Новейшие тектонические движения и их роль в формировании современного рельефа. Связь с мотивационной сферой

При определении объема и интенсивности тренировочных нагрузок, обеспечивающих оптимальный эффект адаптации, возможно два пути. Первый -- интенсивный путь, заключающийся в дальнейшем возрастании суммарных объемов тренировочных нагрузок. На этом пути возможности дальнейшего спортивного роста для высококвалифицированных спортсменов к настоящему времени оказываются практически исчерпаны. Более перспективным с точки зрения дальнейшего прогресса в мировом спорте является второй вариант -- путь интенсификации тренировочной деятельности. На этом пути при сохранении уже достигнутых (почти предельных) объемов тренировочной нагрузки предлагается такое сочетание высокоинтенсивных, развивающих нагрузок с нагрузками поддерживающими, сохраняющими достигнутый уровень функционирования нужных систем, которое создает наилучшие условия для достижения спортивного успеха.

Имеющийся опыт подготовки сильнейших спортсменов показывает возможность ежегодного прироста общего объема тренировочной нагрузки на 20 %. У молодых спортсменов это увеличение возможно на 40 -- 50 % в зависимости от вида легкой атлетики и его индивидуальных особенностей адаптироваться к ней. Естественно, возрастает интенсивность упражнений, которая выражается в увеличении объема нагрузки, выполняемой с предель-ной и околопредельной скоростью в беге; в увеличении длины и высоты прыжков, дальности метаний, веса снарядов и штанги; в более энергичном, повышенном темпе и ритме специальных упражнений. Одним из показателей интенсивности спортивных нагрузок является рост количества соревнований.

Современные представления о соотношении объема и интенсивности тренировочных нагрузок в круглогодичном цикле предполагают так построить учебно-тренировочный процесс, чтобы, не противопоставляя объем интенсивности, периодически моделировать нагрузку и напряжение, характерные для состязаний. Круглогодичные применения специальной тренировки и основного вида (основная дистанция, основной снаряд, свой прыжок и т.д.) -- неотъемлемое звено в современной системе тренировки. Такая структура дает возможность расширить соревновательный календарь, сделав его круглогодичным. При этом следует предусмотреть обязательную вариативность нагрузок, основанную на законах адаптации, тогда высококвалифицированные спортсмены смогут показывать высокие результаты каждые 1,5 -- 2 месяца.

Органической частью любого упражнения, влияющего на нагрузку, является правильно организованный отдых. Рациональное чередование работы и отдыха лежит в основе всей спортивной подготовки и распространяется на повторное воздействие нагрузки в одном занятии тренировочного дня, на протяжении недели, месяца, года и лет.

Повторное применение тренировочных и соревновательных нагрузок органически связано с интервалами времени между ними и с восстановительными процессами. Число повторений, упражнений, характер и продолжительность интервалов отдыха зависят от задач, средств и методов подготовки, а также от особенностей видов легкой атлетики, уровня подготовленности спортсмена и внешних условий.

Между отдельными упражнениями и занятиями во всех случаях важно установить такие перерывы для отдыха, которые с учетом используемой величины нагрузки и характера выполняемых движений обеспечивают соответствующий тренировочный эффект. В зависимости от формы организации отдых бывает пассивным и активным. В перерывах между упражнениями, которые требуют точных движений и большого сосредоточения внимания, активный отдых дает хорошие результаты в восстановлении работоспособности. Например, во время занятий сложно-координационными видами легкой атлетики (барьерный бег, прыжки в высоту и прыжки с шестом, метание молота и копья) для отдыха применяют медленный бег, ходьбу или непродолжительные спортивные и подвижные игры. И наоборот, во время занятий циклическими видами можно предложить для отдыха кратковременное выполнение движений со сложной координацией.

Каждое новое повторение не должно проходить на фоне утомления от предыдущих действий. Продолжительность отдыха в этих случаях колеблется от 1 мин (в метаниях) до 3--4 мин (в прыжках с шестом). Что касается перерыва между занятиями, то на первом этапе обучения спортивной технике они должны проводиться ежедневно, а в дальнейшем -- 3--4 раза в неделю. Если перерыв составляет 48 часов, то это приводит к снижению уровня усвоенного материала занятия до 25 %, в первую очередь вследствие притупления кинестетической чувствительности.

По продолжительности отдых между нагрузками можно разделить на четыре вида: 1) полный (ординарный); 2) неполный (суперкомпенсаторный); 3) сокращенный (жесткий); 4) продолжительный (мягкий). Варьируя интервалами отдыха при одинаковом объеме (или интенсивности) нагрузки, можно добиться различного результата в развитии двигательных качеств. Например, в занятиях циклическими видами легкой атлетики неполный отдых в большей мере обеспечивает развитие выносливости, полный -- скорости, сокращенный -- скоростной выносливости, а продолжительный обеспечивает восстановление работоспособности после напряженной части занятий или после переутомления (перетренировки).

Количественные и качественные компоненты нагрузки органически взаимосвязаны. Но в зависимости от построения процесса подготовки спортсмена (задач, средств, методов, уровня нагрузок и т.д.) отношения между ними различны, соответственно различны адаптационные процессы. Качественные изменения (морфологические, физиологические, биохимические, психологические и биомеханические) обуславливают изменения количественной стороны в деятельности организма спортсмена. Важную роль в увеличении продолжительности действий упражнений является экономизация функций организма спортсменов, обеспечивающая выполнение той же работы при меньших затратах энергетических ресурсов.

Выполнение любого физического упражнения требует времени. И как бы оно ни было мало, это уже определенное количество работы, что составляет объем тренировочной или соревновательной нагрузки. А то количество нервно-мышечной работы, которая выполнена за единицу времени и связана с ее объемом, определяет интенсивность нагрузки. Объем и интенсивность в спорте неотделимы друг от друга. Отдельно существовать они могут лишь как понятия. В спортивной практике это две органически взаимо-связанные стороны любого выполняемого спортсменом физического упражнения. Так, например, длина дистанции и продолжительность бега -- количество тренировочной работы (объем нагрузки), а скорость передвижения -- ее интенсивность; выполненное количество бросков метателем -- объем специфической нагрузки, а результативность этих бросков -- ее интенсивность.

Довольно точно определяет уровень тренировочной нагрузки интегральный показатель сдвигов в организме -- частота сердечных сокращений (ЧСС). Для этого измеряют пульс во время выполнения упражнений, после него и в период отдыха. Сопоставляя эти показатели с интенсивностью нагрузки, с ее направленностью и учитывая время восстановления после нее, можно более объективно управлять учебно-тренировочным процессом.

Таблица 2 дает представление о том, как можно классифицировать нагрузки в спорте по направленности их воздействия, в основу которого положен учет путей энергообеспечения работы. При одинаковых условиях именно направленность нагрузки, определяющая меру участия в выполняемой работе различных органов и функций, указывает на степень их угнетения и продолжительность восстановления.

Таблица 2.

По величине нагрузку условно можно разделить на максимальную, большую, среднюю и малую. находится в пределах возможностей спортсмена. Ее критерии -- неспособность спортсмена продолжать выполнение предложенного задания. Пульс при этом достигает величины 180 и более ударов в минуту (уд/мин). Если усилием воли спортсмен постарается перейти эту границу, то нагрузка становится запредельной и может привести к перетренировке спортсмена.

по количеству упражнений и интенсивности движений составляет 70 -- 80 % от максимальной, т. е. дает возможность продолжать действие на фоне утомления. Показатели пульса здесь могут быть в пределах 150--175 уд/мин.

определяется количеством упражнений и ин-тенсивностью движений в пределах 40 -- 60% от максимальной, т.е. упражнение продолжается до появления чувства утомления. При этом показатели ЧСС доходят до 120--145 уд/мин.

составляет 20 -- 30 % от максимальной по количеству упражнений и интенсивности движений. Двигательное задание выполняется легко, свободно, без видимого напряжения, и пульс при этом не превышает 120 уд/мин.

По мере роста тренированности спортсмена нагрузка, которая вначале рассматривалась как максимальная, на последующих этапах становится большой или средней и т.д. Особенно это касается такого компонента нагрузки, как интенсивность. Чем выше интенсивность выполняемого упражнения, чем оно продолжительнее, тем больше затраты организма спортсмена, тем значительнее нагрузка на его психику. Надо учитывать и требования к таким качествам, как смелость, решительность, воля к победе и т.д. В принципе, чем выше интенсивность тренировочной работы, тем меньше ее объем, и наоборот. Уровень интенсивности обусловлен в первую очередь видом легкой атлетики. Там, где успех определяется максимальными усилиями (прыжки, метания, спринт), естественно, очень высок и уровень интенсивности специальной тренировочной работы; в других видах (бег на средние и длинные дистанции, спортивная ходьба) главное -- высокий средний уровень скорости передвижения.

С целью более эффективного выполнения спортсменом упражнений, с заданным тренировочным усилием, следует определять зоны интенсивности, как отношение заданной величины тренировочных или соревновательных напряжений к максимально возможным данным спортсмена. В таблице 3 представлена градация нагрузки по зонам интенсивности в скоростно-силовых видах легкой атлетики.

Таблица 3.


Зона 80 --90 % от максимума во всех видах легкой атлетики считается зоной развития. Применяя тренировочную нагрузку в зонах 90 -- 100 %, происходит воздействие на развитие быстроты, ее следует включать почти в каждое тренировочное занятие и строить таким образом, чтобы на протяжении каждого занятия применялась нагрузка во всех зонах интенсивности, с оптимальным ее соотношением. Тренировочная нагрузка в зонах 50 --80 % от максимума решает в основном задачи специальной разминки и восстановления, что способствует благоприятному протеканию всего тренировочного процесса.

Результат в легкой атлетике зависит от высокого уровня выносливости и диктует определенную избирательность тренировочных воздействий, которые обеспечиваются аэробными (с доступом кислорода), анаэробными (без доступа кислорода) и аэробно-анаэробными (смешанными) процессами организма спортсмена. В таблице 4 зоны интенсивности распределены по показателям ЧСС во время той или иной тренировочной работы при воспитании выносливости.

Таблица 4.


При использовании аэробного режима тренировочных воздействий пульс должен находиться в пределах 120 -- 160 уд/мин. При выполнении нагрузки в смешанном режиме частота пульса должна достигать 170--180 уд/мин. Анаэробный режим тренировки возможен при пульсе 190 и более ударов в минуту.

Очень важное значение в определении адекватности предложенных нагрузок имеет контроль за пульсом во время восстановления. Основная цель контроля пульса заключается в том, чтобы, определяя тренировочное напряжение, соблюдать главное требование тренировки -- избежать чрезмерного перенапряжения, предупредив случаи переутомления и перетренировок. Если пульс спортсмена после нагрузки не восстанавливается в течение определенного времени до нужного уровня (например, пульс остается свыше 120 уд/мин более 5 -- 6 мин после средней нагрузки), то это говорит о том, что нагрузка, вероятно, очень высока и тренировочная работа (количество, темп) должна быть снижена либо прекращена.

