Рентгенография - это метод исследования внутренней структуры объектов при помощи рентгеновских лучей. Отзывы, противопоказания. Основные методы рентгенологического исследования

Рентгенологические методы исследования

1. Понятие рентгеновского излучения

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10~ 5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым Y-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор. Подогревной катод испускает электроны. Анод, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская, трубка с вращающимся анодом. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют также и сплошным.

В каждом из спектров наиболее коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона.

Коротковолновое рентгеновское излучение, обычно, обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли.

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием и для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии фотона и энергии ионизации имеют место три главных процесса

Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает если энергия фотона меньше энергии ионизации. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгенструктурного анализа.

Некогерентное рассеяние (эффект Комптона). В 1922 г А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона расходуется на образование нового рассеянного фотона рентгеновского излучения, на отрыв электрона от атома (энергия ионизации А) и сообщение электрону кинетической энергии.

Существенно, что в этом явлении наряду с вторичным рентгеновским излучением (энергия hv" фотона) появляются электроны отдачи (кинетическая энергия £ к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Перечислим некоторые процессы, наблюдаемые при действии рентгеновского излучения на вещество.

Рентгенолюминесценция – свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X 3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.

Основные методы рентгенологического исследования - рентгеноскопия и рентгенография

Цель занятия. Освоить основные методы рентгенодиагностики - рентгеноскопию и рентгенографию.

Объекты исследования и оборудование. Рентгеновский аппарат, индивидуальные средства защиты, экран для просвечивания или криптоскоп, рентгеновские кассеты, усиливающие экраны, рентгеновская пленка, оборудованная фотокомната с необходимыми растворами и принадлежностями, сушильный шкаф для сушки пленки, негатоскоп, обследуемое животное.

Общая характеристика методов рентгенодиагностики. Любое рентгенологическое исследование заключается в получении рентгеновского изображения объекта и последующем его изучении. В самом общем виде в систему рентгенологического исследования входят: источник излучения, объект исследования, приемник излучения и специалист, выполняющий исследование.

Источником излучения служит рентгеновская трубка; объектом исследования - больное или, в некоторых случаях, здоровое животное. В качестве приемника излучения используют приспособления или приборы, которые преобразуют энергию неоднородного рентгеновского пучка, проходящего сквозь тело животного, в изображение.

Простейшим приемником служит флюороскопический экран для просвечивания (метод рентгеноскопии). Экран покрыт специальным составом (люминофором), который светится под воздействием рентгеновского излучения. В качестве люминофора используют платиносинеродистый барий, активированные сульфиды цинка, кадмия и др.

Приемником может быть также рентгеновская пленка, в покрывающей эмульсии которой содержатся галоидные соединения серебра. Рентгеновское излучение способно разлагать эти соединения, поэтому после проявления и фиксирования экспонированной пленки на ней возникает изображение объекта (на этом основан метод рентгенографии - получения рентгеновского снимка).

Вместо пленки можно использовать селеновую пластину, заряженную электростатическим электричеством. Под действием рентгеновского излучения в разных частях селенового слоя изменяется электрический потенциал и формируется скрытое изображение, которое с помощью специального устройства проявляют и переносят на бумагу. Подобный метод исследования получил название электрорентгенографии (ксерорадиография).

Самым чувствительным приемником излучения служит набор сцинтилляционных детекторов или ионизационных камер. Они регистрируют интенсивность излучения во всех частях рентгеновского пучка; информация поступает в электронное устройство, соединенное с компьютером. На основании математической обработки полученных данных на телевизионном дисплее возникает изображение объекта. Этот метод получил название компьютерной томографии.

С использования одного из указанных методов всегда начинают рентгенологическое исследование.

Рентгеноскопия. При просвечивании изображение объекта получают на флюороскопическом экране. Пучок излучения, выходящий из рентгеновской трубки, проходит через тело животного и попадает на обратную сторону экрана, вызывая при этом слабое свечение его светочувствительного слоя, обращенного к врачу. Изображение можно рассматривать лишь в затемненном помещении после 10-15-минутной адаптации. Ветеринарный врач-рентгенолог обязан использовать средства защиты: экран, покрытый просвинцованным стеклом, предохраняет от облучения глаза; фартук и перчатки из рентгенозащитного материала - туловище и руки; ширма из листового свинца или просвинцованной резины - нижнюю половину тела рентгенолога.

Методика просвечивания проста и экономична. С помощью рентгеноскопии наблюдают за движением органов и перемещением в них контрастного вещества, исследуя животное в различных положениях, пальпируя нужный участок тела. Благодаря перечисленным достоинствам рентгеноскопию применяют очень часто, однако у метода есть и существенные недостатки. Прежде всего не остается документа, который можно анализировать в дальнейшем. Кроме того, на флюороскопическом экране плохо различимы мелкие детали изображения и, наконец, рентгеноскопия сопряжена с гораздо большей лучевой нагрузкой на исследуемое животное и рентгенолога, чем рентгенография.

Для устранения этих недостатков был сконструирован специальный прибор - усилитель рентгеновского изображения (УРИ) с приемным телевизионным устройством (рис. 9.8), который воспринимает слабое свечение рентгеновского экрана, усиливает его в несколько тысяч раз, после чего рентгенолог может рассматривать изображение через монокуляр или же оно проецируется на передающую телевизионную трубку, а затем в приемное телевизионное устройство.

Рентгеноскопия с помощью УРИ и телевизионной техники получила название рентгенотелевизионного просвечивания, или рентгенотел евидения. Ее основные преимущества: животных просвечивают в незатемненном помещении; значительно повышается яркость изображения, что позволяет выявлять мелкие детали объекта; снижается лучевая нагрузка на исследуемое животное и рентгенолога и, что очень важно, появляется возможность фотографировать с эк-

Рис. 9.8. Рентгенотелевизионная приставка: а - схема электронно-оптического усилителя: 1 - рентгеновский излучатель; 2 - объект исследования; 3 - входной флюоресцирующий экран с фотокатодом; 4 - выходной флюоресцирующий экран; 5- анод;

  • 6 - объектив; 7- защитное свинцовое стекло; 8- окуляр;
  • 6 - схема формирования видеомагнитной записи: 1 - рентгеновский излучатель; 2 - объект исследования; 3 - электронно-оптический усилитель; 4 - телекамера; 5- монитор; 6- видеомагнитофон;
  • 7 - видеомонитор

рана, записывать изображение на кино-, видеомагнитную пленку или диски.

Рентгенография. Это способ рентгеновского исследования, при котором изображение объекта получают на рентгеновской пленке путем прямого экспонирования пучком излучения. Рентгеновская

пленка чувствительна не только к рентгеновскому излучению, но и к видимому свету, поэтому ее вкладывают в кассету, предохраняющую от видимого света, но пропускающую рентгеновское излучение (рис. 9.9).

Пучок рентгеновского излучения направляют на исследуемую часть тела. Излучение, прошедшее через тело животного, попадает на пленку. Изображение становится видимым после обработки пленки (проявление, фиксирование). Готовый рентгеновский снимок рассматривают в проходящем свете на специальном приборе - не- гатоскопе (рис. 9.10). Снимок любой части тела устанавливают на негатоскопе таким образом, чтобы проксимальные отделы были обращены вверх; при изучении рентгенограмм, сделанных в боковых проекциях, дорсальная поверхность (или голова) должна быть слева, волярная (плантарная) - справа.

Рис. 9.9.

Рис. 9.10.

У рентгенографии много достоинств. Прежде всего метод прост и легко выполним. Снимать можно как в рентгеновском кабинете, так и непосредственно в операционной, стационаре и в полевых условиях с помощью переносных рентгеновских аппаратов. На снимке получается четкое изображение большинства органов. Некоторые из них, например кости, легкие, сердце, хорошо видны за счет естественной контрастности; другие четко проявляются на снимках после искусственного контрастирования. Снимки можно хранить долгое время, сопоставлять с предыдущими и последующими рентгенограммами, т.е. изучать динамику заболевания. Показания к рентгенографии очень широки - с нее начинают большинство рентгенологических исследований.

При рентгенографии необходимо соблюдать определенные правила: снимать каждый орган в двух взаимно перпендикулярных проекциях (обычно используют прямую и боковую); во время съемки максимально приблизить исследуемую часть тела к кассете с пленкой (тогда изображение получится наиболее четким и его размеры будут мало отличается от истинных размеров изучаемого органа).

Однако существует методика рентгенографии, при которой снимаемый объект, наоборот, помещают сравнительно далеко от пленки. В этих условиях из-за расходящегося рентгеновского пучка получается увеличенное изображение органа. Этот способ съемки - рентгенография с прямым увеличением изображения - сопряжен с использованием особых «острофокусных» рентгеновских трубок; его применяют, чтобы изучать мелкие детали.

Различают обзорные и прицельные рентгенограммы. На обзорных получают изображение всего органа, а на прицельных - только интересующей врача части.

Электрорентгенография (ксерорадиография). В этом случае рентгеновское изображение получают на полупроводниковых пластинах и затем переносят на бумагу.

При ксерорадиографии пучок рентгеновского излучения, прошедший через тело животного, попадает не на кассету с пленкой, а на высокочувствительную селеновую пластинку, заряженную перед съемкой статическим электричеством. Под влиянием излучения электрический потенциал пластины меняется на разных участках не одинаково, а в соответствии с интенсивностью потока рентгеновских квантов. Иначе говоря, на пластине возникает скрытое изображение из электростатических зарядов.

