xn

Последовательность (Xn), не являющаяся ограниченной, называется неограниченной последовательностью.

возрастающей, если для всех натуральных n выполняется следующее равенство X(n+1) > Xn. Другими словами, каждый член последовательности, начиная со второго, должен быть больше предыдущего члена.

Последовательность (Xn) называется убывающей, если для всех натуральных n выполняется следующее равенство X(n+1) < Xn. Иначе говоря, каждый член последовательности, начиная со второго, должен быть меньше предыдущего члена.

Пример последовательности

Проверим, являются ли последовательности 1/n и (n-1)/n убывающими.

Если последовательность убывающая, то X(n+1) < Xn. Следовательно X(n+1) - Xn < 0.

X(n+1) - Xn = 1/(n+1) - 1/n = -1/(n*(n+1)) < 0. Значит последовательность 1/n убывающая.

(n-1)/n:

X(n+1) - Xn =n/(n+1) - (n-1)/n = 1/(n*(n+1)) > 0. Значит последовательность (n-1)/n возрастающая.

3. Предел числовой последовательности

3.1. Понятие числовой последовательности и функции натурального аргумента

Определение 3.1. Числовой последовательностью (в дальнейшем просто последовательностью) называется упорядоченное счетное множество чисел

{x1, x2, x3, ... }.

Обратите внимание на два момента.

1. В последовательности бесконечно много чисел. Если чисел конечное число – это не последовательность!

2. Все числа упорядочены, то есть расположены в определенном порядке.

В дальнейшем для последовательности часто будем использовать сокращенное обозначение {xn }.

Над последовательностями можно производить определенные операции. Рассмотрим некоторые из них.

1. Умножение последовательности на число.

Последовательность c ×{xn } – это последовательность с элементами {c × xn }, то есть

c ×{x1, x2, x3, ... }={c × x1, c × x2, c × x3 , ... }.

2. Сложение и вычитание последовательностей.

{xn }±{yn }={xn ± yn },

или, более подробно,

{x1, x2, x3, ... }±{y1, y2, y3, ... }={x1 ± y1, x2 ± y2, x3 ± y3, ... }.

3. Умножение последовательностей.

{xn }×{yn }={xn × yn }.

4. Деление последовательностей.

{xn }/{yn }={xn/yn }.

Естественно, предполагается, что в этом случае все yn ¹ 0.

Определение 3.2. Последовательность {xn } называется ограниченной сверху, если https://pandia.ru/text/78/243/images/image004_49.gif" width="71 height=20" height="20">.gif" width="53" height="25 src=">.Последовательность {xn} называется ограниченной, если она одновременно ограничена и сверху и снизу.

3.2. Предел последовательности. Бесконечно большая последовательность

Определение 3.3. Число a называется пределом последовательности {xn } при n стремящимся к бесконечности, если

https://pandia.ru/text/78/243/images/image007_38.gif" width="77" height="33 src=">.gif" width="93" height="33">, если .

Говорят, что , если .

Определение 3.4. Последовательность {xn } называется бесконечно большой, если (то есть, если ).

3.3. Бесконечно малая последовательность.

Определение 3.5. Последовательность {xn} называется бесконечно малой, если , то есть если .

Бесконечно малые последовательности имеют следующие свойства.

1. Сумма и разность бесконечно малых последовательностей есть также бесконечно малая последовательность.

2. Бесконечно малая последовательность ограничена.

3. Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

4. Если {xn } – бесконечно большая последовательность, то, начиная с некоторого N , определена последовательность {1/xn }, и она есть бесконечно малая последовательность. Наоборот, если {xn } – бесконечно малая последовательность и все xn отличны от нуля, то {1/xn } есть бесконечно большая последовательность.

3.4. Сходящиеся последовательности.

Определение 3.6. Если существует конечный предел https://pandia.ru/text/78/243/images/image017_29.gif" width="149" height="33">.

5. Если , то .

3.5. Предельный переход в неравенствах.

Теорема 3.1. Если, начиная с некоторого N , все xn ³ b , то .

Следствие. Если, начиная с некоторого N , все xn ³ yn , то .

Замечание . Заметьте, что если, начиная с некоторого N , все xn > b , то , то есть при предельном переходе строгое неравенство может перейти в нестрогое.

Теорема 3.2. («Теорема о двух милиционерах») Если, начиная с некоторого N , выполнены следующие свойства

1..gif" width="163" height="33 src=">,

то существует .

3.6. Предел монотонной последовательности.

Определение 3.7. Последовательность {xn } называется монотонно возрастающей, если для любого n xn+1 ³ xn .

Последовательность {xn } называется строго монотонно возрастающей, если для любого n xn+1 > xn .

xn ­.

Определение 3.8. Последовательность {xn } называется монотонно убывающей, если для любого n xn+1 £ xn .

Последовательность {xn } называется строго монотонно убывающей, если для любого n xn+1 < xn .

Оба этих случая объединяют символом xn ¯.

Теорема о существовании предела монотонной последовательности.

1. Если последовательность {xn } монотонно возрастает (убывает) и ограничена сверху (снизу), то у нее существует конечный предел, равный sup{xn } (inf{xn }).

2 Если последовательность {xn } монотонно возрастает (убывает), но сверху (снизу) не ограничена, то у нее существует предел, равный +¥ (-¥).

На основании этой теоремы доказывается, что существует так называемый замечательный предел

https://pandia.ru/text/78/243/images/image028_15.gif" width="176" height="28 src=">. Она называется подпоследовательностью последовательности {xn }.

Теорема 3.3. Если последовательность {xn } сходится и ее предел равен a , то любая ее подпоследовательность также сходится и имеет тот же самый предел.

Если {xn } – бесконечно большая последовательность, то любая ее подпоследовательность есть также бесконечно большая.

Лемма Больцано - Вейерштрасса.

1. Из любой ограниченной последовательности можно извлечь такую подпоследовательность, которая сходится к конечному пределу.

2. Из любой неограниченной последовательности можно извлечь бесконечно большую подпоследовательность.

На основании этой леммы доказывается один из основных результатов теории пределов – Признак сходимости Больцано-Коши.

Для того, чтобы у последовательности {xn } существовал конечный предел, необходимо и достаточно, чтобы

Последовательность, удовлетворяющая этому свойству, называется фундаментальной последовательностью, или последовательностью, сходящейся в себе.

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.