При скоростной тренировке время восстановления ЧСС до 120 уд/мин должно занимать 1 -- 4 мин между повторениями упражнений и 2 --5 мин между сериями до пульса 100--120 уд/мин. Развивая скоростную выносливость, следует ориентироваться на восстановление пульса до 120--140 уд/мин через 1-3 мин после выполнения работы, а между сериями пульс должен восстанавливаться до 100--120 уд/мин в течение 2 -- 5 мин. При восстановлении после стрессовой тренировки (контрольный бег, прикидка) пульс должен достигать 100 -- 120 уд/мин в течение 4--10 мин. Повторное выполнение такой нагрузки возможно через 10 -- 20 мин, если пульс в период восстановления достигает менее 100 уд/мин. Показателями для прекращения тренировочной работы следует считать пульс свыше 120 уд/мин после 5 -- 10 мин отдыха.

Уровни восстановления частоты сердечных сокращений несколько индивидуальны и могут обуславливаться возрастом, состоянием анаэробных функций, генетическим характером. Они могут быть между 108 --132 уд/мин. На процессы восстановления влияют также следующие моменты: спортсмен не в форме, слишком тяжелая тренировочная работа, предыдущая тренировочная нагрузка была слишком высокой, болезнь, утомление или переутомление. У большинства спортсменов уровень восстановления многих функций организма соответствует пульсу 120 уд/мин. Спортсмены с большим генетическим потенциалом могут восстанавливаться быстрее даже при высокой тренировочной нагрузке. При большом объеме работы с пониженной интенсивностью достаточно снизить показатели ЧСС до 120- 140 уд/мин во время отдыха, чтобы, частично восстановив энергетический потенциал, начать работу снова. При малом объеме работы с вышесредней интенсивностью достаточно в период отдыха достичь показателей ЧСС 120 уд/мин, чтобы возникла возможность в дальнейшем продолжать работу так же эффективно, как вначале. Когда выполняется «острая», ударная работа с высокой интенсивностью, в период восстановления (отдыха) ЧСС должна достигать 90--100 уд/мин, прежде чем повторить предложенную нагрузку.

Тектонические движения являются одним из важнейших факторов в развитии геологических процессов, изменяющих лик Земли. Они приводят к преобразованию земной коры, изменяют формы рельефа поверхности, очертания суши и моря, воздействуя тем самым на климат.

Тектонические движения влияют на вулканизм, на процессы осадконакопления и определяют размещение полезных ископаемых в земной коре.
Тектонические движения выражаются в виде медленных поднятий и опусканий, приводящих к трансгрессиям и регрессиям моря в виде общего смятия земной коры с образованием высоких

горных массивов и глубоких впадин, образованием складок, а также в форме разрушительных землетрясений, которые сопровождаются возникновением трещин со значительным смещением блоков коры по вертикали и горизонтали.
В зависимости от направления напряжения тектонические движения подразделяют на вертикальные (радиальные) и горизонтальные (тангенциальные). При анализе вертикальных движений различают восходящие (положительные) и нисходящие (отрицательные) движения. Этим движениям чаще соответствуют медленные, плавные поднятия или опускания, охватывающие территории континентов и океанических впадин или их частей. Это эпейрогенические движения (греч. "эпейрос" - материк).
Движения тангенциальные (по касательной к поверхности земной коры) связаны с определенными зонами и приводят к существенным деформациям земной коры. Это орогенические движения (греч. "орос" - гора).
Тектонические движения и возникающие при этом структуры земной коры изучают геотектоника и структурная геология.
Для восстановления тектонических движений прошедших эпох используют специальные методы, позволяющие воссоздать общую картину тектонических движений для определенной эпохи.
О характере современных тектонических движений мы судим, наблюдая современные процессы, которые наглядно проявляются в областях активных землетрясений и вулканизма: 1) современные вертикальные тектонические движения фиксируются путем повторного нивелирования; 2) новейшие движения, т.е. происходившие в неоген-четвертичное время, изучают с помощью геоморфологических методов, анализируя рельеф поверхности Земли, морфологию речных долин, расположение морских террас, мощность четвертичных отложений.
я,". Значительно труднее изучать тектонические движения прошлых геологических эпох. Методами изучения этих движений являются: 1) анализ стратиграфического разреза; 2) анализ литолого-палеогеографических карт; 3) анализ мощностей; 4) анализ перерывов и несогласий; 5) структур-цый анализ; 6) палеомагнитный анализ; 7) формационный анализ.

  1. Анализ стратиграфического разреза позволяет проследить тектонические движения не
    большого участка земной коры в течение длительного времени. Исходным материалом для анализа
    является стратиграфический разрез (колонка), который необходимо исследовать с позиций измене
    ния обстановки накопления пород в их стратиграфической последовательности.

    Изучая вещественный состав, структурные и текстурные особенности пород, заключенные в них окаменелости, удается выделить типы отложений, которые накапливаются на различных гипсометрических
    уровнях относительно уреза воды морского бассейна и соответственно охарактеризовать обстановку осадконакопления. Отрицательные тектонические движения в условиях стабильного выноса обломочного материала в бассейн приводят к углублению его дна и смене вверх по разрезу мелководных отложений более глубоководными. Наоборот, положительные тектонические движения приводят к обмелению бассейна и смене по разрезу глубоководных отложений мелководными, наземными и далее размывом ранее накопившихся отложений. Отрицательные тектонические движения способствуют развитию морских трансгрессий, а положительные вызывают регрессию.
    2) Литолого-палеогеографический анализ. Анализ литолого-палеогеографических карт позволяет судить о направленности движений и распределении прогибов и поднятий на площади. Обычно
    области аккумуляции отложений соответствует отрицательная структура, области денудации - положи
    тельная. В связи с дифференцированностью движений на фоне крупной отрицательной структуры могут выделяться участки относительных поднятий с морскими мелководными отложениями среди более глубоководных. Такой участок представляет собой подводное поднятие - отмель и может соответствовать растущей антиклинальной структуре. Участок распространения относительно глубоководных
    отложений среди мелководных должен отвечать впадине на дне бассейна.

    Обычно характер тектонических движений более отчетливо выявляется при анализе литолого-палеогеографических карт, составленных для нескольких последовательных отрезков времени.
    3) Анализ мощностей. На участках ускоренного прогибания накапливаются осадки большей
    мощности, на участках замедленного прогибания - меньшей мощности, в областях воздымания -
    мощности равны нулю.

    Данные о мощностях одновозрастных отложений наносят на карты; точки равных мощностей соединяют линиями - изопахитами (рис. 23). По картам с изопахитами можно судить о распределении участков относительных прогибов и поднятий. Однако анализ мощностей необходимо совмещать с анализом фациаль-
    Рис. 23. Карта равных мощностей одновозрастной песчано-глинистой толщи (изолинии мощностей намечают положение прогиба, формировавшегося во время осадконакопления): / - точка замера и мощность (в м); 2 - изолинии мощностей (изопахиты). (Заимствовано у Г.И.Немкова и др., 1986)
    ной обстановки накопления осадка, т.к. он применим только для определенных условий осадконакопления, когда скорость прогибания ложа компенсируется скоростью накопления на нем
    осадков. В случае декомпенсированного разреза в течение огромных промежутков времени может
    накопиться незначительный по мощности слой осадка.


    4) Анализ перерывов и несогласий. Положительные тектонические движения в стратиграфическом разрезе выражаются сменой относительно глубоководных отложений мелководными,
    мелководных - прибрежными и континентальными. В таком случае, если эти движения привели к
    подъему накопившихся осадков выше уровня моря, начинается их размыв. При последующем погружении новая серия осадков ложится на размытую поверхность, которая называется поверхностью перерыва или поверхностью несогласия. Эти поверхности фиксируются выпадением из нормальной последовательности тех или иных стратиграфических подразделений, присутствующих
    там, где положительные движения не проявлялись. Если отложения выше и ниже поверхности,
    фиксирующей перерыв в осадконакоплении, залегают с одинаковыми углами наклона (стратиграфическое несогласие), можно говорить о медленных положительных движениях, охвативших
    большие площади. Если наблюдаются резко отличные углы наклона (угловое несогласие), то ранее накопившиеся осадки к моменту нового погружения и осадконакопления испытали складкообразование, могли быть нарушены разрывами (рис. 24). Глубина размыва подстилающей толщи и
    продолжительность перерыва в осадконакоплении свидетельствуют об амплитудах
    Рис. 24. Стратиграфическое (а) и угловое (б) несогласия Последовательность событий: а - накопление осадков нижней пачки, поднятие, размыв кровли нижней пачки, погружение, накопление осадков верхней пачки; б - накопление осадков нижних пачек, поднятие, складкообразование и перемещение блоков по разлому, размыв, накопление осадков вевхней пачки (заимствовано у Г.И.Немкова и др., 1986)
    тектонических движений, приведших к несогласию между толщами пород. Толщи пород, отделенные от подстилающих и покрывающих отложений поверхностями угловых несогласий, называются структурными этажами. Каждый структурный этаж отвечает естественному историко-тектоническому этапу развития территории, который начался трансгрессией и осадконакоплением во время отрицательных движений и завершился подъемом территории и складчатостью. Каждый структурный этаж характеризуется специфичными формами залегания слоев.
    5) Структурный анализ имеет важное значение при изучении горизонтальных движений,
    так как позволяет качественно и количественно оценить величину горизонтальных движений во


    Рис. 25. Слой, смятый при боковом сжатии д - длина крыла складки, ш - ширина складки, а -угол складки (заимствовано у Г.И.Немкова и др., 1986)
    время деформации слоев. Если мысленно распрямить слой, смятый в складки, образовавшиеся при боковом сжатии, протяженность такого выпрямленного слоя будет соответствовать первоначальной ширине прогиба до момента деформации слоя. Разность между суммой длины крыльев складок и суммой ширины тех же складок составит величину горизонтального сжатия слоя (рис. 25). Пользуясь графическим способом или геометрическими формулами, можно оценить амплитуду горизонтальных движений, приведших к образованию складок. Например, по рис. 25 можно представить, что, если средние углы складок равны 60°, горизонтальное сокращение поверхности было двукратным.
    6) Палеомагнитный анализ. Способность горных пород намагничиваться во время своего
    образования в соответствии с направлением геомагнитного поля и сохранять эту намагниченность
    позволяет не только создать палеомагнитную геохронологическую шкалу, но и использовать данные палеомагнитного анализа для выявления горизонтальных тектонических движений. Определив среднее направление намагниченности пород определенного возраста, взятых из какого-либо
    пункта на поверхности Земли, можно рассчитать положение магнитного полюса того времени в