В дальнейшем селеновую пластину обрабатывают специальным проявочным порошком. Отрицательно заряженные частицы последнего притягиваются к тем участкам селенового слоя, на которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли свой заряд под действием рентгеновского излучения. Без всякой фотообработки и в кратчайший срок (за 30-60 с) на пластине можно увидеть рентгеновское изображение объекта. Элек- трорентгенографические приставки снабжены приспособлением, которое в течение 2-3 мин переносят изображение с пластинки на бумагу. После этого мягкой тканью снимают остатки проявочного порошка с пластины и вновь ее заряжают. На одной пластине можно получить более 1000 снимков, после чего она становится непригодной для электрорентгенографии.

Главное достоинство электрорентгенографии заключается в том, что с ее помощью быстро получают большое число снимков, не расходуя дорогостоящую рентгеновскую пленку, при обычном освещении и без «мокрого» фотопроцесса.

В нашей стране наибольшее распространение получили электро- рентгенографические аппараты ЭРГА-МП (ЭРГА-01) и ЭРГА-МТ (ЭРГА-02).

С развитием компьютерных технологий в рентгенографии появилась возможность практически моментально получать изображение, активировать его, хранить, восстанавливать и даже передавать изображение на большие расстояния в цифровом формате. Главные преимущества использования цифровой рентгенографии - доступность изображения сразу после съемки, уменьшение облучения в несколько раз по сравнению с традиционной пленочной технологией, короткая экспозиция (позволяющая избежать динамической нерезкости), полный отказ от расходных материалов и фотолаборатории, большие диагностические возможности, позволяющие выделять структуры тканей, увеличивать интересующий фрагмент и проводить измерения прямо на экране компьютера, а также возможность организовывать компактный архив в виде базы данных с моментальным и удобным поиском. При необходимости изображение может быть напечатано на специальной пленке или на бумаге.

Основный недостаток, ограничивающий использование цифровых рентгеновских систем в ветеринарии, - высокая стоимость оборудования и, возможно, некоторая потеря качества изображения по сравнению с традиционным.

Рентгенология как наука берет свое начало от 8 ноября 1895 г., когда немецкий физик профессор Вильгельм Конрад Рентген открыл лучи, впоследствии названные его именем. Сам Рентген назвал их X-лучами. Это название сохранилось на его родине и в странах запада.

Основные свойства рентгеновских лучей:

1. Рентгеновские лучи, исходя из фокуса рентгеновской трубки, распространяются прямолинейно.

2. Они не отклоняются в электромагнитном поле.

3. Скорость распространения их равняется скорости света.

4. Рентгеновские лучи невидимы, но, поглощаясь некоторыми веществами, они заставляют их светиться. Это свечение называется флюоресценцией, оно лежит в основе рентгеноскопии.

5. Рентгеновские лучи обладают фотохимическим действием. На этом свойстве рентгеновских лучей основывается рентгенография (общепринятый в настоящее время метод производства рентгеновских снимков).

6. Рентгеновское излучение обладает ионизирующим действием и придает воздуху способность проводить электрический ток. Ни видимые, ни тепловые, ни радиоволны не могут вызвать это явление. На основе этого свойства рентгеновское излучение, как и излучение радиоактивных веществ, называется ионизирующим излучением.

7. Важное свойство рентгеновских лучей – их проникающая способность, т.е. способность проходить через тело и предметы. Проникающая способность рентгеновских лучей зависит:

7.1. От качества лучей. Чем короче длина рентгеновских лучей (т.е. чем жестче рентгеновское излучение), тем глубже проникают эти лучи и, наоборот, чем длиннее волна лучей (чем мягче излучение), тем на меньшую глубину они проникают.

7.2. От объема исследуемого тела: чем толще объект, тем труднее рентгеновские лучи “пробивают” его. Проникающая способность рентгеновских лучей зависит от химического состава и строения исследуемого тела. Чем больше в веществе, подвергаемом действию рентгеновских лучей, атомов элементов с высоким атомным весом и порядковым номером (по таблице Менделеева), тем сильнее оно поглощает рентгеновское излучение и, наоборот, чем меньше атомный вес, тем прозрачнее вещество для этих лучей. Объяснение этого явления в том, что в электромагнитных излучениях с очень малой длиной волны, каковыми являются рентгеновские лучи, сосредоточена большая энергия.

8. Лучи Рентгена обладают активным биологическим действием. При этом критическими структурами являются ДНК и мембраны клетки.

Необходимо учитывать еще одно обстоятельство. Рентгеновские лучи подчиняются закону обратных квадратов, т.е. интенсивность рентгеновских лучей обратно пропорциональна квадрату расстояния.

Гамма-лучи обладают такими же свойствами, но эти виды излучений различаются по способу их получения: рентгеновское излучение получают на высоковольтных электрических установках, а гамма-излучение – вследствие распада ядер атомов.

Методы рентгенологического исследования делятся на основные и специальные, частные.

Основные рентгенологические методы. К основным методам рентгенологического исследования относятся: рентгенография, рентгеноскопия, электрорентгенография, компьютерная рентгеновская томография.

Рентгеноскопия – просвечивание органов и систем с применением рентгеновских лучей. Рентгеноскопия – анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов органов и систем, а также тканей по теневой картине флюоресцирующего экрана.

Преимущества:

1. Позволяет исследовать больных в различных проекциях и позициях, в силу чего можно выбрать положение, при котором лучше выявляется патологическое тенеобразование.

2. Возможность изучения функционального состояния ряда внутренних органов: легких, при различных фазах дыхания; пульсацию сердца с крупными сосудами, двигательную функцию пищеварительного канала.

3. Тесное контактирование врача-рентгенолога с больным, что позволяет дополнить рентгенологическое исследование клиническим (пальпация под визуальным контролем, целенаправленный анамнез) и т.д.

Недостатки: сравнительно большая лучевая нагрузка на больного и обслуживающий персонал; малая пропускная способность за рабочее время врача; ограниченные возможности глаза исследователя в выявлении мелких тенеобразований и тонких структур тканей и т.д. Показания к рентгеноскопии ограничены.

Электронно–оптическое усиление (ЭОУ). Работа электронно–оптического преобразователя (ЭОП) основана на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Яркость свечения экрана усиливается до 7 тыс. раз. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку.

Рентгенография – фотосъемка посредством рентгеновских лучей. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 × 18 см, 18 × 24 см, 24 × 30 см, 30 × 40 см и др.).

Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. Они представляют картон, который пропитывается специальным люминофором (вольфрамо-кислым кальцием), обладающий флюоресцирующим свойством под влиянием рентгеновых лучей. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Очень хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны – Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.

Для отсеивания мягких лучей первичного потока, который может достигнуть пленки, а также вторичного излучения, используются специальные подвижные решетки. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, полосканию в воде, закреплению и тщательной промывке пленки в текучей воде с последующей сушкой. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин. или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Преимущество рентгенографии: устраняет недостатки рентгеноскопии. Недостаток: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.

Электрорентгенография. Метод получения рентгеновского изображения на полупроводниковых пластинах. Принцип метода: при попадании лучей на высокочувствительную селеновую пластину в ней меняется электрический потенциал. Селеновая пластинка посыпается порошком графита. Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, в которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли заряд под действием рентгеновского излучения. Электрорентгенография позволяет в 2-3 минуты перенести изображение с пластины на бумагу. На одной пластине можно произвести более 1000 снимков. Преимущество электрорентгенографии:

1. Быстрота.

2. Экономичность.

Недостаток: недостаточно высокая разрешающая способность при исследовании внутренних органов, более высокая доза излучения, чем при рентгенографии. Метод применяется, в основном, при исследовании костей и суставов в травмопунктах. В последнее время применение этого метода все более ограничивается.

Компьютерная рентгеновская томография (КТ). Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.

КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей.

В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами и создание рентгеновского изображения органов и тканей с помощью ЭВМ. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, изучаемое на мониторе. Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). На основе аксиальных сканов получают реконструкцию изображения в других плоскостях.

В практике рентгенологии в настоящее время используется, в основном три типа компьютерных томографов: обычные шаговые, спиральные или винтовые, многосрезовые.

В обычных шаговых компьютерных томографах высокое напряжение к рентгеновской трубке подается по высоковольтным кабелям. Из-за этого трубка не может вращаться постоянно, а должна выполнять качающиеся движения: один оборот по часовой стрелке, остановка, один оборот против часовой стрелки, остановка и обратно. В результате каждого вращения получают одно изображение толщиной 1 – 10 мм за 1 – 5 сек. В промежутке между срезами стол томографа с пациентом передвигается на установленную дистанцию в 2 – 10 мм, и измерения повторяются. При толщине среза 1 – 2 мм шаговые аппараты позволяют выполнять исследование в режиме «высокого разрешения». Но эти аппараты обладают рядом недостатков. Продолжительность сканирования относительно большая, и на изображениях могут появляться артефакты от движения и дыхания. Реконструкция изображения в проекциях, отличных от аксиальных, трудновыполнима или просто невозможна. Серьезные ограничения имеются при выполнении динамического сканирования и исследований с контрастным усилением. Кроме того, могут быть не выявлены малоразмерные образования между срезами при неравномерном дыхании пациента.

