Как высчитать градус угла зная длину. Находим сторону треугольника, если две другие известны тремя способами, формулы. Примеры из реальной жизни

Калькулятор онлайн.
Решение треугольников.

Решением треугольника называется нахождение всех его шести элементов (т.е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.

Эта математическая программа находит сторону \(c \), углы \(\alpha \) и \(\beta \) по заданным пользователем сторонам \(a, b \) и углу между ними \(\gamma \)

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа можно задать не только целые, но и дробные.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Введите стороны \(a, b \) и угол между ними \(\gamma \) Решить треугольник

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудьте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Теорема синусов

Теорема

Стороны треугольника пропорциональны синусам противолежащих углов:
$$ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} $$

Теорема косинусов

Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон, умноженное на косинус угла между ними.
$$ a^2 = b^2+c^2-2ba \cos A $$

Решение треугольников

Решением треугольника называется нахождение всех его шести элементов (т.е. трёх сторон и трёх углов) по каким-нибудь трём данным элементам, определяющим треугольник.

Рассмотрим три задачи на решение треугольника. При этом будем пользоваться такими обозначениями для сторон треугольника ABC: AB = c, BC = a, CA = b.

Решение треугольника по двум сторонам и углу между ними

Дано: \(a, b, \angle C \). Найти \(c, \angle A, \angle B \)

Решение
1. По теореме косинусов находим \(c\):

$$ c = \sqrt{ a^2+b^2-2ab \cos C } $$ 2. Пользуясь теоремой косинусов, имеем:
$$ \cos A = \frac{ b^2+c^2-a^2 }{2bc} $$

3. \(\angle B = 180^\circ -\angle A -\angle C \)

Решение треугольника по стороне и прилежащим к ней углам

Дано: \(a, \angle B, \angle C \). Найти \(\angle A, b, c \)

Решение
1. \(\angle A = 180^\circ -\angle B -\angle C \)

2. С помощью теоремы синусов вычисляем b и c:
$$ b = a \frac{\sin B}{\sin A}, \quad c = a \frac{\sin C}{\sin A} $$

Решение треугольника по трём сторонам

Дано: \(a, b, c \). Найти \(\angle A, \angle B, \angle C \)

Решение
1. По теореме косинусов получаем:
$$ \cos A = \frac{b^2+c^2-a^2}{2bc} $$

По \(\cos A \) находим \(\angle A \) с помощью микрокалькулятора или по таблице.

2. Аналогично находим угол B.
3. \(\angle C = 180^\circ -\angle A -\angle B \)

Решение треугольника по двум сторонам и углу напротив известной стороны

Дано: \(a, b, \angle A \). Найти \(c, \angle B, \angle C \)

Решение
1. По теореме синусов находим \(\sin B \) получаем:
$$ \frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \sin B = \frac{b}{a} \cdot \sin A $$

Введём обозначение: \(D = \frac{b}{a} \cdot \sin A \). В зависимости от числа D возможны случаи:
Если D > 1, такого треугольника не существует, т.к. \(\sin B \) больше 1 быть не может
Если D = 1, существует единственный \(\angle B: \quad \sin B = 1 \Rightarrow \angle B = 90^\circ \)
Если D Если D 2. \(\angle C = 180^\circ -\angle A -\angle B \)

3. С помощью теоремы синусов вычисляем сторону c:
$$ c = a \frac{\sin C}{\sin A} $$

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Прямоугольный треугольник встречается в реальности практически на каждом углу. Знание о свойствах данной фигуры, а также умение вычислять ее площадь, несомненно пригодится вам не только для решения задач по геометрии, но и в жизненных ситуациях.

Геометрия треугольника

В элементарной геометрии прямоугольный треугольник - это фигура, которая состоит из трех соединенных отрезков, формирующих три угла (два острых и один прямой). Прямоугольный треугольник - оригинальная фигура, характеризующаяся рядом важных свойств, которые составляют фундамент тригонометрии. В отличие от обычного треугольника стороны прямоугольной фигуры имеют собственные названия:

  • Гипотенуза - самая длинная сторона треугольника, лежащая напротив прямого угла.
  • Катеты - отрезки, образующие прямой угол. В зависимости от рассматриваемого угла катет может быть прилежащим к нему (образующий этот угол с гипотенузой) или противолежащим (лежащим напротив угла). Для непрямоугольных треугольников катетов не существуют.

Именно соотношение катетов и гипотенузы составляет основу тригонометрии: синусы, тангенсы и секансы определяются как отношение сторон прямоугольного треугольника.