    координатах. Исследуя породы в их стратиграфической последовательности, по координатам вычерчивается траектория относительного перемещения полюса за время, соответствующее изученному интервалу стратиграфического разреза. Проделав такое же исследование по образцам, взятым из другого пункта, вычерчивается траектория перемещения полюса относительно пункта за тот же период времени.
    Рис. 26. Траектория движения Северного полюса относительно Европы и Северной Америки за последние 400 млн. лет (заимствовано у Г.И.Немкова и др., 1986)
    Если обе траектории совпадают по форме, то обе точки сохранили постоянное положение относительно полюсов. Если траектории не совпадают, то обе точки по-разному изменили свое положение относительно полюса. Так, например, траектории движения Северного полюса, рассчитанные для территории Северной Америки и для Европы за последние 400 млн. лет, существенно отличны (рис. 26). Это позволяет сделать вывод о горизонтальных перемещениях континентов в указанное время.
    7) Формационный анализ является методом исследования строения и истории развития
    земной коры на основе изучения пространственных взаимоотношений ассоциаций горных пород -
    геологических формаций.
    Геологическая формация представляет вещественную категорию, занимающую определенное положение в иерархии вещества земной коры: химический элемент - минерал - горная порода -геологическая формация - формационный комплекс - оболочка земной коры, -к Под формациями понимается совокупность фаций, которые образовались на более или менее значительном участке земной поверхности при определенных тектонических и климатических условиях и отличаются от других особенностями состава и строения. Отдельные фации могут быть образованы на различных участках земной поверхности. Однако их устойчивые и длительные сочетания, которые позволяют сгруппировать их в формации, возникают только в строго определенных тектонических и климатических условиях. По другому определению, геологической формацией можно называть закономерные ассоциации горных пород, связанные единством вещественного состава и строения, обусловленные общностью их происхождения (или сонахождения).
    Термин "формация" был введен известным немецким геологом А.Г.Вернером еще в XVIII в. Долгое время до начала XX в. его употребляли в качестве стратиграфической категории, как и предложил автор. До сих пор в США для обозначения стратиграфических единиц употребляется термин "формация". В нашей стране формационный анализ нашел широкое применение в связи с тектоническим районированием и прогнозом полезных ископаемых. Заслуга в его развитии принадлежит многим русским ученым, в частности Н.С.Шатскому, Н.П.Хераскову, В.Е.Хаину, В.И.Попову, Н.Б.Вассоевичу, Л.Б.Рухину и другим исследователям.
    Различают три типа формаций: осадочные, магматические и метаморфические. При изучения формаций выделяют главные (обязательные) и второстепенные (необязательные) члены ассоциации. Главные члены ассоциации характеризуют определенную формацию, т.е. устойчивую ассоциацию, повторяющуюся в пространстве и во времени. По названию главных членов ассоциации дается название формации. Набор второстепенных членов подвержен существенным изменениям. В зависимости от вещественного состава типы формаций делятся на группы. Например, среди осадочных формаций можно выделить группы глинисто-сланцевых, известняковых, сульфатно-галогенных, кремнистых, мелкообломочно-кварцевых, мелкообломочных полимиктовых и др.; среди вулканогенных - группы базальтово-диабазовых (трапповых), липарито-дацитовых, андезитовых формаций и др.
    Главными факторами, определяющими формирование устойчивых ассоциаций осадочных горных пород, являются тектонический режим и климат, а магматических и метаморфических пород - тектонический режим и термодинамическая обстановка.
    Основными признаками осадочных формаций являются: 1) набор слагающих их ассоциаций главных горных пород, которые совместно отвечают фациям или генетическим типам; 2) характер переслаивания этих пород в вертикальном разрезе; ритмичное строение; 3) форма тела формации и его мощность; 4) наличие в ней каких-то характерных аутигенных минералов, своеобразных горных пород или руд; 5) преобладающая окраска, в той или иной степени несущая генетическую информацию; 6) степень диагенетических или метаморфических изменений.
    Названия осадочным и осадочно-вулканогенным формациям обычно даются по преобладающим литологическим компонентам (песчано-глинистая, известняковая, доломитовая, эвапоритовая) с одновременным указанием физико-географической обстановки образования (морская, континентальная, лимническая), нередко за многими формациями закрепились названия по присутствию акцессорных минералов (глауконитовая) или полезных ископаемых (угленосная, бокситоносная).
    Главными факторами, определяющими облик осадочных формаций, являются следующие: 1) характер тектонического режима в областях размыва и накопления; 2) климатические условия; 3) интенсивность вулканизма. От многократного сочетания перечисленных условий и быстрой изменчивости в пространстве и во времени создается чередование генетических типов пород, входящих в состав формаций. От этих же факторов зависит и общее распределение формаций на земной поверхности.
    В зависимости от тектонического режима выделяются три класса формаций: платформенный, геосинклинальный, орогенный. Большинство осадочных формаций могут служить надежны
    ми индикаторами тектонического режима. Например, формации мергелисто-меловые, каолиновых
    глин, кварцевых песчаников, глинисто-опоковая свидетельствуют о платформенном режиме осад-
    конакопления, а осадочные флишевые, кремнисто-карбонатные, кремнисто-сланцевые, яшмовые
    формации являются индикаторами геосинклинального режима. Широкое развитие осадочных гру-
    бообломочных формаций указывает на орогенный режим.
    Еще более определенное заключение о тектонических режимах можно сделать на основе анализа магматических формаций, если иметь в виду, что ряд пород: основные - средние - кислые ~

    щелочные соответствуют последовательности развития магматических извержений при смене геосинклинального режима орогенным и далее платформенным.
    Площади распространения определенных формаций контролируются тектоническими структурами, развитием которых обусловлено пространственное ограничение формаций. Поэтому, изучая закономерности распространения формаций в пространстве, мы тем самым устанавливаем размещение тектонических структур во время образования формаций. Эволюция тектонического режима приводит к последовательной смене в разрезе геологических формаций. Располагая данными об условиях формирования комплексов горных пород, сменяющихся по вертикали, можно сделать вывод об изменении тектонического режима.
    Так, например, если мощная толща флишевых формаций с характерными тонкими, закономерно ритмично переслаивающимися пластами песчаников, алевролитов и аргиллитов, перекрыта толщей грубообломочных морских и континентальных отложений - молассами, делается вывод, что геосинклинальные условия сменились орогенными. Этот вывод основан на существующих представлениях о тектонических условиях накопления флишевых и молассовых формаций.
    Анализ формаций дает возможность классифицировать тектонические структуры, выделяя, их особые типы, например, типы прогибов. Повторяемость типичных формаций в пространственно разобщенных структурах позволяет наметить общую этапность в истории тектонического развития структур, сравнить наборы формаций близких по типу структур разного возраста и т.д.
    Особое направление в изучении и классификации осадочных формаций составило направление, основанное на учете содержания в них промышленных концентраций определенных видов полезных ископаемых. На этом основании выделяются угленосные, соленосные, фосфоритонос-ные, бокситоносные, железорудные, латеритные, нефтеносные и целый ряд других формаций.
    Последовательность при изучении и выделении формаций следующая. Вначале в разрезе производится выделение толщ пород, отличающихся по литологическому составу, разделенных четко выраженными поверхностями напластования, границами перерывов или размывов (стратиграфический перерыв и несогласия). Затем проводится изучение группы пород (ассоциации), входящих в состав выделенного естественного комплекса, т.е. парагенетический анализ. Одновременно определяются и изучаются цикличность строения формации или иные структурно-текстурные признаки. Далее выясняются фациальная природа каждого входящего в состав формации типа пород и их сочетание в разрезе, т.е. осуществляется фациальный анализ. На этом основании определяется генетический тип отложений, устанавливается физико-географическая (ландшафтная) обстановка формирования формации. В заключительной фазе формационного анализа определяются климатический и тектонический режимы времени и места формирования формаций. Таким образом проводятся палеоклиматический и формационно-тектонический анализы.
    Теоретическое значение изучения осадочных и осадочно-вулканогенных формаций состоит в возможности восстановления по ним древней тектонической, климатической и ландшафтной зональности. Практическое значение формационного анализа обусловливается приуроченностью к определенным формациям соответствующих видов полезных ископаемых.

5. Игнатенко И.В., Хавкина Н.В. Подбуры Крайнего Северо-Востока СССР // География и генезис почв

Магаданской области. - Владивосток: Изд-во ДВНЦ АН СССР. - С. 93-117.

6. Классификация и диагностика почв России / Л.Л. Шишов [и др.]. - Смоленск: Ойкумена, 2004. - 342 с.

7. Почвенно-географическое районирование СССР. - М.: Изд-во АН СССР, 1962. - 422 с.

8. Почвоведение / под ред. В.А. Ковды, Б.Г. Розанова. - Ч. 2. - М.: Высш. шк., 1988. - 367 с.

УДК 631.48 (571.61) Э.П. Синельников, Т.А. Чеканникова

СРАВНИТЕЛЬНАЯ ОЦЕНКА ИНТЕНСИВНОСТИ И НАПРАВЛЕННОСТИ ПРОЦЕССОВ ТРАНСФОРМАЦИИ ВЕЩЕСТВЕННОГО СОСТАВА ПРОФИЛЯ ОТБЕЛЕННЫХ ПОЧВ РАВНИННЫХ ТЕРРИТОРИЙ ПРИМОРСКОГО КРАЯ И ДЕРНОВО-ПОДЗОЛИСТЫХ КАРБОНАТНЫХ ПОЧВ ЮЖНОЙ ТАЙГИ

ЗАПАДНОЙ СИБИРИ

В статье приведен детальный анализ процессов трансформации вещественного состава почв Южной Сибири и Приморья. Существенных различий по интенсивности и направленности ведущих элементарных почвенных процессов не выявлено.

Ключевые слова: Приморский край, Западная Сибирь, дерново-подзолистые почвы, карбонатные почвы, сравнительная оценка.

E.P.Sinelnikov, T.A.Chekannikova

COMPARATIVE ASSESSMENT OF PROFILE MATERIAL STRUCTURE TRANSFORMATION PROCESSES INTENSITY AND ORIENTATION ON THE FLAT TERRITORIES BLEACHED SOILS OF PRIMORSKY KRAI AND CESPITOSE-PODZOLIC CARBONATE SOILS IN THE WESTERN SIBERIA

The detailed analysis of soils material structure transformation processes in the southern Siberia and Primorsky Krai is conducted. Essential distinctions in the intensity and orientation of leading elementary soil processes are not revealed.

Key words: Primorsky Krai, Western Siberia, cespitose-podzolic soils, carbonate soils, comparative assessment.

Оценка степени дифференциации вещественного состава профиля почв в результате действия разнообразных элементарных почвенных процессов уже давно стала составной частью исследований генетических свойств почвенного покрова любого региона. Основу таких анализов заложили работы А.А. Роде ,

Особенности дифференциации вещественного состава почв южной части российского Дальнего Востока, в сравнении с близкими по генетическим показателям почвами других регионов, исследовались

C.В. Зонном , Л.П. Рубцовой и Е.Н. Рудневой , Г.И. Ивановым и др. Результатом этих исследований, основанных главным образом на анализе генетических показателей, явилось утверждение о преобладании здесь процессов лессивирования, отбеливания, псевдооподзоливания и полного исключения процессов оподзоливания.

В настоящем сообщении нами сделана попытка сравнить направленность и интенсивность процессов трансформации вещественного состава профиля отбеленных почв равнинной части Приморья с дерновоподзолистыми остаточно-карбонатными почвами Западной Сибири на основе количественных показателей баланса основных элементов вещественного состава.

Выбор почв Сибири в качестве сравнительного варианта не случаен и обусловлен следующими условиями. Во-первых, остаточно-карбонатные дерново-подзолистые почвы Сибири сформировались на покровных суглинках с повышенным содержанием глинистых частиц и обменных оснований, что исключает принципиальные различия уже на первом этапе анализа. Во-вторых - это наличие обстоятельных монографических данных и балансовых расчетов трансформации вещественного состава, опубликованных И.М. Гаджиевым , что значительно упрощает выполнение поставленной нами задачи.

Для сравнительного анализа нами использованы данные И.М. Гаджиева по разрезам 6-73 (дерновосильноподзолистые) и 9-73 (дерново-слабоподзолистые почвы). В качестве отбеленных вариантов почв

Приморья нами взяты буро-отбеленные и луговые глеево-слабоотбеленные почвы. Исходные данные указанных почв, а также оценка трансформации их вещественного состава в зависимости от геоморфологического расположения и степени отбеленности представлены нами в предыдущем сообщении . Основные показатели дерново-подзолистых почв представлены в таблице 1.