В спиральных (винтовых) компьютерных томографах постоянное вращение трубки совмещено с одновременным перемещением стола пациента. Таким образом, при исследовании получают информацию сразу от всего исследуемого объема тканей (целиком голова, грудная клетка), а не от отдельных срезов. При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением. В шаговых и спиральных томографах используют один или два ряда детекторов.

Многосрезовые (мультидетекторные) компьютерные томографы снабжены 4, 8, 16, 32 и даже 128 рядами детекторов. В многосрезовых аппаратах значительно сокращается время сканирования и улучшается пространственная разрешающая способность в аксиальном направлении. На них можно получать информацию с использованием методики высокого разрешения. Значительно улучшается качество мультипланарных и объемных реконструкций.

КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:

1. Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .

2. КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.

3. КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.

4. КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.

5. КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.

6. КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).

Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определение рецидивов и сопутствующих осложнений.

Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (HU) по шкале Хаунсфилда. Согласно этой шкале, HU воды принимают за 0; кости, обладающие наибольшей плотностью – за +1000, воздух, обладающий наименьшей плотностью, – за -1000.

Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, что HU пораженной ткани отличается от такового здоровой на 10 - 15 ед.

Недостатком КТ является увеличение лучевой нагрузки на пациентов. В настоящее время на КТ приходится 40% от коллективной дозы облучения, получаемой пациентами при рентгенодиагностических процедурах, тогда как само КТ-исследование составляет лишь 4% от числа всех рентгенологических исследований.

Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.

Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.

Такие методы рентгенологического исследования называются специальными. Органы и ткани человеческого организма становятся различимыми, если они поглощают рентгеновские лучи в различной степени. В физиологических условиях такая дифференциация возможна только при наличии естественной контрастности, которая обусловливается разницей в плотности (химическом составе этих органов), величине, положении. Хорошо выявляется костная структура на фоне мягких тканей, сердца и крупных сосудов на фоне воздушной легочной ткани, однако камеры сердца в условиях естественной контрастности невозможно выделить отдельно, как и органы брюшной полости, например. Необходимость изучения рентгеновскими лучами органов и систем, имеющих одинаковую плотность, привело к созданию методики искусственного контрастирования. Сущность этой методики заключается во введении в исследуемый орган искусственных контрастных веществ, т.е. веществ, имеющих плотность, различную от плотности органа и окружающей его среды.

Рентгеноконтрастные средства (РКС) принято подразделять на вещества с высоким атомным весом (рентгено-позитивные контрастные вещества) и низким (рентгено-негативные контрастные вещества). Контрастные вещества должны быть безвредными.

Контрастные вещества, которые интенсивно поглощают рентгеновские лучи (позитивные рентгеноконтрастные средства) это:

1. Взвеси солей тяжелых металлов – сернокислый барий, применяемый для исследования ЖКТ (он не всасывается и выводится через естественные пути).

2. Водные растворы органических соединений йода – урографин, верографин, билигност, ангиографин и др., которые вводятся в сосудистое русло, с током крови попадают во все органы и дают, кроме контрастирования сосудистого русла, контрастирование других систем - мочевыделительной, желчного пузыря и т.д.

3. Масляные растворы органических соединений йода – йодолипол и др., которые вводятся в свищи и лимфатические сосуды.

Неионные водорастворимые йодсодержащие рентгеноконтрастные средства: ультравист, омнипак, имагопак, визипак характеризуются отсутствием в химической структуре ионных групп, низкой осмолярностью, что значительно уменьшает возможность патофизиологических реакций, и тем самым обусловливается низкое количество побочных эффектов. Неионные йодсодержащие рентгеноконтрастные средства обусловливают более низкое количество побочных эффектов, чем ионные высокоосмолярные РКС.

Рентгенонегативные или отрицательные контрастные вещества – воздух, газы “не поглощают” рентгеновские лучи и поэтому хорошо оттеняют исследуемые органы и ткани, которые обладают большой плотностью.

Искусственное контрастирование по способу введения контрастных препаратов подразделяется на:

1. Введение контрастных веществ в полость исследуемых органов (самая большая группа). Сюда относятся исследования ЖКТ, бронхография, исследования свищей, все виды ангиографии.

2. Введение контрастных веществ вокруг исследуемых органов – ретропневмоперитонеум, пневморен, пневмомедиастинография.

3. Введение контрастных веществ в полость и вокруг исследуемых органов. Сюда относится париетография. Париетография при заболеваниях органов ЖКТ заключается в получении снимков стенки исследуемого полого органа после введения газа вначале вокруг органа, а затем в полость этого органа.

4. Способ, в основе которого лежит специфическая способность некоторых органов концентрировать отдельные контрастные препараты и при этом оттенять его на фоне окружающих тканей. Сюда относятся выделительная урография, холецистография.

Побочное действие РКС. Реакции организма на введение РКС наблюдаются примерно в 10% случаев. По характеру и степени тяжести они делятся на 3 группы:

1. Осложнения, связанные с проявлением токсического действия на различные органы с функциональными и морфологическими поражениями их.

2. Нервно-сосудистая реакция сопровождается субъективными ощущениями (тошнота, ощущение жара, общая слабость). Объективные симптомы при этом – рвота, понижение артериального давления.

3. Индивидуальная непереносимость РКС с характерными симптомами:

3.1. Со стороны центральной нервной системы – головные боли, головокружение, возбуждение, беспокойство, чувство страха, возникновение судорожных припадков, отек головного мозга.

3.2. Кожные реакции – крапивница, экзема, зуд и др.

3.3. Симптомы, связанные с нарушением деятельности сердечно-сосудистой системы – бледность кожных покровов, неприятные ощущения в области сердца, падение артериального давления, пароксизмальная тахи- или брадикардия, коллапс.

3.4. Симптомы, связанные с нарушением дыхания – тахипноэ, диспноэ, приступ бронхиальной астмы, отек гортани, отек легких.

Реакции непереносимости РКС иногда носят необратимый характер и приводят к летальному исходу.

Механизмы развития системных реакций во всех случаях имеют сходный характер и обусловлены активацией системы комплемента под воздействием РКС, влиянием РКС на свертывающую систему крови, высвобождением гистамина и других биологически активных веществ, истинной иммунной реакцией или сочетанием этих процессов.

В легких случаях побочных реакций достаточно прекратить инъекцию РКС и все явления, как правило, проходят без терапии.

При тяжелых осложнениях необходимо немедленно вызвать реанимационную бригаду, а до ее прибытия ввести 0,5 мл адреналина, внутривенно 30 – 60 мг преднизолона или гидрокортизона, 1 – 2 мл раствора антигистаминного препарата (димедрол, супрастин, пипольфен, кларитин, гисманал), внутривенно 10% хлористый кальций. При отеке гортани произвести интубацию трахеи, а при невозможности ее проведения – трахеостомию. При остановке сердца немедленно приступить к искусственному дыханию и непрямому массажу сердца, не дожидаясь прибытия реанимационной бригады.

Для профилактики побочного действия РКС накануне проведения рентгеноконтрастного исследования применяют премедикацию антигистаминными и глюкокортикоидными препаратами, а также проводят один из тестов для прогнозирования повышенной чувствительности больного к РКС. Наиболее оптимальными тестами являются: определение высвобождения гистамина из базофилов периферической крови при смешивании ее с РКС; содержания общего комплемента в сыворотке крови больных, назначенных для проведения рентгеноконтрастного обследования; отбор больных для премедикации путем определения уровней сывороточных иммуноглобулинов.

Среди более редких осложнений могут иметь место «водное» отравление при ирригоскопии у детей с мегаколон и газовая (либо жировая) эмболия сосудов.

Признаком «водного» отравления, когда быстро всасывается через стенки кишки в кровеносное русло большое количество воды и наступает дисбаланс электролитов и белков плазмы, могут быть тахикардия, цианоз, рвота, нарушение дыхания с остановкой сердца; может наступить смерть. Первая помощь при этом – внутривенное введение цельной крови или плазмы. Профилактикой осложнения является проведение ирригоскопии у детей взвесью бария в изотоническом растворе соли, вместо водной взвеси.

Признаками эмболии сосудов являются: появление ощущения стеснения в груди, одышка, цианоз, урежение пульса и падение артериального давления, судороги, прекращение дыхания. При этом следует немедленно прекратить введение РКС, уложить больного в положение Тренделенбурга, приступить к искусственному дыханию и непрямому массажу сердца, ввести внутривенно 0,1% - 0,5 мл раствора адреналина и вызвать реанимационную бригаду для возможной интубации трахеи, осуществления аппаратного искусственного дыхания и проведения дальнейших лечебных мероприятий.

Частные рентгенологические методы. Флюорография – способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на пленку фотоаппаратом.

Томография (обычная) предназначена для устранения суммационного характера рентгеновского изображения. Принцип: в процессе съемки рентгенологическая трубка и кассета с пленкой синхронно перемещаются относительно больного. В результате на пленке получается более четкое изображение только тех деталей, которые лежат в объекте на заданной глубине, в то время как изображение деталей, расположенных выше или ниже, становится нерезким, «размазывается».

Полиграфия – это получение нескольких изображений исследуемого органа и его части на одной рентгенограмме. Делается несколько снимков (в основном 3) на одной пленке через определенное время.

Рентгенокимография – это способ объективной регистрации сократительной способности мышечной ткани функционирующих органов по изменению контура изображения. Снимок производится через движущуюся щелевидную свинцовую решетку. При этом колебательные движения органа фиксируются на пленку в виде зубцов, имеющих характерную форму для каждого органа.