Прямоугольный треугольник в реальности

Данная фигура получила широкое распространение в реальности. Треугольники находят применение в проектировании и технике, поэтому расчет площади фигуры приходится выполнять инженерам, архитекторам и проектировщикам. Форму треугольника имеют основания тетраэдров или призм - трехмерных фигур, которые легко встретить в повседневности. Кроме того, угольник - наиболее простое представление «плоского» прямоугольного треугольника в реальности. Угольник - это слесарный, чертежный, строительный и столярный инструмент, который используется для построения углов как школьниками, так и инженерами.

Площадь треугольника

Площадь геометрической фигуры - это количественная оценка того, какая часть плоскости ограничена сторонами треугольника. Площадь обычного треугольника можно найти пятью способами, используя формулу Герона или оперируя при расчетах такими переменными, как основание, сторона, угол и радиус вписанной или описанной окружности. Самая простая формула площади выражается как:

где a – сторона треугольника, h – его высота.

Формула для вычисления площади прямоугольного треугольника еще проще:

где a и b – катеты.

Работая с нашим онлайн-калькулятор, вы можете вычислить площадь треугольника, используя три пары параметров:

  • два катета;
  • катет и прилежащий угол;
  • катет и противолежащий угол.

В задачах или бытовых ситуациях вам будут даны разные комбинации переменных, поэтому такая форма калькулятора позволяет вычислить площадь треугольника несколькими способами. Рассмотрим пару примеров.

Примеры из реальной жизни

Керамическая плитка

Допустим, вы хотите выполнить облицовку стен кухни керамической плиткой, которая имеет форму прямоугольного треугольника. Для того чтобы определить расход плитки вы должны узнать площадь одного элемента облицовки и общую площадь обрабатываемой поверхности. Пусть вам необходимо обработать 7 квадратных метров. Длина катетов одного элемента составляет по 19 см, тогда площадь плитки будет равна:

Это означает, что площадь одного элемента составляет 24,5 квадратных сантиметра или 0,01805 квадратных метра. Зная эти параметры, вы можете подсчитать, что для отделки 7 квадратных метров стены вам понадобится 7/0,01805 = 387 элементов облицовочной плитки.

Школьная задача

Пусть в школьной задаче по геометрии требуется найти площадь прямоугольного треугольника, зная только то, что сторона одного катета равна 5 см, а величина противолежащего угла составляет 30 градусов. Наш онлайн-калькулятор сопровождается иллюстрацией, на которой указаны стороны и углы прямоугольного треугольника. Если сторона a = 5 см, то ее противолежащий угол - это угол альфа, равный 30 градусов. Введите эти данные в форму калькулятора и получите результат:

Таким образом, калькулятор не только вычисляет площадь заданного треугольника, но и определяет длину прилежащего катета и гипотенузы, а также величину второго угла.

Заключение

Прямоугольные треугольники встречаются в нашей жизни буквально на каждом углу. Определение площади таких фигур пригодится вам не только при решении школьных заданий по геометрии, но и повседневной и профессиональной деятельности.

Прямоугольным называется треугольник, один из углов которого равен 90º. Сторона, противолежащая прямому углу, называется гипотенузой, а две другие – катетами.

Чтобы найти угол в прямоугольном треугольнике, используются некоторые свойства прямоугольных треугольников, а именно: то, что сумма острых углов равна 90º, а также то, что напротив катета, длина которого в два раза меньше гипотенузы, лежит угол, равный 30º.

Быстрая навигация по статье

Равнобедренный треугольник

Одно из свойств равнобедренного треугольника — два его угла равны. Для вычисление значений углов прямоугольного равнобедренного треугольника нужно знать, что:

  • Прямой угол равен 90º.
  • Значения острых углов определяются по формуле: (180º-90º)/2=45º, т.е. углы α и β равны 45º.

Если известна величина одного из острых углов, второй можно найти по формуле: β=180º-90º-α, или α=180º-90º-β. Чаще всего это соотношение используется, если один из углов равен 60º или 30º.

Ключевые понятия

Сумма внутренних углов треугольника равна 180º. Так как один угол прямой, два оставшихся будут острыми. Для их нахождения необходимо знать, что:

Другие способы

Величины острых углов прямоугольного треугольника можно вычислить, зная значение медианы – линии, проведенной из вершины к противоположной стороне треугольника, и высоты – прямой, представляющей собой перпендикуляр, опущенный из прямого угла на гипотенузу. Пусть s – медиана, проведенная из прямого угла к середине гипотенузы, h — высота. В таком случае получается, что:

  • sin α=b/(2*s); sin β =a/(2*s).
  • cos α=a/(2*s); cos β=b/(2*s).
  • sin α=h/b; sin β =h/a.