Анализ данных таблицы 1 настоящего сообщения и таблицы 1 предыдущего показывает на два существенных момента: во-первых, это довольно близкий состав почвообразующих пород, и во-вторых -явно выраженное деление профилей всех анализируемых разрезов на аккумулятивно-элювиальную и иллювиальные части. Так, по данным Э.П. Синельникова , содержание глинистых частиц в почвообразующей породе равнин Приморья составляет 73-75%, для южной тайги Западной Сибири 57-62%. Количество илистой фракции соответственно составило 40-45 и 35-36 процентов. Суммарная величина обменных катионов Са и Мд в озерно-аллювиальных отложениях Приморья 22-26 мэкв на 100 грамм почвы, в покровных суглинках Сибири 33-34, величина актуальной кислотности соответственно 5,9-6,3 и 7,1-7,5 ед. рН. Остаточная карбонатность пород проявляется в свойствах материнских пород анализируемых разрезов Сибири, но ее влияние на физико-химическое состояние верхних горизонтов минимальное, особенно средне- и сильноподзолистых почв.

Исследуя проблему дифференциации профиля дерново-подзолистых почв, И.М. Гаджиев отмечает четкое выделение элювиальной части, обедненной полуторными окислами и обогащенной кремнеземом, и иллювиальной, в некоторой степени обогащенной основными компонентами вещественного состава, в сравнении с вышележащими горизонтами. В то же время заметного накопления окислов здесь по отношению к исходной породе не обнаружено и даже снижено. Аналогичная закономерность проявляется и в отбеленных почвах Приморья.

Ссылаясь на работы А.А. Роде, И.М. Гаджиев считает, что данный факт подтверждает закономерность поведения вещества при подзолообразовательном процессе, сущность которого «... состоит в тотальном разрушении минеральной основы почв и транзитном сбросе получаемых при этом продуктов далеко за пределы почвенного профиля» . В частности, согласно балансовым расчетам И.М. Гаджиева, общий объем обезиливания суммарной мощности почвенных горизонтов относительно материнской породы составляет от 42-44% в сильноподзолистой почве до 1,5-2 в слабоподзолистой.

Таблица 1

Основные показатели вещественного состава остаточно-карбонатных дерново-подзолистых почв Западной Сибири (рассчитано по данным И.М. Гаджиева)

Г оризонт Расчетная мощность, см Содержание частиц <0,001 мм Плотность, г/см3 Валовый состав почвы в целом, % Состав крупнозема, % Состав ила, %

2 о со о од с со о од О) 1_1_ со о 2 2 о со со о 2 а) о_ со о сч < 2 о со о од < со о од О) 1_1_ со о /2 о со со о 2 а) о_ со о од < 2 о СО со о од < со о од О) 1_1_ со о £ /2 о со со о 2 а) о_ со о од <

Разрез 6-73 Дерново-сильноподзолистая

А1 4 23 1,10 74,7 14,2 4,3 7,5 5,1 79,3 11,1 3,1 10,3 5,7 58,2 25,1 8,5 3,2 4,6

А2 20 23 1,32 73,8 14,3 4,2 7,4 5,4 78,6 11,1 2,7 10,4 6,4 56,8 25,3 9,4 3,1 4,2

Bh 18 40 1,43 70,0 16,7 5,5 5,9 4,8 74,4 14,3 4,0 7,5 5,6 55,8 27,9 12,7 2,6 3,4

B1 31 45 1,55 67,4 17,3 5,6 5,6 4,8 76,6 10,9 1,3 11,3 11,5 55,2 26,5 10,8 2,8 3,8

B2 27 40 1,53 68,4 18,3 6,2 5,2 4,6 77,0 11,8 2,7 9,7 6,7 55,5 26,7 10,8 2,9 3,8

ВС 24 38 1,52 68,4 16,7 5,6 5,7 4,6 76,3 11,1 2,6 10,2 6,8 55,7 25,9 10,9 2,9 3,8

С 10 36 1,52 68,4 16,2 6,3 5,7 4,5 75,7 10,8 1,7 10,0 10,4 55,9 25,7 11,3 2,9 3,5

А1 6 23 0,89 72,0 14,6 4,3 7,0 5,0 76,1 12,0 2,6 9,7 7,3 56,6 24,2 10,8 3,1 3,5

А2 8 29 1,20 72,1 14,4 4,6 7,0 4,9 78,2 10,4 2,2 11,2 7,3 56,4 24,5 10,6 3,1 3,6

Bh 30 40 1,35 69,0 15,3 5,7 6,2 4,3 77,4 8,7 2,1 8,1 11,3 55,3 26,1 11,6 2,8 3,5

B1 22 42 1,46 67,5 17,6 6,2 5,3 4,4 75,4 11,1 2,6 10,0 6,8 55,2 27,6 11,9 2,7 3,6

B2 18 42 1,45 67,7 16,8 5,6 5,7 4,7 76,3 9,8 1,5 12,3 10,6 54,8 27,3 11,8 2,7 3,7

ВС 38 41 1,46 67,4 16,9 5,6 5,6 4,7 75,2 11,0 2,1 10,5 8,3 54,7 26,5 11,4 2,7 3,6

С 10 35 1,48 67,4 16,0 5,5 5,9 4,1 74,2 11,5 2,7 8,9 8,6 55,2 25,4 10,7 2,9 3,7

Аналогичные расчеты, выполненные автором для черноземных почв и серых лесных, показали на полную тождественность направленности и скорости перестройки вещественного состава в сопоставлении с автоморфными почвами южно-таежной подзоны Сибири. При этом «. чернозем выщелоченный по составу ила, железа и алюминия из почвенных горизонтов по сравнению с исходной породой практически повторяет дерново-слабоподзолистую почву, темно-серая лесная оподзоленная почва близка к дерновосреднеподзолистой, а светло-серая лесная оподзоленная по этим показателям приближается к дерновосильноподзолистой почве» . Такое положение дел позволило автору сделать вывод, «.что формирование современных дерново-подзолистых почв происходит на уже предварительно хорошо дифференцированной минеральной основе, в общих чертах глубоко элювиально-преобразованной по сравнению с исходной породой, поэтому элювиально-иллювиальную дифференциацию профиля вряд ли уместно относить только за счет подзолообразовательного процесса в современном его понимании».

Наиболее приближенным по составу к исходной породе является горизонт С слабоподзолистой почвы, и в перерасчете на анализируемую мощность современного профиля почвы в нем содержалось 4537 тонн ила, 2176 тонн алюминия и 790 тонн железа на гектар. В близком по мощности профиле сильноподзолистой почвы аналогичные показатели составили: 5240, 2585 и 1162 тонны на гектар. То есть, только за счет повышенной миграции веществ в профиле сильноподзолистой почвы, равном по мощности исходной материнской породе, должно было быть вынесено 884 тонн на гектар ила, 409 тонн алюминия и 372 тонны железа. Если перевести данные показатели на кубический метр, то получим соответственно: 88,4; 40,9 и 37,2 кг. Реально профиль сильноподзолистой почвы, по данным И.М. Гаджиева, относительно материнской породы потерял 15,7 кг кремнезема, 19,8 кг алюминия и 11 кг железа на м3.

Если считать потери анализируемых веществ в профиле дерново-сильноподзолистой почвы относительно исходного содержания веществ в породе слабоподзолистой почвы, то получим, что потери ила составят 135 кг/м3, а накопление алюминия, напротив, составит 7,5 кг и железа 3,4 кг.

Чтобы понять суть происходящих процессов трансформации вещественного состава дерновоподзолистых почв Западной Сибири и сопоставить результаты с отбеленными почвами равнин Приморья, мы разложили, используя методику В.А. Таргульяна , валовое содержание основных окислов на долю, приходящую на крупнозем (>0,001 мм) и илистую фракцию. Полученные результаты для дерновоподзолистых почв Сибири представлены в таблице 2 (соответствующие показатели для отбеленных почв Приморья приведены в .

Весь профиль исследуемых почв довольно отчетливо делится на четыре зоны: аккумулятивная (гор. А1), элювиальная (гор. А2 и Bh), иллювиальная (гор. В1, В2 и ВС) и материнская порода (гор. С), относительно которой выполнены все расчеты таблицы 2. Такое разделение позволяет более контрастно оценить суть и направленность процессов трансформации вещественного состава в пределах конкретного профиля почвы и суммарно оценить баланс вещественного состава.

Таблица 2

Основные показатели баланса вещественного состава остаточно-карбонатных дерново-подзолистых

почв относительно почвообразующей породы, кг/м3

Гори- Механические элементы Содержание в крупноземе Содержание в илистой фракции

Крупнозем Ил SiO2 AІ2Oз Fe2Oз SiO2 AІ2Oз Fe2Oз

1 2 ± 1 2 ± 1 2 ± 1 2 ± 1 2 ± 1 2 ± 1 2 ± 1 2 ±

Разрез 6-73 Дерново-сил ьноподзолистая

А1 37 34 -3 23 10 -13 28 27 -1 4 4 0 0,6 1,0 +0,4 13 6 -7 6 2 -4 2,5 0,8 -1,7

А2 187 201 +14 117 63 -54 142 158 +16 20 22 +2 3,2 5,4 +2,2 65 36 -29 30 16 -14 12,6 5,9 -6,7

Bh 168 200 +32 105 58 -47 127 149 +22 18 28 +10 2,9 8,0 +5,1 58 32 -26 27 16 -11 11,3 6,6 -4,7

B1 290 287 -3 181 197 +12 219 220 +1 31 31 0 5,0 9,7 -1,3 101 107 +6 47 54 +7 19,5 24,5 +5,0

B2 253 225 -27 157 187 +30 191 173 -18 27 27 0 4,3 6,1 +1,8 88 104 +16 41 50 +9 17,0 20,0 +3,0

ВС 225 217 -8 140 148 +8 170 165 -5 24 24 0 3,8 5,6 +1,8 78 82 +4 36 38 +2 15,1 15,9 +0,8

Разрез 9-73 Дерново-слабоподзолистая

А1 57 41 -16 32 12 -20 42 31 -11 6 5 -1 1,6 1,1 -0,5 18 7 -11 8 3 -5 3,4 1,3 -2,1

А2 80 68 -12 42 28 -14 56 53 -3 9 7 -2 2,1 1,5 -0,6 24 16 -8 11 7 -4 4,6 2,9 -1,7

Bh 285 242 -43 159 163 +4 211 187 -24 33 21 -12 7,8 5,1 -2,7 88 90 +2 41 43 +2 17,1 18,9 +1,8

B1 209 185 -24 117 136 +19 155 139 -15 24 20 -4 5,7 4,8 -0,9 65 75 +10 30 38 +8 12,5 16,2 +3,7

B2 171 152 -19 96 109 +13 127 116 -11 20 15 -5 4,7 2,3 -2,4 53 59 +6 25 30 +5 10,3 12,8 +2,5

ВС 361 329 -32 202 225 +23 267 248 -19 41 36 -5 9,9 6,9 -3,0 112 123 +11 52 60 +8 21,7 25,4 +3,7

Примечание. 1 - исходные величины; 2 - содержание в настоящее время.