Цифровая рентгенография – включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации.

В настоящее время технически реализованы и уже получили клиническое применение четыре системы цифровой рентгенографии:

1. цифровая рентгенография с экрана ЭОП;

2. цифровая люминесцентная рентгенография;

3. сканирующая цифровая рентгенография;

4. цифровая селеновая рентгенография.

Система цифровой рентгенографии с экрана ЭОП состоит из экрана ЭОП, телевизионного тракта и аналого-цифрового преобразователя. В качестве детектора изображения используется ЭОП. Телевизионная камера превращает оптическое изображение на экране ЭОП в аналоговый видеосигнал, который далее при помощи аналого-цифрового преобразователя формируется в набор цифровых данных и передается в накопительное устройство. Затем эти данные компьютер переводит в видимое изображение на экране монитора. Изображение изучается на мониторе и может быть распечатано на пленке.

В цифровой люминесцентной рентгенографии люминесцентные запоминающие пластины после их экспонирования рентгеновским излучением сканируются специальным лазерным устройством, а возникающий в процессе лазерного сканирования световой пучок трансформируется в цифровой сигнал, воспроизводящий изображение на экране монитора или распечатывается. Люминесцентные пластины встроены в обычных размеров кассеты, которые многократно (от 10000 до 35000 раз) могут использоваться с любым рентгеновским аппаратом.

В сканирующей цифровой рентгенографии через все отделы исследуемого объекта последовательно пропускают движущийся узкий пучок рентгеновского излучения, которое затем регистрируется детектором и после оцифровки в аналого-цифровом преобразователе передается на экран монитора компьютера с возможной последующей распечаткой.

Цифровая селеновая рентгенография в качестве приемника рентгеновского излучения использует детектор покрытый слоем селена. Формирующееся в селеновом слое после экспонирования скрытое изображение в виде участков с различными электрическими зарядами считывается с помощью сканирующих электродов и трансформируется в цифровой вид. Далее изображение можно рассматривать на экране монитора или распечатывать на пленку.

Преимущества цифровой рентгенографии:

1. Повышение качества изображений и расширение диагностических возможностей.

2. Повышение эффективности использования оборудования.

3. Снижение дозовых нагрузок на пациентов и медицинский персонал.

4. Возможность объединения в единую сеть различного оборудования отделения лучевой диагностики.

5. Возможность интеграции в общую локальную сеть учреждения («электронная история болезни»).

6. Возможность организации удаленных консультаций («телемедицина»).

Рентгенодиапевтика – лечебно-диагностические процедуры. Имеются в виду сочетанные рентгеноэндоскопические процедуры с лечебным вмешательством (интервенционная радиология).

Интервенционно-радиологические вмешательства в настоящее время включают: а) транскатетерные вмешательства на сердце, аорте, артериях и венах: реканализация сосудов, разобщение врожденных и приобретенных артериовенозных соустий, тромбэктомии, эндопротезирование, установка стентов и фильтров, эмболизация сосудов, закрытие дефектов межпредсердной и межжелудочковой перегородок, селективное введение лекарств в различные отделы сосудистой системы; б) чрескожное дренирование, пломбировка и склерозирование полостей различной локализации и происхождения, а также дренирование, дилатация, стентирование и эндопротезирование протоков разных органов (печени, поджелудочной железы, слюнной железы, слезноносового канала и пр.); в) дилатация, эндопротезирование, стентирование трахеи, бронхов, пищевода, кишки, дилатация кишечных стриктур; г) пренатальные инвазивные процедуры, лучевые вмешательства на плоде под контролем ультразвука, реканализация и стентирование маточных труб; д) удаление инородных тел и конкрементов различной природы и разной локализации. В качестве навигационного (направляющего) исследования, помимо рентгенологического, применяют ультразвуковой метод, а ультразвуковые аппараты снабжают специальными пункционными датчиками. Виды интервенционных вмешательств постоянно расширяются.

В конечном итоге, предметом изучения в рентгенологии является теневое изображение. Особенностями теневого рентгеновского изображения является:

1. Изображение, складывающееся из многих темных и светлых участков – соответственно областям неодинакового ослабления рентгеновых лучей в разных частях объекта.

2. Размеры рентгеновского изображения всегда увеличены (кроме КТ) по сравнению с изучаемым объектом, и тем больше, чем дальше объект находится от пленки, и чем меньше фокусное расстояние (отстояние пленки от фокуса рентгеновской трубки).

3. Когда объект и пленка не в параллельных плоскостях, изображение искажается.

4. Изображение суммационное (кроме томографии). Следовательно, рентгеновские снимки должны быть произведены не менее чем в двух взаимно перпендикулярных проекциях.

5. Негативное изображение при рентгенографии и КТ.

Каждая ткань и патологические образования, выявляемые при лучевом исследовании, характеризуются строго определенными признаками, а именно: числом, положением, формой, размером, интенсивностью, структурой, характером контуров, наличием или отсутствием подвижности, динамикой во времени.


Похожая информация.


Рентген костей является одним из самых распространенных исследований, проводимых в современной медицинской практике. Большинство людей знакомы с данной процедурой, поскольку возможности для применения данного метода очень обширны. Список показаний для рентгена костей включает большое количество заболеваний. Одни лишь травмы и переломы конечностей требуют неоднократного проведения рентгеновского исследования.

Рентген костей проводится с использованием различной аппаратуры, также существует разнообразие методов данного исследования. Применение вида рентгеновского исследования зависит от конкретной клинической ситуации, возраста пациента, основного заболевания и сопутствующих факторов. Лучевые методы диагностики являются незаменимыми в диагностике заболеваний костной системы и играют главную роль в постановке диагноза.

Существуют следующие виды рентгеновского исследования костей:

  • пленочная рентгенография;
  • цифровая рентгенография;
  • рентгеновская денситометрия;
  • рентген костей с использованием контрастных веществ и некоторые другие методы.

Что такое рентген?

Рентген является одним из видов электромагнитного излучения. Данный вид электромагнитной энергии был открыт в 1895 году. К электромагнитному излучению также относится солнечный свет, а также свет от любого искусственного освещения. Рентгеновские лучи используются не только в медицине, а встречаются также и в обычной природе. Около 1% излучения Солнца доходит до Земли в виде рентгеновских лучей, что формирует естественный радиационный фон.

Искусственное получение рентгеновских лучей стало возможным благодаря Вильгельму Конраду Рентгену, в честь которого они и названы. Он также первым обнаружил возможность их применения в медицине для «просвечивания» внутренних органов, в первую очередь - костей. Впоследствии данная технология развивалась, появлялись новые способы применения рентгеновского излучения, снижалась доза облучения.

Одним из негативных свойств рентгеновского излучения является его способность вызывать ионизацию в веществах, через которые оно проходит. Из-за этого рентгеновское излучение названо ионизирующим. В больших дозах рентген может привести к лучевой болезни . Первые десятилетия после открытия рентгеновских лучей данная особенность была неизвестной, что приводило к заболеваниям как у врачей, так и у пациентов. Однако сегодня доза рентгеновского излучения тщательно контролируется и можно с уверенностью говорить о том, что вредом от рентгеновского излучения можно пренебречь.

Принцип получения рентгеновского снимка

Для получения рентгеновского снимка необходимы три компонента. Первый из них – это источник рентгеновского излучения. Источником рентгеновского излучения служит рентгеновская трубка. В ней под действием электрического тока происходит взаимодействие определенных веществ и высвобождение энергии, из которой большая часть выделяется в виде тепла, а незначительная часть – в виде рентгеновского излучения. Рентгеновские трубки находятся в составе всех рентгеновских установок и требуют значительного охлаждения.

Вторым компонентом для получения снимка является исследуемый объект. В зависимости от его плотности происходит частичное поглощение рентгеновских лучей. Благодаря разнице тканей человеческого организма за пределы тела проникает рентгеновское излучение различной мощности, что оставляет на снимке различные пятна. Там, где рентгеновское излучение было поглощено в большей степени, остаются тени, а там где оно прошло практически неизменно – образуются просветления.

Третьим компонентом для получения рентгеновского снимка является приемник рентгеновского излучения. Он может быть пленочным или цифровым (рентгеночувствительный датчик ). Наиболее часто сегодня используется в качестве приемника рентгеновская пленка. Она обработана специальной эмульсией с содержанием серебра, которая изменяется при попадании на нее рентгеновских лучей. Зоны просветления на снимке имеют темный оттенок, а тени – белый оттенок. Здоровые кости имеют высокую плотность и оставляют равномерную тень на снимке.

Цифровой и пленочный рентген костей

Первые методики рентгеновского исследования подразумевали использование в качестве принимающего элемента фоточувствительного экрана или пленки. Сегодня рентгеновская пленка является наиболее часто используемым приемником рентгеновских лучей. Однако уже в ближайшие десятилетия цифровая рентгенография полностью заменит пленочную, так как обладает рядом неоспоримых преимуществ. В цифровой рентгенографии принимающим элементом являются сенсоры, чувствительные к рентгеновскому излучению.

Цифровая рентгенография обладает следующими преимуществами по сравнению с пленочной рентгенографией:

  • возможность уменьшить дозу облучения благодаря более высокой чувствительности цифровых датчиков;
  • увеличение точности и разрешения снимка;
  • простота и скорость получения снимка, отсутствие необходимости обрабатывать фоточувствительную пленку;
  • легкость хранения и обработки информации;
  • возможность быстрой передачи информации.
Единственным недостатком цифровой рентгенографии является несколько более высокая стоимость аппаратуры по сравнению с обычной рентгенографией. Из-за этого не во всех медицинских центрах можно найти данное оборудование. По возможности пациентам рекомендуется выполнять именно цифровой рентген, так как он дает более полную диагностическую информацию и вместе с тем менее вреден.