Две стороны

Если в прямоугольном треугольнике известны длины гипотенузы и одного из катетов, либо две стороны, для нахождения значений острых углов используются тригонометрические тождества:

  • α=arcsin(a/c), β=arcsin(b/c).
  • α=arcos(b/c), β=arcos(a/c).
  • α=arctg(a/b), β=arctg(b/a).

Первые - это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90 о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».

Египетский треугольник

Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.

Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).

Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется "египетским". Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.

При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.

Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.

Признаки равенства фигур

  • Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, - бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
  • При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.

По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.

Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.

Свойства треугольника с прямым углом

Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.

Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.

В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.

  • При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
  • Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
  • Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.

Площадь легко узнать по одной из трех формул:

  1. через высоту и сторону, на которую она опускается;
  2. по формуле Герона;
  3. по сторонам и углу между ними.

Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами. Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину. Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.

Теоремы, применяемые к прямоугольному треугольнику

Геометрия прямоугольного треугольника включает в себя использование таких теорем, как:


В математике при рассмотрении треугольника обязательно уделяют много внимание его сторонам. Поскольку данные элементы формируют эту геометрическую фигуру. Стороны треугольника используются для решения многих задач по геометрии.

Определение понятия

Отрезки, соединяющие три точки, которые не лежат на одной прямой, называются сторонами треугольника. Рассматриваемые элементы ограничивают часть плоскости, что называют внутренностью данной геометрической фигуры.


Математики в своих расчетах допускают обобщения, касающиеся сторон геометрических фигур. Так, в вырожденном треугольнике три его отрезка лежат на одной прямой.

Характеристики понятия

Расчет сторон треугольника предполагает определение всех остальных параметров фигуры. Зная длину каждого из этих отрезков можно легко вычислить периметр, площадь и даже углы треугольника.

Рис. 1. Произвольный треугольник.

Суммировав стороны данной фигуры можно определить периметр.

P=a+b+c, где a, b, c – стороны треугольника

А для нахождения площади треугольника тогда следует использовать формулу Герона.

$$S=\sqrt{p(p-a)(p-b)(p-c)}$$

Где p – полупериметр.

Углы данной геометрической фигуры вычисляют через теорему косинусов.

$$cos α={{b^2+c^2-a^2}\over{2bc}}$$

Значение

Через соотношение сторон треугольника выражают некоторые свойства этой геометрической фигуры:

  • Напротив наименьшей стороны треугольника находится его наименьший угол.
  • Внешний угол рассматриваемой геометрической фигуры получают, продлевая одну из сторон.
  • Напротив равных углов треугольника лежат равные стороны.
  • В любом треугольнике одна из сторон всегда больше разности двух других отрезков. А сумма любых двух сторон этой фигуры больше третьей.

Один из признаков равенства двух треугольников является соотношение суммы всех сторон геометрической фигуры. Если эти значения одинаковые, то и треугольники будут равными.

Некоторые свойства треугольника зависят от его типа. Поэтому вначале следует учитывать величину сторон или углов этой фигуры.

Формирование треугольников

Если две стороны рассматриваемой геометрической фигуры будут одинаковыми, то этот треугольник называют равнобедренным.

Рис. 2. Равнобедренный треугольник.

Когда все отрезки в треугольнике будут равны, то получится равносторонний треугольник.

Рис. 3. Равносторонний треугольник.

Любое вычисление удобнее проводить в тех случаях, когда произвольный треугольник можно отнести к определенному типу. Поскольку тогда нахождение требуемого параметра этой геометрической фигуры значительно упростится.

Хотя правильно подобранное тригонометрическое уравнение позволяет решить многие задачи, в которых рассматривается произвольный треугольник.

Что мы узнали?

Три отрезка, которые соединены между собой точками и не принадлежат одной прямой, формируют треугольник. Эти стороны образуют геометрическую плоскость, что используется при определении площади. С помощью данных отрезков можно найти много таких важных характеристик фигуры, как периметр и углы. Соотношение сторон в треугольнике помогает найти его тип. Некоторыми свойствами данной геометрической фигуры можно воспользоваться только, если известны размеры каждой из ее сторон.

Тест по теме

Оценка статьи

Средняя оценка: 4.3 . Всего получено оценок: 142.