Из данных таблицы 2 видно, что направленность и интенсивность процессов трансформации вещественного состава «родственных» пар почв далеко не однозначны. В элювиальной зоне профиля сильноподзолистой почвы идет накопление фракций крупнозема относительно материнской породы (+46 кг/м3) и вынос ила (-101 кг). В иллювиальной зоне этих почв, напротив, происходит вынос крупнозема (-38 кг) и накопление ила (+50 кг). Суммарный баланс крупнозема в целом по профилю явно нейтрален (+5 кг), учитывая некоторую условность составляющих расчетные показатели. Суммарный баланс ила отрицателен -64 кг.

В дерново-слабоподзолистой почве во всех зонах профиля наблюдается уменьшение доли крупнозема относительно материнской породы, суммарно -146 кг. Накопление илистой фракции (55 кг) характерно только для иллювиальной части, причем по этому показателю горизонты В как сильноподзолистой, так и слабоподзолистой почвы практически близки, 50-55 кг/м3, но суммарное накопление ила в горизонтах В преобладает над выносом его из элювиально-аккумулятивной зоны (+25 кг).

Таким образом, в почвах различной степени подзолистости характер перераспределения механических элементов различен как по направленности, так и по количественным показателям. В сильноподзолистой почве идет более мощный вынос ила из поверхностных горизонтов за пределы почвенного профиля, а в слабоподзолистой, напротив, наблюдается слабый вынос ила при интенсивном выносе крупнозема практически из всей толщи почвенного профиля.

В буро-отбеленной почве Приморья (БО) направленность процессов перераспределения механических элементов однотипна с сильноподзолистой почвой, но интенсивность (контрастность) существенно выше. Так, накопление крупнозема в гор. А2 составило 100 кг, а вынос из иллювиальной толщи 183, что суммарно составляет -81 кг, при +5 в сильноподзолистой почве. Вынос ила активно идет по всей элювиальноаккумулятивной части профиля (-167 кг), а накопление его в горизонтах В только 104 кг. Суммарный баланс ила в БО почве составляет -63 кг, что практически идентично сильноподзолистой почве. В луговой глеевой слабоотбеленной почве (ЛГ отб) направленность процессов перераспределения механических элементов практически однотипна с БО почвой, но интенсивность существенно ниже, хотя суммарный баланс элементов довольно близок и даже превосходит показатель более отбеленной почвы.

Следовательно, интенсивность процесса отбеливания реально не коррелирует с характером перераспределения механических элементов, хотя буро-отбеленные почвы значительно старше и прошли в прошлом стадию луговых глеевых почв.

Анализируя суммарное и индивидуальное участие основных окислов ^Ю2, AІ2Oз, Fe2Oз) в вещественном составе крупнозема и ила отдельных зон почвенного профиля разрезов относительно почвообразующей породы, можно выявить следующие особенности и закономерности.

В горизонте А1 сильноподзолистой почвы при выносе 3 кг крупнозема сумма окислов составляет 1,6 кг; в элювиальной части профиля сумма основных окислов на 11 кг превышает массу крупнозема, а в иллювиальной части, напротив, масса крупнозема на 14 кг больше суммы окислов.

В перегнойном горизонте слабоподзолистой почвы доля крупнозема на 4 кг больше суммарного содержания окислов, в элювиальной зоне это превышение составило 10, а в иллювиальной части - 20 кг.

В горизонтах А1 и А2 отбелов Приморья масса крупнозема практически совпадает с массой основных окислов, а в горизонтах В превышает почти на 50 кг. В элювиально-аккумулятивной части профиля луговой глеевой слабоотбеленной почвы закономерность сохраняется, то есть масса крупнозема совпадает с массой окислов, а в иллювиальных горизонтах В на 20 кг больше.

В оценке анализируемых величин перераспределение механических элементов и основных окислов вещественного состава почвы большую значимость имеет мощность расчетного слоя, поэтому для реального сопоставления направленности и интенсивности процессов полученные значения баланса следует привести к равному по мощности слою. С учетом малой мощности гумусового горизонта целинных подзолистых почв расчетный слой не может быть более 5 см. Результаты таких пересчетов даны в таблице 3.

Результаты пересчета на равную мощность анализируемого слоя почвы явно показывают на принципиальную разницу перераспределения вещественного состава дерново-подзолистых почв Сибири и отбеленных почв Приморья в зависимости от степени выраженности основных процессов почвообразования.

Таблица 3

Баланс механических элементов и основных окислов (кг) в расчетном слое 5х100х100 см

относительно почвообразующей породы

Слой, горизонты Механические элементы Крупнозем (> 0,001) Илистая фракция (<0,001)

>0,001 <0,001 SiO2 AІ2Oз Fe2Oз Ба- ланс SiO2 AІ2Oз Fe2Oз Баланс

Дерново-сильноподзолистая почва

А1 -3,7 -16,2 -1,2 0 +0,5 -0,7 -8,7 -5,0 -2,1 -5,8

А2 +В +6,0 -13,3 +5,0 +1,6 +0,9 +7,5 -7,1 -3,2 -1,5 -11,9

В -2,3, +3,0 -1,3 0 +0,1 -1,2 +1,6 +1,1 +0,5 +3,2

Дерново-слабоподзолистая почва

А1 -13,3 -16,6 -9,1 -0,8 -0,4 -10,3 -9,1 -4,1 -1,7 -14,9

А2 +В -7,1 -1,3 -3,5 -1,8 -0,4 -5,7 +0,8 -0,3 0 +0,5

В -3,0 +2,2 -1,8 -0,6 -0,3 -2,7 +1,1 +0,8 +0,4 +2,3

Буро-отбеленная почва

А1 +0,6 -22,2 0 +0,9 0 +0,9 -11,4 -8,1 -2,2 -21,7

А2 -9,9 -17,7 +5,4 +2,7 +0,9 +1,9 -8,9 -7,2 -1,8 -17,9

В -9,1 +5,2 -6,4 +0,1 -0,1 -6,4 -2,5 -0,5 +0,5 +2,7

Луговая глеевая слабоотбеленная почва

А1 -1,1 -19,0 -0,8 0 +0,3 -0,5 -0,1 -5,9 -2,2 -18,1

А2 +0,5 -13,0 +0,9 +1,0 +0,2 +2,1 -7,0 -3,7 -1,8 -12,4

В -6,6 +2,5 -5,6 +0,4 +0,2 -5,0 +1,9 +0,3 +0,5 +2,3

В частности, только в слабоподзолистых почвах наблюдается максимальный вынос крупнозема по всему профилю относительно исходной породы. При этом максимум приходится на гумусовый горизонт. Накопление крупнозема в элювиальной части профиля отбеленных почв в 2-3 раза выше, чем в сильноподзолистой почве.

Во всех анализируемых разрезах идет интенсивный вынос ила из гумусового горизонта: от 16 кг в подзолистых почвах до 19-22 в отбеленных. В элювиальной части профиля вынос ила несколько меньше и практически одинаков для всех разрезов (13-17 кг). Исключение составляет лишь разрез слабоподзолистой почвы, где вынос ила минимальный - 1,3 кг. В иллювиальной части профиля всех разрезов происходит накопление ила от 2 до 5 кг на слой почвы 5 см, что абсолютно неравнозначно выносу его из вышележащей толщи.

Большинство исследователей подзолистых и близких к ним почв склоняются к мнению, что основным критерием распада ила (подзолообразование) или его однородности по профилю (лессивирование) является показатель молекулярного отношения SiO2 / R2Oз, хотя имеются и противоречия . В частности, С.В. Зонн и др. подчеркивают, что в условиях частой смены восстановительных и окислительных условий, что характерно для Приморья, происходит существенное изменение не легких, а именно крупных фракций гранулометрического состава почв, и особенно по содержанию железа, которое, высвобождаясь, переходит в сегрегированное состояние. И в этом, по мнению авторов, принципиальное отличие химизма буро-отбеленных почв от дерново-подзолистых.

Исходя из этих положений, мы сравнили молекулярные отношения SiO2 / R2Oз и AІ2Oз/Fe2Oз в «крупно-земе» и иле разрезов, взяв их величину в почвообразующей породе за 100%. Естественно, что величина менее 100% показывает на относительное накопление полуторных окислов в определенной части почвенного профиля, и, наоборот, величина более 100% - на их снижение. Полученные данные представлены в таблице 4.

Анализ данных таблицы 4 позволяет заметить, что если судить по отношению SiO2 / R2Oз илистой фракции, то существенных различий между горизонтами подзолистых почв явно не наблюдается (± 7%). В разрезах отбеленных почв эта тенденция сохраняется, но уровень расширения молекулярных отношений в горизонтах А1 и А2 достигает 15-25% в зависимости от степени отбеливания.

Величина отношения AІ2Oз/Fe2Oз в илистой фракции разреза слабоподзолистой почвы и сильноотбе-ленной реально стабильна по всем горизонтам и, напротив, существенно разнится с сильноподзолистой и

слабоотбеленной почвами. То есть, однозначного вывода о степени дифференциации ила в зависимости от выраженности основного процесса подзолообразования или отбеливания в рассматриваемых разрезах сделать нельзя.

Таблица 4

Анализ величины молекулярных отношений относительно почвообразующей породы

Дерново-подзолистые почвы Отбеленные почвы

сильно- слабо- сильно- слабо-

подзолистые подзолистые отбеленные отбеленные

Горизонт 3 О3 2 СИ /2 о с/э 3 О3 2 1_1_ /3 О3 с 3 О3 2 си 2 о с/э 3 О3 2 1_1_ /3 О3 с 3 О3 2 СИ 2 о с/э 3 О3 2 1_1_ /3 О3 с 3 О3 2 си 2 о с/э 3 О3 2 1_1_ /3 О3 <

Фракции «крупнозема» (> 0,001 мм)

А1 103 55 109 110 108 97 100 100

А2 104 64 126 110 115 87 112 105

В 97 64 138 160 101 87 80 103

С 100 100 100 120 100 100 100 100

Фракции «ила» (< 0,00" мм)

А1 110 131 107 94 126 104 124 120

А2 107 120 107 97 115 98 103 122

В 100 108 93 100 100 102 100 107

С 100 100 100 100 100 100 100 100

Несколько более выразительно отношение А12О3 / Рв20з в крупноземе проявляется в профиле сильноподзолистой почвы (-40;-45%) и отбелов -13%. В разрезах почв слабой выраженности преобладающего типа ЭПП это отношение имеет противоположную положительную тенденцию (+5;+10%), а максимальное отклонение от материнской породы (+60%) - в горизонте В слабоподзолистой почвы.

Таким образом, ни исходные данные вещественного состава, ни попытки их анализа с использованием различных расчетных показателей не выявили ясно выраженных различий как между подзолистыми и отбеленными типами почв, так и в зависимости от степени выраженности ведущего типа элементарного процесса почвообразования, в данном случае подзолообразования и лессиважа.

Очевидно, принципиальные различия в их проявлении обусловлены более динамичными процессами и явлениями, связанными с гумусообразованием, физико-химическим состоянием и окислительновосстановительными процессами.

Литература

1. Гаджиев И.М. Эволюция почв южной тайги Западной Сибири. - Новосибирск: Наука, 1982. - 278 с.

2. Зонн С.В. О бурых лесных и бурых псевдоподзолистых почвах Советского Союза // Генезис и геогра-

фия почв. - М.: Наука, 1966. - С.17-43.

3. Зонн С.В., Нечаева Е.Г., Сапожников А.П. Процессы псевдооподзоливания и лессивирования в лесных почвах южного Приморья// Почвоведение. - 1969. - №7. - С.3-16.