Рентген костей с контрастным веществом

Рентгенография костей конечностей может быть выполнена с применением контрастных веществ. В отличие от других тканей организма, кости обладают высокой естественной контрастностью. Поэтому контрастные вещества применяются для уточнения образований, смежных с костями – мягких тканей, суставов, сосудов. Данные техники рентгена применяются не так часто, однако в некоторых клинических ситуациях они являются незаменимыми.

Существуют следующие рентгеноконтрастные методики исследования костей:

  • Фистулография. Данная методика подразумевает заполнение свищевых ходов контрастными веществами (йодолипол, сульфат бария ). Свищи образуются в костях при воспалительных заболеваниях, таких как остеомиелит . После исследования вещество удаляют из свищевого хода с помощью шприца.
  • Пневмография. Данное исследование подразумевает введение газа (воздух, кислород, закись азота ) объемом около 300 кубических сантиметров в мягкие ткани. Пневмография выполняется, как правило, при травматических повреждениях, совмещенных с размозжением мягких тканей, оскольчатых переломах.
  • Артрография. Данный метод включает заполнение полости сустава жидким рентгеноконтрастным препаратом. Объем контрастного вещества зависит от объема полости сустава. Наиболее часто артрография выполняется на коленном суставе. Данная методика позволяет оценить состояние суставных поверхностей костей, включенных в сустав.
  • Ангиография костей. Данный вид исследования подразумевает введение контрастного вещества в сосудистое русло. Исследование сосудов костей применяется при опухолевых образованиях, для уточнения особенностей ее роста и кровоснабжения. В злокачественных опухолях диаметр и расположение сосудов являются неравномерными, количество сосудов обычно больше, чем в здоровых тканях.
Рентген костей должен быть выполнен с целью точной постановки диагноза. В большинстве случаев использование контрастного вещества позволяет получить более точную информацию и оказать более качественную помощь пациенту. Однако необходимо учитывать, что использование контрастных веществ имеет некоторые противопоказания и ограничения. Техника использования контрастных веществ требует времени и наличия опыта у врача-рентгенолога.

Рентген и компьютерная томография (КТ ) костей

Компьютерная томография – рентгеновский метод, который обладает повышенной точностью и информативностью. На сегодняшний день компьютерная томография представляет собой самый лучший метод исследования костной системы. С помощью КТ можно получить трехмерное изображение любой кости в организме или срезы через любую кость во всех возможных проекциях. Метод является точным, но наряду с этим создает высокую лучевую нагрузку.

Преимуществами КТ перед стандартной рентгенографией являются:

  • высокое разрешение и точность метода;
  • возможность получения любой проекции, в то время как рентген осуществляется обычно не более чем в 2 – 3 проекциях;
  • возможность трехмерной реконструкции исследуемой части тела;
  • отсутствие искажений, соответствие линейных размеров;
  • возможность одновременного обследования костей, мягких тканей и сосудов;
  • возможность проведения обследования в реальном времени.
Компьютерная томография проводится в случаях, когда необходимо диагностировать такие сложные заболевания как остеохондроз , межпозвоночные грыжи , опухолевые заболевания. В случаях, когда диагностика не представляет особых затруднений, проводится обычная рентгенография. Необходимо учитывать высокую лучевую нагрузку данного метода, из-за чего КТ не рекомендуется проводить чаще, чем раз в год.

Рентген костей и магнитно-резонансная томография (МРТ )

Магнитно-резонансная томография (МРТ ) – сравнительно новый метод диагностики. МРТ позволяет получить точное изображение внутренних структур организма во всех возможных плоскостях. С помощью средств компьютерного моделирования МРТ дает возможность выполнить трехмерную реконструкцию органов и тканей человека. Основным преимуществом МРТ является полное отсутствие лучевой нагрузки.

Принцип работы магнитно-резонансного томографа заключается в придании атомам, из которых построен организм человека, магнитного импульса. После этого считывается энергия, освобожденная атомами при возвращении к исходному состоянию. Одним из ограничений данного метода является невозможность применения при наличии в организме металлических имплантатов, кардиостимуляторов .

При выполнении МРТ обычно проводится измерение энергии атомов водорода. Водород в организме человека встречается наиболее часто в составе соединений воды. В костях вода содержится в гораздо меньших объемах, чем в других тканях организма, поэтому при исследовании костей МРТ дает менее точные результаты, чем при исследовании других областей организма. В этом МРТ уступает КТ, однако все равно превышает по точности обычную рентгенографию.

МРТ является наилучшим методом диагностики опухолей костей, а также метастазов костных опухолей в отдаленных областях. Одним из серьезных недостатков данного метода является высокая стоимость и большие временные затраты на исследование (30 минут и больше ). Все это время пациент должен занимать неподвижное положение в магнитно-резонансном томографе. Данный аппарат выглядит как тоннель закрытой конструкции, из-за чего у некоторых людей появляется дискомфорт.

Рентген и денситометрия костей

Исследование структуры костной ткани проводится при ряде заболеваний, а также при старении организма. Наиболее часто исследование структуры костей проводится при таком заболевании как остеопороз . Снижение содержания минеральных веществ в костях приводит к их хрупкости, риску переломов, деформациям и повреждениям соседних структур.

Рентгеновский снимок позволяет оценить структуру костей лишь субъективно. Для определения количественных параметров плотности кости, содержания минеральных веществ в ней используется денситометрия. Процедура проходит быстро и безболезненно. В то время как пациент лежит неподвижно на кушетке, врач исследует с помощью специального датчика определенные участки скелета. Наиболее важными являются данные денситометрии головки бедренной кости и позвонков.

Существуют следующие виды денситометрии костей:

  • количественная ультразвуковая денситометрия;
  • рентгеновская абсорбциометрия;
  • количественная магнитно-резонансная томография;
  • количественная компьютерная томография.
Денситометрия рентгеновского типа основана на измерении поглощения рентгеновского луча костью. Если кость плотная, то она задерживает большую часть рентгеновского излучения. Данный метод очень точный, но обладает ионизирующим эффектом. Альтернативные методы денситометрии (ультразвуковая денситометрия ) являются более безопасными, но и менее точными.

Денситометрия показана в следующих случаях:

  • остеопороз;
  • зрелый возраст (старше 40 – 50 лет );
  • менопауза у женщин;
  • частые переломы костей;
  • заболевания позвоночника (остеохондроз, сколиоз );
  • любые костные повреждения;
  • малоподвижный образ жизни (гиподинамия ).

Показания и противопоказания рентгена костей скелета

Рентген костей скелета имеет обширный список показаний. Различные заболевания могут быть характерны для разных возрастов, однако травмы или опухоли костей могут встречаться в любом возрасте. Для диагностики заболеваний костной системы именно рентген является самым информативным методом. Рентгеновский метод обладает также некоторыми противопоказаниями, которые, впрочем, являются относительными. Однако следует помнить, что рентген костей может быть опасен и принести вред при слишком частом использовании.

Показания к рентгену костей

Рентгеновское исследование является чрезвычайно распространенным и информативным исследованием для костей скелета. Кости недоступны для прямого обследования, однако по рентгеновскому снимку можно получить практически всю необходимую информацию о состоянии костей, об их форме, размерах и структуре. Однако рентген костей в силу выделения ионизирующего излучения не может быть выполнен слишком часто и по любому поводу. Показания для рентгена костей определены достаточно точно и основаны на жалобах и симптомах заболеваний пациентов.

Рентген костей показан в следующих случаях:

  • травматические повреждения костей с выраженным болевым синдромом, деформацией мягких тканей и костей;
  • вывихи и другие повреждения суставов;
  • аномалии развития костей у детей;
  • отставание детей в росте;
  • ограничение подвижности в суставах;
  • боль в покое или при движениях любой части тела;
  • увеличение костей в объеме, при подозрении на опухоль;
  • подготовка к оперативному лечению;
  • оценка качества проведенного лечения (переломы, трансплантации и др. ).
Список заболеваний скелета, которые выявляют с помощью рентгена, очень обширен. Это связано с тем, что заболевания костной системы обычно протекают бессимптомно и выявляются только после рентгеновского исследования. Некоторые заболевания, такие как остеопороз, являются возрастными и практически неизбежны при старении организма.

Рентген костей в большинстве случаев позволяет провести дифференциацию между перечисленными заболеваниями, благодаря тому, что каждое из них обладает достоверными рентгенологическими признаками. В сложных случаях, особенно перед проведением хирургических операций, показано применение компьютерной томографии. Врачи предпочитают использовать данное исследование, так как оно наиболее информативно и обладает наименьшим количеством искажений по сравнению с анатомическими размерами костей.

Противопоказания к рентгеновскому исследованию

Противопоказания к рентгеновскому исследованию связаны с наличием ионизирующего эффекта у рентгеновского излучения. Вместе с тем все противопоказания к исследованию являются относительными, так как ими можно пренебречь в экстренных случаях, таких как переломы костей скелета. Однако при возможности следует ограничить количество рентгеновских исследований и не проводить их без надобности.