4. Иванов Г.И. Почвообразование на юге Дальнего Востока. - М.: Наука, 1976. - 200 с.

5. Организация, состав и генезис дерново-палево-подзолистой почвы на покровных суглинках / В.А. Тар-гульян [и др]. - М., 1974. - 55 с.

6. Подзолистые почвы центральной и восточной частей европейской территории СССР (на суглинистых почвообразующих породах). - Л.: Наука, 1980. - 301 с.

7. Роде А.А. Почвообразовательные процессы и их изучение стационарным методом // Принципы организации и методы стационарного изучения почв. - М.: Наука, 1976. - С. 5-34.

8. Рубцова П.П., Руднева Е.Н. О некоторых свойствах бурых лесных почв предгорий Карпат и равнин Приамурья // Почвоведение. - 1967. - №9. - С. 71-79.

9. Синельников Э.П. Оптимизация свойств и режимов периодически переувлажняемых почв / ДВО ДОП РАН, Приморская ГСХА. - Уссурийск, 2000. - 296 с.

10. Синельников Э.П., Чеканникова Т.А. Сравнительный анализ баланса вещественного состава почв различной степени отбеленности равнинной части Приморского края // Вестн. КрасГАУ. - 2011. - №12 (63). - С.87-92.

УДК 631.4:551.4 Э.О. Макушкин

ДИАГНОСТИКА ПОЧВ ВЕРХОВЬЕВ ДЕЛЬТЫ р. СЕЛЕНГИ*

В статье представлена диагностика почв верховьев дельты р. Селенги на основе морфогенетических и физико-химических свойств почв.

Ключевые слова: дельта, почва, диагностика, морфология, реакция, содержание гумуса, тип, подтип.

E.O.Makushkin SOILS DIAGNOSTICS IN THE SELENGA RIVER DELTA UPPER REACHES

The soils diagnostics in the Selenga river delta upper reaches on the basis of soils morphogenetic, physical and chemical properties is presented in the article.

Key words: delta, soil, diagnostics, morphology, reaction, humus content, type, subtype.

Введение. Уникальность дельты р. Селенги состоит в том, что она является единственной в мире пресноводной дельтовой экосистемой площадью более 1 тыс. км2, включенной в список особо охраняемых природных объектов Рамсарской конвенции . Поэтому представляет интерес изучение ее экосистем, включая и почвенные.

Ранее нами, в свете новой классификации почв России , диагностировались почвы возвышенных участков притеррасной поймы и крупного острова (о-ва) Сенной в срединной части дельты , мелких и крупных о-вов периферической части дельты .

Цель. Провести классификационную диагностику почв верховьев дельты с учетом присутствия определенной контрастности в ландшафте и специфики влияния природно-климатических факторов на почвообразование.

Объекты и методы. Объектами исследований были аллювиальные почвы верховьев дельты р. Селенги. Ключевые участки были представлены в прирусловой и центральной пойме основного русла реки вблизи села (с.) Мурзино Кабанского района Республики Бурятия, а также на о-вах с местными названиями: Жилище (напротив с. Мурзино), Свинячий (800 м от с. Мурзино вверх по течению).

В работе использовались сравнительно-географические, физико-химические и морфогенетические методы . Классификационное положение почв приводится согласно . В методологическом аспекте, учитывая требования , в работе акцентировано внимание, в первую очередь, на морфогенетические и физико-химические свойства верхних гумусовых горизонтов. Нумерацию погребенных горизонтов осуществляли, начиная снизу почвенного профиля, римскими прописными цифрами, как это принято при изучении почвообразования в поймах рек .

Результаты и обсуждение. Около с. Мурзино был заложен ряд почвенных разрезов. Первые три почвенных разреза заложены по трансекту на участках от низинной фации перед искусственной дамбой, непосредственно около села по направлению к основному левому руслу реки Селенги, образовавшемуся в

Экзаменационный материал

Билет №6.

1.Районирование - основной метод географических исследований: что такое район, основные факторы формирования районов, значение районирования, признаки районирования и виды районов.

2.Исследование видов районирования территорий России.

Билет №7.

1. Административно -территориальное устройство России: что такое административно-территориальное деление и его основные функции, федерация, субъекты федерации и принципы их выделения, федеральные округа.

2. Установить состав федеральных округов России.

Билет №8.

1. Природные условия и ресурсы России: что такое природные условия и природные

ресурсы, виды природных ресурсов.

2.0ценка природных условий и ресурсов природного района России.

Билет №9.

1. Рельеф России: основные черты, горы и равнины.

2. Установить зависимость распространения крупнейших форм рельефа от особенностей строения земной коры.

Билет №10.

1. Минеральные ресурсы России и их использование: размещение полезных ископаемых России, виды минеральных ресурсов по агрегатному состоянию и промышленному использованию, позиции России в мире по стоимости и запасам полезных ископаемых.

2. Исследовать особенности размещения минеральных ресурсов России.

Билет №11.

1. Земная кора и человек: влияние земной коры и протекающих в ней геологических процессов на жизнь и хозяйственную деятельность людей; воздействие хозяйственной деятельности человека на поверхность земной коры и строение её верхней части.

2. Исследовать особенности проявления внутренних сил Земли на территории России.

Билет №12.

1. Климат России: факторы, влияющие на формирование климата России, воздействие географического положения и значительных различий в величине суммарной солнечной радиации на температуру воздуха и интенсивность природных процессов между северными и южными районами страны.

2.Проанализировать распределение суммарной солнечной радиации и радиационного баланса на территории России

Билет №13.

1. Климат России: влияние особенностей рельефа на климат России, типы воздушных масс на территории России и их воздействие на климат разных частей страны, Азиатский максимум и его влияние на территории России.

2.Определить типы климата по описанию и установить по климатограммам город (географический объект), расположенный в этом типе климата

Билет №14.

1. Климат России: распределение температур воздуха, атмосферных осадков и увлажнения по территории России.

2.Установить черты сходства и отличия в распределении летних и зимних температур воздуха и выявить особенности увлажнения в разных частях территории России.

Билет №15.

1. Климатические пояса и области: показатели отличия и основные черты климата климатических поясов и областей России.

2.Анализ основных показателей типов климатов России.

Билет №16.

1. Атмосферные фронты, циклоны и антициклоны: как возникают и влияют на погоду.

2.Определить тип погоды по характерным признакам.

Билет №17.

4.Укажите субъекты Российской федерации с наибольшим естественным приростом населения. С чем это связано?

Билет №24.

2.Исследуйте особенности половозрастной пирамиды России (см. атлас стр. 22).

«Помощник»

1.Как на современной половозрастной пирамиде отражены следы крупных социальных потрясений, пережитых Россией в XX веке?

2.Определите, в каких возрастных группах населения наблюдается наибольшее превышение женщин над мужчинами?

3.Какую часть населения страны составляют мужчины и женщины? В чём причины нарушения соотношения полов?

Билет №25.

2. Исследуйте особенности этнического и языкового и религиозного состава населения европейской части России (см. атлас стр. 24-25).

«Помощник»

1.Определите, какие народы населяют европейскую часть России? К каким языковым семьям и группам они принадлежат?

2.Какие народы, проживающие здесь относятся к крупнейшим (более 1 млн. человек)? Определите самые многонациональные районы европейской части России.

4.В каких субъектах этой части Российской Федерации преобладают коренные народы?

5.Какие языковые семьи и группы наиболее крупные, а какие наименее крупные?

б. Определите, какие религии исповедует население европейской части России? Какая из них самая распространённая среди верующих?

7.Установите основные районы распространения мусульманства и буддизма - ламаизма и народы, исповедующие эти религии.

8.Чем объяснить многообразие народов, языков и религий европейской части России?

Билет №26.

2.Исследуйте изменения плотности населения в пределах Основной зоны расселения России (см. атлас стр.22-23).

«Помощник»

1.Определите районы страны с наибольшей плотностью населения.

2.Установите величину преобладающей плотности населения в европейской части страны. Где она максимальная и минимальная?

З. Как изменяются показатели плотности населения на территории между Тюменью и Иркутском?

4.Какая плотность населения преобладает на участке от Улан-Удэ до Владивостока?

5.Сравните карты «Благоприятность природных условий для жизни людей» и

«Размещение населения» и сформулируйте вывод.

Билет №27.

2. Исследуйте особенности размещения городов на территории России (см. атлас стр.22-

«Помощник»

1.Определите, в какой из частей России (европейской или азиатской) больше городов?

2.Подсчитайте количество городов- миллионеров, крупнейших и крупных городов в европейской и азиатской частях России и сформулируйте вывод.

3.Установите, как соотносится число городов с населением более 500 тыс. человек с Основной зоной расселения и благоприятностью природных условий для жизни людей.

4.Определите, как изменялась современная численность городского населения России? С чем это связано?

Билет №28.

2. Исследуйте географические различия в миграционном росте (убыли) населения на территории России (см. атлас стр.25).

«Помощник»

1.Определите субъекты Российской Федерации с наибольшим коэффициентом миграционного прироста.

2.Установите субъекты Российской Федерации с миграционной убылью.

З. Сформулируйте обоснованный вывод о причинах современных миграционных потоках на территории России.

Рассмотрено на Методическом объединении и рекомендовано для проведения экзамена по географии «Россия: природа, население, хозяйство» , 8 класс.

Рельефообразующая роль вертикальных тектонических движе­ний высшего порядка заключается также в том, что они контроли­руют распределение площадей, занятых сушей и морем (обусловли­вают морские трансгрессии и регрессии), определяют конфигурацию материков и океанов.

Распределение площадей, занятых сушей и морем, а также кон­фигурация материков и океанов, как известно, являются первопри­чиной изменения климата на поверхности Земли. Следовательно, вертикальные движения оказывают не только прямое воздействие на рельеф, но и опосредствованное, через климат, о влиянии кото­рого на рельеф говорилось выше (гл. 4).

РЕЛЬЕФООБРАЗУЮЩАЯ РОЛЬ НОВЕЙШИХ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ ЗЕМНОЙ КОРЫ

В предыдущих главах речь шла об отражении геологических структур в рельефе и о влиянии на рельеф различных типов текто­нических движений, безотносительно ко времени проявления этих движений.

В настоящее время установлено, что главная роль в формирова­нии основных черт современного рельефа эндогенного происхождения принадлежит так называемым новейшим тектоническим

Рис. 12. Схема новейших (неоген-четвертичных) тектонических движений на территории СССР (по, значительно упрощена): / - области весьма слабо выраженных положительных движений; 2-области слабо выраженных линейных положительных движений; 3 - области интенсивных сводовых поднятия; 4 - области слабо выраженных линейных поднятий и опусканий; 5 - области интенсивных линейных поднятий с большими (о) и значительными (б) градиентами вертикальных движений; 6 - области намечающихся (а) и преобладающих (б) опуска­ний; 7-граница областей сильных землетрясений (7 баллов и более); в -граница проявления неоген-четвертичного вулканизма; 9 - граница распространения действующих

дви­ жениям, под которыми большинство исследователей понимают движения, имевшие место в неоген-четвертичное время. Об этом достаточно убедительно свидетельствует, например, сопоставление гипсометрической карты СССР и карты новейших тектонических движений (рис. 12). Так, областям со слабовыраженными вертикаль­ными положительными тектоническими движениями в рельефе со­ответствуют равнины, невысокие плато и плоскогорья с тонким чехлом четвертичных отложений: Восточно-Европейская равнина, значительная часть Западно-Сибирской низменности, плато Устюрт, Среднесибирское плоскогорье.