К относительным противопоказаниям рентгеновского исследования относятся:

  • наличие металлических имплантатов в теле;
  • острые или хронические психические заболевания;
  • тяжелое состояние пациента (массивная кровопотеря, бессознательное состояние, пневмоторакс );
  • первый триместр беременности ;
  • детский возраст (до 18 лет ).
Рентген с применением контрастных веществ противопоказан в следующих случаях:
  • аллергические реакции на компоненты контрастных веществ;
  • эндокринные нарушения (заболевания щитовидной железы );
  • тяжелые заболевания печени и почек ;
Благодаря тому, что доза облучения в современных рентгеновских установках снижается, рентгеновский метод становится все более безопасным и позволяет снять ограничения по его применению. В случае сложных травм рентген проводится практически сразу, для того чтобы как можно раньше начать лечение.

Дозы облучения при различных методах рентгеновского исследования

Современная лучевая диагностика придерживается строгих норм безопасности. Рентгеновское излучение измеряется с помощью специальных дозиметров, а рентгеновские установки проходят специальную сертификацию о соответствии нормам радиологического облучения. Дозы облучения неодинаковы для разных методов исследования, а также для различных анатомических областей. Единицей измерения дозы облучения является миллиЗиверт (мЗв ).

Дозы облучения при различных методах рентгена костей

Как видно из приведенных данных, наибольшую рентгеновскую нагрузку несет компьютерная томография. Вместе с тем, компьютерная томография является самым информативным методом исследования костей на сегодняшний день. Также можно сделать вывод о большом преимуществе цифровой рентгенографии перед пленочной, поскольку рентгеновская нагрузка снижается от 5 до 10 раз.

Как часто можно делать рентген?

Рентгеновское излучение несет определенную опасность человеческому организму. Именно по этой причине все излучение, которое было получено с медицинской целью, должно быть отражено в медицинской карте больного. Такой учет должен вестись с целью соблюдения годовых норм, ограничивающих возможное количество рентгеновских исследований. Благодаря применению цифровой рентгенографии их количество достаточно для решения практически любых медицинских задач.

Ежегодное ионизирующее излучение, которое получает организм человека из окружающей среды (природный фон ), составляет от 1 до 2 мЗв. Предельно допустимая доза рентгеновского излучения составляет 5 мЗв в год или по 1 мЗв в течение каждого из 5 лет. В большинстве случаев данные значения не превышаются, так как доза облучения при однократном исследовании в разы меньше.

Количество рентгеновских исследований, которое можно провести в течение года, зависит от типа исследования и анатомической области. В среднем допускается проведение 1 компьютерной томографии или от 10 до 20 цифровых рентгенографий. Однако надежных данных о том, какое влияние оказывают дозы излучения в 10 – 20 мЗв ежегодно, нет. С уверенностью можно сказать лишь то, что в некоторой мере они повышают риск некоторых мутаций и клеточных нарушений.

Какие органы и ткани страдают от ионизирующего излучения рентгеновских установок?

Способность вызывать ионизацию – одно из свойств рентгеновского излучения. Ионизирующее излучение может привести к спонтанному распаду атомов, клеточным мутациям, сбою в воспроизводстве клеток. Именно поэтому рентгеновское исследование, являющееся источником ионизирующего излучения, требует нормирования и установления пороговых значений доз облучения.

Ионизирующее излучение оказывает наибольшее влияние на следующие органы и ткани:

  • костный мозг , кроветворные органы;
  • хрусталик глаза;
  • эндокринные железы;
  • половые органы;
  • кожа и слизистые оболочки;
  • плод беременной женщины;
  • все органы детского организма.
Ионизирующее излучение в дозе 1000 мЗв вызывает явление острой лучевой болезни. Такая доза попадает в организм только в случае катастроф (взрыв атомной бомбы ). В меньших дозах ионизирующее излучение может приводить к преждевременному старению, злокачественным опухолям, катаракте . Несмотря на то, что доза рентгеновского излучения сегодня значительно уменьшилась, в окружающем мире существует большое количество канцерогенных и мутагенных факторов, которые в совокупности могут вызывать такие негативные последствия.

Можно ли делать рентген костей беременным и кормящим мамам?

Любое рентгенологическое исследование не рекомендуется к проведению для беременных женщин. Согласно данным Всемирной Организации Здравоохранения доза в 100 мЗв практически неизбежно вызывает нарушения развития плода или мутации, приводящие к раку . Наибольшие значение имеет первый триместр беременности, так как в этот период происходит наиболее активное развитие тканей плода и формирование органов. При необходимости все рентгенологические исследования переносят на второй и третий триместр беременности. Исследования, проведенные на людях, показали, что рентген, выполненный после 25 недели беременности, не приводит к аномалиям у ребенка.

Для кормящих матерей отсутствуют ограничения в выполнении рентгеновских снимков, так как ионизирующее влияние не влияет на состав грудного молока . Полноценные исследования в данной области не были проведены, поэтому в любом случае врачи рекомендуют кормящим матерям сцедить первую порцию молока при грудном вскармливании . Это поможет перестраховаться и сохранить уверенность в здоровье ребенка.

Рентгеновское исследование костей для детей

Рентгеновское исследование для детей считается нежелательным, поскольку именно в детском возрасте организм наиболее подвержен негативному влиянию ионизирующего излучения. Следует отметить, что именно в детском возрасте происходит наибольшее число травм, которые приводят к необходимости выполнить рентгеновское исследование. Именно поэтому рентген детям выполняется, однако используются различные защитные приспособления, которые позволяют уберечь развивающиеся органы от облучения.

Рентгеновское исследование требуется также при задержке роста детей. В этом случае рентген проводится столько раз, сколько требуется, поскольку в плане лечения включаются рентгенологические исследование через определенный промежуток времени (обычно 6 месяцев ). Рахит, врожденные аномалии скелета, опухоли и опухолеподобные заболевания – все эти заболевания требуют лучевой диагностики и не могут быть заменены другими методами.

Подготовка к рентгену костей

Подготовка к исследованию лежит в основе любого успешного исследования. От этого зависит как качество диагностики, так и результат лечения. Подготовка к рентгеновскому исследованию является довольно простым мероприятием и обычно не создает затруднений. Лишь в некоторых случаях, как, например, рентген таза или позвоночника, выполнение рентгена требует особой подготовки.

Существуют некоторые особенности подготовки к рентгену детей. Родители должны помочь врачам и правильно психологически настроить детей к исследованию. Детям сложно долгое время оставаться неподвижными, также часто они боятся врачей, людей «в белых халатах». Благодаря сотрудничеству между родителями и врачами можно добиться хорошей диагностики и качественного лечения детских заболеваний.

Как получить направление на рентген костей? Где выполняют рентгеновское исследование?

Рентген костей можно выполнить сегодня практически в любом центре, где оказывают медицинскую помощь. Несмотря на то, что сегодня рентгеновское оборудование является широкодоступным, рентгеновское исследование выполняется только по направлению врача. Это связано с тем, что рентген в определенной мере вредит здоровью человека и имеет некоторые противопоказания.

Рентген костей выполняется по направлению врачей разных специальностей. Чаще всего его выполняют в срочном порядке при оказании первой помощи в травматологических отделениях, больницах скорой помощи. В этом случае направление выдает дежурный врач-травматолог , ортопед или хирург . Рентген костей может быть также выполнен по направлению семейных врачей, стоматологов , эндокринологов , онкологов и других врачей.

Рентгеновский снимок костей выполняется в различных медицинских центрах, поликлиниках, стационарах. Для этого в них оборудованы специальные рентгеновские кабинеты, в которых есть все необходимое для такого рода исследований. Рентгенодиагностику проводят врачи-рентгенологи, обладающие специальными знаниями в данной области.

Как выглядит рентгеновский кабинет? Что в нем находится?

Рентгеновский кабинет – место, где выполняют рентгеновские снимки различных частей тела человека. Рентгеновский кабинет должен соответствовать высоким стандартам противорадиационной защиты. В отделке стен, окон и дверей используются специальные материалы, которые обладают свинцовым эквивалентом, который характеризует их способность задерживать ионизирующее излучение. Помимо этого в нем есть дозиметры-радиометры и индивидуальные средства защиты от излучения, такие как фартуки, воротники, перчатки, юбки и другие элементы.

В рентгеновском кабинете должно быть хорошее освещение, в первую очередь искусственное, так как окна имеют небольшие размеры и естественного освещения недостаточно для качественной работы. Основным оборудованием кабинета является рентгеновская установка. Рентгеновские установки бывают различных форм, так как предназначены для различных целей. В крупных медицинских центрах присутствуют все виды рентгеновских установок, однако одновременная работа нескольких из них запрещена.

В современном рентгеновском кабинете присутствуют следующие виды рентгеновских установок:

  • стационарный рентгеновский аппарат (позволяет выполнять рентгенографию, рентгеноскопию, линейную томографию );
  • палатная передвижная рентгеновская установка;
  • ортопантомограф (установка для выполнения рентгена челюстей и зубов );
  • цифровой радиовизиограф.
Помимо рентгеновских установок в кабинете присутствует большое количество вспомогательного инструментария и аппаратуры. Оно также включает оборудование рабочего места врача-рентгенолога и лаборанта, инструменты для получения и обработки рентгеновских снимков.