Областям интенсивных тектонических погружений, как правило, соответствуют низменности с мощной толщей осадков неоген-чет­вертичного возраста: Прикаспийская низменность, значительная часть Туранской низменности, Северо-Сибирская низменность, Ко­лымская низменность и др. Областям интенсивных, преимущест­венно положительных тектонических движений соответствуют горы: Кавказ, Памир, Тянь-Шань, горы Прибайкалья и Забайкалья и др.

Следовательно, рельефообразующая роль новейших тектониче­ских движений проявилась прежде всего в деформации топографи­ческой поверхности, в создании положительных и отрицательных форм рельефа разного порядка. Через дифференциацию топографи­ческой поверхности новейшие тектонические движения контроли­руют расположение на поверхности Земли областей сноса и акку­муляции и, как следствие этого, областей с преобладанием денуда­ционного (выработанного) и аккумулятивного рельефа. Скорость, амплитуда и контрастность новейших движений существенным образом влияют на интенсивность проявления экзогенных процес­сов и также находят отражение в морфологии и морфометрии рельефа.

Выражение в современном рельефе структур, созданных неотек­тоническими движениями, зависит от типа и характера неотектони­ческих движений, литологии деформируемых толщ и конкретных физико-географических условий. Одни структуры находят прямое отражение в рельефе, на месте других формируется обращенный рельеф, на месте третьих - различные типы переходных форм от прямого рельефа к обращенному. Разнообразие соотношений меж­ду рельефом и геологическими структурами особенно характерно для мелких структур. Крупные структуры, как правило, находят прямое выражение в рельефе.

Формы рельефа, обязанные своим происхождением неотектони­ческим структурам, получили название морфоструктур. В настоящее время нет единого толкования термина «морфоструктура» ни в отношении масштаба форм, ни в отношении характера соответст­вия между структурой и ее выражением в рельефе. Одни исследо­ватели понимают под морфоструктурами и прямой, и обращенный, и любой иной рельеф, возникший на месте геологической структу­ры, другие - только прямой рельеф. Точка зрения последних, по­жалуй, более правильна. Морфоструктурами мы будем называть формы рельефа разного масштаба, морфологический облик кото­рых в значительной степени соответствует типам создавших их геологических структур.

Данные, которыми располагают в настоящее время геология и геоморфология, свидетельствуют о том, что земная кора испыты­вает деформации практически всюду и разного характера: и коле­бательные, и складкообразовательные, и разрывообразовательные. Так, например, в настоящее время поднятие испытывают террито­рия Фенноскандии и значительная часть территории Северной Америки, примыкающей к Гудзонову заливу. Скорости поднятий этих территорий весьма значительны. В Фенноскандии они состав­ляют 10 мм в год (метки уровня моря, сделанные в XVIII в. на бе­регах Ботнического залива, приподняты над современным уровнем на 1,5-2,0 м).

Берега Северного Моря в пределах Голландии и соседних с нею областей опускаются, вынуждая жителей строить плотины для защиты территории от наступания моря.

Интенсивные тектонические движения испытывают области аль­пийской складчатости и современных геосинклинальных поясов. По имеющимся данным, Альпы за неоген-четвертичное время под­нялись на 3-4 км, Кавказ и Гималаи только за четвертичное вре­мя поднялись на 2-3 км, а Памир на 5 км. На фоне поднятий отдельные участки в пределах областей альпийской складчатости испытывают интенсивные погружения. Так, на фоне поднятия Большого и Малого Кавказа заключенная между ними Куро-Араксинская низменность испытывает интенсивное погружение. Свиде­тельством существующих здесь разнонаправленных движений слу­жит положение береговых линий древних морей, предшественни­ков современного Каспийского моря. Прибрежные осадки одного из таких морей - позднебакинского, уровень которого располагал­ся на абсолютной высоте 10--12 м, в настоящее время прослежи­ваются в пределах юго-восточной периклинали Большого Кавказа и на склонах Талышских гор на абсолютных отметках +200- 300 м, а в пределах Куро-Араксинской низменности вскрыты сква­жинами на абсолютных отметках минус 250-300 м. Интенсивные тектонические движения наблюдаются в пределах срединно-океанических хребтов.

О проявлении неотектонических движений можно судить по мно­гочисленным и весьма разнообразным геоморфологическим при­знакам. Приведем некоторые из них: а) наличие морских и речных террас, образование которых не связано с воздействием изменения, климата; б) деформации морских и речных террас и древних по­верхностей денудационного выравнивания; в) глубоко погружен­ные или высоко приподнятые над уровнем моря коралловые рифы; г) затопленные морские береговые формы и некоторые подводные карстовые источники, положение которых нельзя

объяснить эвстатическими колебаниями1 уровня Мирового океана или другими причинами;

д) антецедентные долины, образующиеся в результате пропиливания рекой возникающего на ее пути тектонического по­вышения - антиклинальной складки или блока (рис. 13),

О проявлении неотектонических движений можно судить и по ряду косвенных признаков. Чутко реагируют на них флювиальные формы рельефа. Так, участки, испытывающие тектонические под­нятия, обычно характеризуются увеличением густоты и глубины

эрозионного расчленения по сравнению с территориями, стабиль­ными в тектоническом отношении или испытывающими погруже­ние. Меняется на таких участках и морфологический облик эро­зионных форм: долины обычно становятся уже, склоны круче, на­блюдаются изменение продольного профиля рек и резкие измене­ния направления их течения в плане, не объяснимые другими при­чинами, и т. д. Таким образом, существует тесная связь между характе­ром и интенсивностью новей­ших тектонических движений и морфологией рельефа. Эта связь позволяет широко ис­пользовать геоморфологиче­ские методы при изучении не­отектонических движений и геологической структуры зем­ной коры.

1 Эвстатические колебания - медленные изменения уровня Мирового океана, происходящие одновременно и с одинаковым знаком на всей площади океана за счет возрастания или сокращения поступления воды в океан.

Кроме новейших тектониче­ских движений, различают так называемые современные дви­ жения, под которыми, согласно

Понимают движе­ния, проявившиеся в историче­ское время и проявляющиеся сейчас. О существовании таких движений свидетельствуют многие историко-археологические дан­ные, а также данные повторных нивелировок. Отмеченные в ряде случаев большие скорости этих движений диктуют настоятельную необходимость их учета при строительстве долговременных соору­жений - каналов, нефте - и газопроводов, железных дорог и др.

ГЛАВА 6. МАГМАТИЗМ И РЕЛЬЕФООБРАЗОВАНИЕ

Магматизм играет важную и весьма разнообразную роль в рельефообразовании. Это относится и к интрузивному и к эффузивному маг­матизму. Формы рельефа, связанные с интрузивным магматизмом, могут быть как результатом непосредственного влияния магматиче­ских тел (батолитов, лакколитов и др.), так и следствием препарировки интрузивных магматических пород, которые, как уже упоми­налось, нередко являются более стойкими к воздействию внешних сил, чем вмещающие их осадочные породы.

Батолиты чаще всего приурочены к осевым частям антиклинориев. Они образуют крупные положительные формы рельефа, по­верхность которых осложнена более мелкими формами, обязанными своим возникновением воздействию тех или иных экзогенных аген­тов в зависимости от конкретных физико-географических условий.

Примерами довольно крупных гранитных батолитов на территории СССР могут служить массив в западной части Зеравшанского хреб­та в Средней Азии (рис. 14), крупный массив в Конгуро-Алагезском хребте в Закавказье.

Лакколиты встречаются в одиночку или группами и часто выра­жаются в рельефе положительными формами в виде куполов «ли «караваев». Хорошо известны лакколиты Северного Кавказа


Рис. 15. Лакколиты Минеральных Вод, Северный Кавказ (рис.)

(рис. 15) в районе г. Минеральные Воды: горы Бештау, Лысая, Же­лезная, Змеиная и др. Типичные, хорошо выраженные в рельефе лакколиты известны также в Крыму (горы Аю-Даг, Кастель).

От лакколитов и других интрузивных тел нередко отходят жилоподобные ответвления, называемые апофизами. Они секут вмещаю­щие породы в разных направлениях. Отпрепарированные апофизы на земной поверхности образуют узкие, вертикальные или крутопа­дающие тела, напоминающие разрушающиеся стены (рис. 16,5-Б). Пластовые интрузии выражаются в рельефе в виде ступеней, аналогичных структурным ступеням, образующимся в результате избирательной денудации в осадочных породах (рис. 16, Л-Л). Отпрепарированные пластовые интрузии широко распространены в пределах Среднесибирского плоскогорья, где они связаны с внед­рением пород трапповой формации 1.

Магматические тела усложняют складчатые структуры и их отражение в рельефе. Четкое отражение в рельефе находят образования, связанные с деятельностью эффузивного магматизма, или вулканизма, который создает совершенно своеобразный рельеф. Вулканизм - объект исследования специальной геологической науки - вулканологии, но ряд аспектов проявления вулканизма имеет непосредственное значение для геоморфологии.

В зависимости от характера выводных отверстий различают из­вержения площадные, линейные и центральные. Площадные извер­жения привели к образованию обширных по площади лавовых, плато. Наиболее известные из них - лавовые плато Британской Ко­лумбии и Декана (Индия).


Рис. 16. Отпрепарированные интру­зивные тела: А -А - пластован ин­трузия (силл); Б -Б секущая жила (дайка)

DIV_ADBLOCK703">

В современную геологическую эпоху наиболее распространенным видом вулканической деятельности является центральный тип из­вержений, при котором магма поступает из недр к поверхности к определенным «точкам», обычно располагающимся на пересечении двух или нескольких разломов. Поступление магмы происходит по узкому питающему каналу. Продукты извержения отлагаются периклинально (т. е. с падением во все стороны) относительно вы­хода питающего канала на поверхность. Поэтому обычно над цент­ром извержения возвышается более или менее значительная акку­мулятивная форма-собственно вулкан (рис. 17).

В вулканическом процессе почти всегда можно различить две стадии - эксплозивную, или взрывную, и эруптивную, или стадию выброса и накопления вулканических продуктов. Каналообразный путь на поверхность пробивается в первой стадии. Выход лавы на поверхность сопровождается взрывом. В результате верхняя часть канала воронкообразно расширяется, образуя отрицательную фор­му рельефа - кратер. Последующее излияние лавы и накопление пирокластического материала происходит по периферии этой от­рицательной формы. В зависимости от стадии деятельности вулкана, а также характера накопления продуктов извержения выделя­ют несколько морфогенетических типов вулканов: маары, экструзивные купола, щитовые вулканы, стратовулканы.

Маар - отрицательная форма рельефа, обычно воронкообраз­ная или цилиндрическая, образующаяся в результате вулканиче­ского взрыва. По краям такого углубления почти нет никаких вул­канических накоплений. Все известные в настоящее время маары - не действующие, реликтовые образования. Большое число мааров описано в области Эйфель в ФРГ, в Центральном массиве во Франции. Большинство мааров в условиях влажного климата заполняется водой и превращается в озера. Размеры мааров - от 200 м до 3,5 км в поперечнике при глубине от 60 до 400 м

Рис. 17. Вулканические конусы. Хорошо видны кратеры и барранкосы на склонах

Неаполь" href="/text/category/neapolmz/" rel="bookmark">Неаполя) возник в тече­ние нескольких дней буквально на ровном месте и в настоящее время представляет собой холм высотой до 140 м. Самые крупные вулканические постройки - стратовулканы. В строении стратовулканов участвуют как слои лав, так и слои пирокластического материала. Многие стратовулканы имеют почти пра­вильную коническую форму: Фудзияма в Японии, Ключевская и Кроноцкая солки на Камчатке, Попокатепетль в Мексике и др. (см. рис. 17). Среди этих образований нередки горы высотой 3- 4 км. Некоторые вулканы достигают 6 км. Многие стратовулканы несут на своих вершинах вечные снега и ледники.

У многих потухших или временно недействующих вулканов кратеры заняты озерами.

У многих вулканов имеются так называемые кальдеры. Это очень крупные, в настоящее время недействующие кратеры, причем современные кратеры нередко располагаются внутри кальдеры. Из­вестны кальдеры до 30 км в поперечнике. На дне кальдер рельеф относительно ровный, борта кальдер, обращенные к центру извер­жения, всегда очень крутые. Образование кальдер связано с раз­рушением жерла вулкана сильными взрывами. В некоторых случаях кальдера имеет провальное происхождение. У потухших вулканов расширение кальдеры может быть связано также с деятельностью экзогенных агентов.

Своеобразный рельеф образуют жидкие продукты извержения вулканов. Лава, излившаяся из центрального или боковых кратеров, стекает по склонам в виде потоков. Как уже говорилось, текучесть лавы определяется ее составом. Очень густая и вязкая лава успе­вает застыть и потерять.подвижность еще в верхней части склона. При очень большой вязкости она может затвердеть в жерле, обра­зовав гигантский «лавовый столб» или «лавовый палец», как это было, например, при извержении вулкана Пеле на Мартинике в 1902 г. Обычно лавовый поток имеет вид сплюснутого вала, про­тягивающегося вниз по склону, с очень четко выраженным вздутием у своего окончания. Базальтовые лавы могут давать длинные пото­ки, которые распространяются на многие километры и даже десятки километров и прекращают свое движение на прилегающей к вул­кану равнине или плато, или же в пределах плоского дна кальдеры. Базальтовые потоки длиной в 60-70 км не редкость на Гавайских островах и в Исландии.

Значительно менее развиты лавовые потоки липаритового или андезитового состава. Их длина редко превышает несколько кило­метров. Вообще для вулканов, выбрасывающих продукты кислого или среднего состава, гораздо большую часть по объему составляет пирокластический, а не лавовый материал.

Застывая, лавовый поток сначала покрывается коркой шлака. В случае прорыва корки в каком-либо месте неостывшая часть лавы вытекает из-под корки. В результате образуется полость - лавовый грот, или лавовая пещера. При обрушении свода пещеры он пре­вращается в отрицательную поверхностную форму рельефа - лаво­ вый желоб. Желоба очень характерны для вулканических ландшаф­тов Камчатки.

Поверхность застывшего потока приобретает своеобразный мик­рорельеф. Наиболее распространены два типа микрорельефа по­верхности лавовых потоков: а) глыбовый микрорельеф и б) кишко­образная лава. Глыбовые лавовые потоки представляют собой хао­тическое нагромождение угловатых или оплавленных глыб с многочисленными провалами и гротами. Такие глыбовые формы возникают при высоком содержании газов в составе лав и при срав­нительно низкой температуре потока. Кишкообразные лавы отлича­ются причудливым сочетанием застывших волн, извилистых скла­док, в целом действительно напоминающих «груды гигантских ки­шок или связки скрученных канатов» (). Образование такого микрорельефа характерно для лав с высокой температурой и с относительно малым содержанием летучих компонентов.

Выделение газов из лавового потока может носить характер взрыва. В этих случаях на поверхности потока происходит нагро­мождение шлака в виде конуса. Такие формы получили название горнито. Иногда они имеют вид столбов высотой до нескольких метров. При более спокойном и длительном выделении газов и» трещин в шлаке образуются так называемые фумаролы. Ряд про­дуктов выделения фумарол в атмосферных условиях конденсиру­ется, и вокруг места выхода газов образуются кратерообразные воз­вышения, сложенные продуктами конденсации.

При трещинных и площадных излияниях лав обширные прост­ранства оказываются как бы заполненными лавой. Классической страной трещинных извержений является Исландия. Здесь подав­ляющая часть вулканов и лавовых потоков приурочена к депрессии, рассекающей остров с юго-запада «а северо-восток (так называе­мый Большой грабен Исландии). Здесь можно видеть лавовые по­кровы, вытянутые вдоль разломов, а также зияющие трещины, еще не совсем заполненные лавами. Трещинный вулканизм характерен также для Армянского нагорья. Сравнительно недавно трещинные извержения имели место на Северном острове Новой Зеландии.

Объем потоков лав, излившихся из трещин в Большом грабене Исландии, достигают 10-12 куб. км. Грандиозные площадные из­лияния происходили в недавнем прошлом в Британской Колумбии, на плато Декан, в Южной Патагонии. Слившиеся разновозрастные лавовые потоки образуют здесь сплошные плато площадью до нескольких десятков и сотен тысяч квадратных километров. Так лавовое плато Колумбии имеет площадь более 500 тыс. квадратных километров, а мощность слагающих его лав достигает 1100-

1800 м. Лавы заполнили все отрицательные формы предшествую­щего рельефа, обусловив почти идеальное его выравнивание. В на­стоящее время высота плато от 400 до 1800 м. В его поверхность глубоко врезаются долины многочисленных рек. На самых молодых лавовых покровах здесь сохранились глыбовый микрорельеф, шла­ковые конусы, лавовые пещеры и желоба.

При подводных вулканических извержениях поверхность излив­шихся магматических потоков быстро остывает. Значительное гид­ростатическое давление водной толщи препятствует взрывным про­цессам. В результате формируется своеобразный микрорельеф ша­ рообразных, или подушечных, лав.

Излияния лавы не только образуют специфические формы рель­ефа, но могут существенным образом влиять на уже существующий рельеф. Так, лавовые потоки могут повлиять на речную сеть, выз­вать ее перестройку. Перегораживая речные долины, они способст­вуют катастрофическим наводнениям или иссушению местности; потере ею водотоков. Проникая к берегу моря и застывая здесь, ла­вовые потоки изменяют очертания береговой линии, образуют осо­бый морфологический тип морских побережий.

Излияния лав и выброс пирокластического материала неизбеж­но вызывает образование дефицита масс в недрах Земли. Послед­нее обусловливает быстрые опускания участков земной поверхно­сти. В отдельных случаях началу извержения предшествует замет­ное поднятие местности. Так, например, перед извержением вулкана Усу на острове Хоккайдо образовался крупный разлом, вдоль ко­торого участок поверхности площадью около 3 км2 за три месяца поднялся на 155 м, а после извержения произошло его опускание на 95 м.

Говоря о рельефообразующей роли эффузивного магматизма, следует отметить, что при вулканических извержениях могут про­исходить внезапные и очень быстро протекающие изменения рель­ефа и общего состояния окружающей местности. Особенно велики такие изменения при извержениях эксплозивного типа. Например, при извержении вулкана Кракатау в Зондском проливе в 1883 г., носившем характер серии взрывов, произошло разрушение большей части острова, и на этом месте образовались глубины моря до 270 м. Взрыв вулкана вызвал образование гигантской волны - цу­нами, которая обрушилась на берега Явы и Суматры. Она нанесла огромный вред прибрежным районам островов, приведя к гибели десятков тысяч жителей. Другой пример такого рода - извержение вулкана Катмай на Аляске в 1912 г. До извержения вулкан Кат-май имел вид правильного конуса высотой 2286 м. Во время извер­жения вся верхняя часть конуса была разрушена взрывами и обра­зовалась кальдера до 4 км в поперечнике и до 1100 м глубиной.

Вулканический рельеф подвергается в дальнейшем воздействию экзогенных процессов, приводящему к формированию своеобразных вулканических ландшафтов.

Как известно, кратеры и вершинные части многих крупных вул­канов являются центрами горного оледенения. Поскольку образующиеся здесь ледниковые формы рельефа не имеют каких-либо прин­ципиальных особенностей, они специально не рассматриваются. Флювиальные формы вулканических районов имеют свою специ­фику. Талые воды, грязевые потоки, образующиеся нередко при вулканических извержениях, атмосферные воды существенно воз­действуют на склоны вулканов, в особенности на те, в строении ко­торых главная роль принадлежит пирокластическому материалу. При этом образуется радиальная система овражной сети - так на­зываемые барранкосы. Это глубокие эрозионные борозды, расходя­щиеся как бы по радиусам от вершины вулкана (см - рис. 17).

Барранкосы следует отличать от борозд, пропаханных в рыхлом покрове пепла и лапиллей крупными глыбами, выброшенными при извержении. Такие образования нередко называют шаррами. Шарры, как исходные линейные понижения, могут быть преобразованы затем в эрозионные борозды. Существует мнение, что значительная часть барранкосов заложена по бывшим шаррам.

Общий рисунок речной сети в вулканических районах также за­частую имеет радиальный характер. Другими отличительными осо­бенностями речных долин в вулканических районах являются водо­пады и пороги, образующиеся в результате пересечения реками за­стывших лавовых потоков или траппов, а также плотинные озера или озеровидные расширения долин на месте спущенных озер, воз­никающих при перегораживании реки лавовым потоком. В местах скопления пепла, а также на лавовых покровах вследствие высокой водопроницаемости пород на обширных пространствах могут вооб­ще отсутствовать какие-либо водотоки. Такие участки имеют облик каменистых пустынь.

Для многих вулканических областей характерны выходы напор­ных горячих вод, называемых гейзерами. Горячие глубинные воды содержат много растворенных веществ, выпадающих в осадок при охлаждении вод. Поэтому места выходов горячих источников бы­вают окружены натечными, зачастую причудливой формы терраса­ми. Широко известны гейзеры и сопровождающие их террасы в Йелоустонском парке в США, на Камчатке (Долина гейзеров), в Новой Зеландии, в Исландии.

В вулканических областях встречаются также специфические формы выветривания и денудационной препарировки. Так, напри­мер, мощные базальтовые покровы или потоки базальтовой, реже андезитовой, лавы при остывании и под воздействием атмосферных агентов, разбиваются трещинами на столбчатые отдельности. Не­редко отдельности представляют собой многогранные столбы, ко­торые очень эффектно выглядят в обнажениях. Выходы трещин на поверхность лавового покрова образуют характерный полигональ­ный микрорельеф. Такие пространства лавовых выходов, разбитые системой полигонов - шестиугольников или пятиугольников, полу­чили название «мостовых гигантов».

При продолжительной денудации вулканического рельефа в первую очередь разрушаются накопления пирокластического материа­ла. Более стойкие лавовые и другие магматические образования

подвергаются препарировке экзогенными агентами. Характерными формами препарировки являются упоминавшиеся выше дайки, а также некки (отпрепарированные лавовые пробки, застывшие в жерле вулкана).

Глубокое эрозионное расчленение и склоновая денудация мо­гут привести к разделению лавового плато на отдельные платообразные возвышенности, иной раз далеко отстоящие друг от друга. Такие останцовые формы получили название мез (в единственном числе - меза).

shortcodes">

Из за большого объема этот материал размещен на нескольких страницах:
4