К дополнительному оборудованию рентгеновских кабинетов относятся:

  • компьютер для обработки и хранения цифровых снимков;
  • оборудование для проявки пленочных снимков;
  • шкафы для сушки пленки;
  • расходные материалы (пленка, фотореактивы );
  • негатоскопы (яркие экраны для просмотра снимков );
  • столы и стулья;
  • шкафы для хранения документации;
  • бактерицидные лампы (кварцевые ) для дезинфекции помещений.

Подготовка к рентгену костей

Ткани организма человека, отличающиеся разной плотностью и химическим составом, по-разному поглощают рентгеновское излучение и благодаря этому обладают характерным рентгенологическим изображением. Кости обладают высокой плотностью и очень хорошей естественной контрастностью, благодаря чему рентген большинства костей выполняется без особой подготовки.

Если человеку предстоит рентгеновское исследование большинства костей, то для этого достаточно вовремя прийти в рентгеновский кабинет. При этом нет ограничений в приеме пищи, жидкости, курении перед рентгенологическим исследованием. Рекомендуется не брать с собой никаких металлических вещей, особенно украшений, поскольку их придется снять перед выполнением исследования. Любые металлические предметы создают помехи на рентгеновском снимке.

Процесс получения рентгеновского снимка не занимает много времени. Однако, для того чтобы снимок получился качественным, пациенту очень важно сохранять неподвижность во время его выполнения. Это особенно актуально для маленьких детей, которые бывают неспокойны. Рентген детям проводится в присутствии родителей. Для детей менее 2 лет рентген проводится в положении лежа, возможно применение специальной фиксации, которая закрепляет положение ребенка на рентгеновском столе.

Одним из серьезных преимуществ рентгена является возможность его применения в экстренных случаях (травмы, падения, дорожно-транспортные происшествия ) без какой-либо подготовки. При этом нет никакой потери в качестве снимков. Если пациент нетранспортабелен или находится в тяжелом состоянии, то существует возможность выполнения рентгена непосредственно в палате, где находится больной.

Подготовка к рентгену костей таза, поясничного и крестцового отдела позвоночника

Рентген костей таза, поясничного и крестцового отдела позвоночника является одним из немногих видов рентгеновских снимков, который требует особой подготовки. Она объясняется анатомической близостью с кишечником . Кишечные газы снижают резкость и контрастность рентгеновского снимка, из-за чего проводится специальная подготовка по очищению кишечника перед данной процедурой.

Подготовка к рентгену костей таза и поясничного отдела позвоночника включает следующие основные элементы:

  • очищение кишечника с помощью слабительных препаратов и клизмы;
  • соблюдение диеты , снижающей образование газов в кишечнике;
  • проведение исследования натощак.
Диета должна начинаться за 2 – 3 дня до исследования. Она исключает мучные изделия, капусту , лук , бобовые, жирные виды мяса и молочные продукты. Кроме того, рекомендуется принимать ферментные препараты (панкреатин ) и активированный уголь после приема пищи. В день перед исследованием проводится клизма или принимаются такие препараты как фортранс , которые помогают очистить кишечник естественным путем. Последний прием пищи должен быть за 12 часов до исследования, для того чтобы кишечник оставался незаполненным вплоть до момента исследования.

Методики рентгеновского исследования костей

Рентгеновское исследование предназначено для исследования всех костей скелета. Естественно, что для исследования большинства костей существуют свои особые методы получения рентгеновских снимков. Принцип получения снимков во всех случаях остается одинаковым. Он подразумевает помещение исследуемой части тела между рентгеновской трубкой и приемником излучения, таким образом, чтобы рентгеновские лучи проходили под прямым углом к исследуемой кости и к кассете с рентгеновской пленкой или датчиками.

Позиции, которые занимают компоненты рентгеновской установки относительно тела человека, называются укладками. За годы практики было разработано большое количество рентгеновских укладок. От точности их соблюдения зависит качество рентгеновских снимков. Иногда для выполнения данных предписаний пациенту приходится занимать вынужденное положение, однако рентгеновское исследование выполняется очень быстро.

Укладки обычно подразумевают выполнение снимков в двух взаимно перпендикулярных проекциях – прямой и боковой. Иногда исследование дополняется косой проекцией, которая помогает избавиться от наложения некоторых частей скелета друг на друга. В случае тяжелой травмы выполнение некоторых укладок становится невозможным. В этом случае выполняется рентген в том положении, которое доставляет наименьший дискомфорт пациенту и которое не приведет к смещению отломков и усугублению травмы.

Методика исследования костей конечностей (рук и ног )

Рентгеновское исследование трубчатых костей скелета является самым частым рентгеновским исследованием. Эти кости составляют основную массу костей, скелет рук и ног полностью складывается из трубчатых костей. Методика рентгеновского исследования должна быть знакома каждому, кто хоть раз в жизни получал повреждения рук или ног. Исследование занимает не более 10 минут, оно не доставляет боли или неприятных ощущений.

Трубчатые кости могут быть исследованы в двух перпендикулярных проекциях. Главным принципом любого рентгеновского снимка является расположение исследуемого объекта между излучателем и рентгеночувствительной пленкой. Единственным условием качественного снимка является неподвижность пациента во время исследования.

Перед исследованием отдел конечности обнажают, снимают с него все металлические предметы, зону исследования располагают по центру кассеты с рентгеновской пленкой. Конечность должна свободно «лежать» на кассете с пленкой. Пучок рентгеновского излучения направляют в центр кассеты перпендикулярно ее плоскости. Снимок выполняют таким образом, чтобы смежные суставы также попали на рентгеновский снимок. В противном случае трудно различить верхний и нижний конец трубчатой кости. Помимо этого, большой охват области помогает исключить повреждения суставов или прилегающих костей.

Обычно каждая кость исследуется в прямой и боковой проекции. Иногда снимки выполняют совместно с функциональными пробами. Они заключаются в сгибании и разгибании сустава или нагрузке на конечность. Иногда из-за травмы или невозможности изменить положение конечности приходится использовать особые проекции. Главным условием является соблюдение перпендикулярности кассеты и рентгеновского излучателя.

Методика рентгеновского исследования костей черепа

Рентгеновское исследование черепа обычно выполняется в двух взаимно перпендикулярных проекциях – боковой (в профиль ) и прямой (в анфас ). Рентген костей черепа назначается при травмах головы, при эндокринных нарушениях, для диагностики отклонений от показателей возрастного развития костей у детей.

Рентген костей черепа в прямой передней проекции дает общую информацию о состоянии костей и соединениях между ними. Он может быть выполнен в положении стоя или лежа. Обычно пациент ложится на рентгеновский стол на живот, под лоб подкладывают валик. Пациент сохраняет неподвижность в течение нескольких минут, в то время как рентгеновскую трубку направляют на затылочную область и выполняют снимок.

Рентген костей черепа в боковой проекции используется для изучения костей основания черепа, костей носа, но менее информативен для других костей лицевого скелета. Для выполнения рентгена в боковой проекции больной укладывается на рентгеновский стол на спину, кассету с пленкой ставят с левой или правой стороны головы пациента параллельно оси тела. Рентгеновская трубка направлена перпендикулярно кассете с противоположной стороны, на 1 см выше ушно-зрачковой линии.

Иногда врачи применяют рентген костей черепа в так называемой аксиальной проекции. Она соответствует вертикальной оси тела человека. Данная укладка имеет теменное и подбородочное направление, в зависимости от того, с какой стороны расположена рентгеновская трубка. Она информативна для исследования основания черепа, а также некоторых костей лицевого скелета. Ее преимущество заключается в том, что она позволяет избежать многих перекрытий костей друг на друга, характерных для прямой проекции.

Рентгенография черепа в аксиальной проекции состоит из следующих этапов:

  • больной снимает с себя металлические предметы, верхнюю одежду;
  • больной занимает горизонтальное положение на рентгеновском столе, лежа на животе;
  • голову располагают таким образом, чтобы подбородок максимально выступал вперед, а стола касались только подбородок и передняя поверхность шеи;
  • под подбородком располагается кассета с рентгеновской пленкой;
  • рентгеновская трубка направлена перпендикулярно плоскости стола, на область темени, расстояние между кассетой и трубкой должно составлять 100 см;
  • после этого выполняется снимок с подбородочным направлением рентгеновской трубки в положении стоя;
  • больной запрокидывает голову таким образом, чтобы теменем касаться опорной площадки, (поднятого рентгеновского стола ), а подбородок был как можно выше;
  • рентгеновская трубка направлена перпендикулярно к передней поверхности шеи, расстояние между кассетой и рентгеновской трубкой также составляет 1 метр.

Методики рентгена височной кости по Стенверсу, по Шюллеру, по Майеру

Височная кость – одна из основных костей, формирующих череп. В височной кости находится большое количество образований, к которым крепятся мышцы, а также отверстий и каналов, через которые проходят нервы. Из-за обилия костных образований в лицевой области рентгенологическое обследование височной кости затруднено. Именно поэтому были предложены разнообразные укладки для получения специальных рентгеновских снимков височной кости.

В настоящее время используются три проекции рентгенологического исследования височной кости:

  • Методика по Майеру (осевая проекция ). Используется для изучения состояния среднего уха, пирамиды височной кости и сосцевидного отростка. Рентген по Майеру выполняется в положении лежа. Голову поворачивают под углом 45 градусов к горизонтальной плоскости, под исследуемое ухо подкладывают кассету с рентгеновской пленкой. Рентгеновскую трубку направляют через лобную кость противоположной стороны, она должна быть направлена точно в центр наружного слухового отверстия исследуемой стороны.
  • Методика по Шюллеру (косая проекция ). При данной проекции оценивается состояние височно-нижнечелюстного сустава, сосцевидного отростка, а также пирамиды височной кости. Рентген выполняется лежа на боку. Голова пациента повернута вбок, между ухом исследуемой стороны и кушеткой находится кассета с рентгеновской пленкой. Рентгеновская трубка расположена под небольшим углом к вертикали и направлена к ножному концу стола. Рентгеновская трубка центрирована на ушной раковине исследуемой стороны.
  • Методика по Стенверсу (поперечная проекция ). Снимок в поперечной проекции позволяет оценить состояние внутреннего уха, а также пирамиды височной кости. Больной лежит на животе, голова повернута под углом 45 градусов к линии симметрии тела. Кассету располагают в поперечном положении, рентгеновскую трубку скашивают под углом к головному концу стола, пучок направляют в центр кассеты. Для всех трех методик используется рентгеновская трубка в узком тубусе.
Различные рентгеновские методики используются для исследования конкретных образований височной кости. Для того чтобы определить потребность в том или ином виде укладки, врачи руководствуются жалобами пациента и данными объективного осмотра. В настоящее время альтернативой различным видам рентгеновских укладок служит компьютерная томография височной кости.

Укладка при рентгене скуловых костей в тангенциальной проекции

Для обследования скуловой кости используется так называемая тангенциальная проекция. Она характеризуется тем, что рентгеновские лучи распространяются по касательной (тангенциально ) по отношению к краю скуловой кости. Такую укладку применяют, для того чтобы выявить переломы скуловой кости, наружного края глазницы, верхнечелюстной пазухи.

Методика рентгена скуловой кости включает следующие этапы:

  • пациент снимает с себя верхнюю одежду, украшения, металлические протезы;
  • пациент занимает горизонтальное положение на животе на рентгеновском столе;
  • голова пациента поворачивается под углом 60 градусов и укладывается на кассету, содержащую рентгеновскую пленку размером 13 х 18 см;
  • исследуемая сторона лица находится сверху, рентгеновская трубка расположена строго вертикально, однако за счет наклона головы рентгеновские лучи проходят касательно к поверхности скуловой кости;
  • в ходе исследования выполняют 2 – 3 снимка с небольшими поворотами головы.
В зависимости от задачи исследования угол поворота головы может меняться в пределах 20 градусов. Фокусное расстояние между трубкой и кассетой составляет 60 сантиметров. Рентген скуловой кости может быть дополнен обзорным снимком костей черепа, так как на нем довольно хорошо различимы все образования, исследуемые в тангенциальной проекции.

Методика рентгеновского исследования костей таза. Проекции, в которых выполняется рентген костей таза

Рентген таза является основным исследованием при повреждениях, опухолях, а также иных заболеваниях костей этой области. Рентген костей таза занимает не более 10 минут, однако существует большое разнообразие методик данного исследования. Наиболее часто выполняется обзорный рентген тазовых костей в задней проекции.

Последовательность выполнения обзорного рентгена тазовых костей в задней проекции включает следующие этапы:

  • пациент заходит в рентгеновский кабинет, снимает с себя металлические украшения и одежду, кроме нижнего белья;
  • пациент ложится на рентгеновский стол на спину и сохраняет такое положение на всем протяжении процедуры;
  • руки должны быть скрещены на груди, а под колени подкладывается валик;
  • ноги должны быть слегка раздвинуты, стопы фиксируются в установленном положении с помощью ленты или мешочков с песком;
  • кассета с пленкой размерами 35 х 43 см расположена поперечно;
  • рентгеновский излучатель направлен перпендикулярно кассете, между верхним передним подвздошным гребнем и лонным сочленением;
  • минимальное расстояние между излучателем и пленкой составляет один метр.
В случае если у пациента повреждены конечности, то ногам не придается специальное положение, поскольку это может привести к смещению отломков. Иногда рентген выполняется для обследования лишь одной части таза, например, при повреждениях. В таком случае больной занимает положение на спине, однако в тазе совершается незначительная ротация, таким образом, чтобы здоровая половина был на 3 – 5 см выше. Неповрежденная нога согнута и приподнята, бедро располагается вертикально и выходит за пределы исследования. Рентгеновские лучи направляют перпендикулярно шейке бедренной кости и кассете. Такая проекция дает боковой вид тазобедренного сустава.

Для исследования крестцово-подвздошного сочленения используется задняя косая проекция. Она выполняется при подъеме исследуемой стороны на 25 – 30 градусов. При этом кассета должна располагаться строго горизонтально. Рентгеновский луч направлен перпендикулярно кассете, расстояние от луча до передней подвздошной ости составляет около 3 сантиметров. При такой укладке пациента на рентгеновском снимке отчетливо отображается соединение между крестцом и подвздошными костями.

Определение возраста скелета по рентгену кисти у детей

Костный возраст точно свидетельствует о биологической зрелости организма. Показателями костного возраста являются точки окостенения и сращения отдельных частей костей (синостозы ). На основе костного возраста можно точно определить окончательный рост детей, установить отставание или опережение в развитии. Костный возраст определяется по рентгенограммам. После того, так были выполнены рентгенограммы, полученные результаты сравнивают с нормативами по специальным таблицам.

Наиболее показательным в определении возраста скелета является рентген кисти. Удобство данной анатомической области объясняется тем, что в кисти точки окостенения появляются с довольно высокой частотой, что позволяет регулярно проводить исследование и наблюдать за темпами роста. Определение костного возраста в основном используется для диагностики эндокринных нарушений, таких как недостаток гормона роста (соматотропина ).

Сопоставление возраста ребенка и появления точек окостенения на рентгеновском снимке кисти

Точки окостенения

Пневмония рентген требует в обязательном порядке. Без этого вида исследования вылечить человека удастся только чудом. Дело в том, что пневмония может быть вызвана различными возбудителями, которые поддаются только специальной терапии. Рентген помогает определить, подходит ли конкретному больному назначенное лечение. Если ситуация усугубляется, методы терапии корректируются.

Методы исследования рентгеном

Выделяют ряд способов исследования с помощью рентгена, их основное отличие - методика фиксирования полученного изображения:

  1. рентгенография - изображение фиксируется на специальной пленке прямым попаданием на нее рентгеновских лучей;
  2. электрорентгенография - картинка передается на специальные пластины, с которых можно перенести ее на бумагу;
  3. рентгеноскопия - метод, позволяющий получить изображение исследуемого органа на флюоресцентном экране;
  4. рентгенотелевизионное исследование - результат выводится на экран телевизора благодаря персональной теле-системе;
  5. флюорография - изображение получается путем фотографирования выведенной картинки на экран на фотопленку маленького формата;
  6. цифровая рентгенография - графическое изображение передается на цифровой носитель.

Более современные методы рентгенографии позволяют получить более качественное графическое изображение анатомических структур, что способствует более точному диагностированию, а значит, назначению правильного лечения.

Чтобы провести рентген некоторых органов человека используется метод искусственного контрастирования. Для этого исследуемый орган получает дозу специального вещества, поглощающего лучи рентгена.

Виды исследований рентгеном

В медицине показания к рентгенографии состоят в диагностики различных заболеваний, уточнения формы данных органов, места их расположения, состояния слизистых оболочек, перистальтики. Выделяют следующие виды рентгенографии:

  1. позвоночника;
  2. грудной клетки;
  3. периферические отделы скелета;
  4. зубов - ортопантомография;
  5. полости матки - метросальпингография ;
  6. молочной железы - маммография ;
  7. желудка и двенадцатиперстной кишки - дуоденография;
  8. желчного пузыря и желчевыводящих путей - холецистография и холеграфия соответственно;
  9. толстой кишки - ирригоскопия.

Показания и противопоказания к проведению исследования

Рентген может назначаться врачом для визуализации внутренних органов человека с целью установления возможных патологий. Существуют следующие показания к рентгенографии:

  1. необходимость установить поражения внутренних органов и скелета;
  2. проверка корректности установки трубок и катетеров;
  3. контроль эффективности и результативности курса терапии.

Как правило в медицинских заведениях, где сделать рентгенографию можно, пациент опрашивается на предмет возможных противопоказаний процедуры.

К ним относятся:

  1. персональная повышенная чувствительность к йоду;
  2. патология щитовидной железы;
  3. травмы почек или печени;
  4. туберкулез в активной форме;
  5. проблемы кардиологической и кровеносной систем;
  6. повышенное коагулирование крови ;
  7. тяжелое состояние пациента;
  8. состояние беременности.

Преимущества и недостатки способа

Главными достоинствами рентгенологического исследования называют доступность способа и его простоту. Ведь в современном мире есть много учреждений где можно сделать рентген. Это преимущественно не требует какой-либо специальной подготовки, дешевизна и наличие снимков, с которыми можно обратиться за консультацией к нескольким докторам в разных учреждениях.

Минусами рентгена называют получение статичной картинки, облучение, в некоторых случаях требуется введение контраста. Качество снимков иногда, особенно на устаревшем оборудовании, не позволяет эффективно достичь цели исследования. Поэтому рекомендуется искать учреждение, где сделать цифровой рентген, который на сегодня является наиболее современным способом исследования и показывает наивысшую степень информативности.

В случае, если ввиду указанных недостатков рентгенографии, достоверно не будет выявлена потенциальная патология, могут назначаться дополнительные исследования, способные визуализировать работу органа в динамике.