Квадратный трехчлен разложен на множители 2x2. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Формула разложения квадратного трёхчлена на множители

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и, например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа, ведь все знают, что числа, и делятся на, а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число, неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению, может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на, сумма цифр, и, из которых состоит число, равна, а делится на, значит и делится на.

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, видишь общий множитель?

У всех членов этого выражения есть иксы - выносим, все делятся на - снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти .

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы - весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на, а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя , как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке - группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене -- ставим член - после члена - получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки, а из второй, получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части...

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения, которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему ) необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока - учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо. Представим третий член как разность, получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!) , представив, как, получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители.

Решение:

Еще пример:

Разложи на множители.

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему !

Пример:

Разложите на множители выражение.

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен.

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель, а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен.

Решение: Пример:

\begin{array}{*{35}{l}}
{{x}^{2}}+6{x}-7=\underbrace{{{x}^{2}}+2\cdot 3\cdot x+9}_{квадрат\ суммы\ {{\left(x+3 \right)}^{2}}}-9-7={{\left(x+3 \right)}^{2}}-16= \\
=\left(x+3+4 \right)\left(x+3-4 \right)=\left(x+7 \right)\left(x-1 \right) \\
\end{array}

Разложите на множители многочлен.

Решение:

\begin{array}{*{35}{l}}
{{x}^{4}}-4{{x}^{2}}-1=\underbrace{{{x}^{4}}-2\cdot 2\cdot {{x}^{2}}+4}_{квадрат\ разности{{\left({{x}^{2}}-2 \right)}^{2}}}-4-1={{\left({{x}^{2}}-2 \right)}^{2}}-5= \\
=\left({{x}^{2}}-2+\sqrt{5} \right)\left({{x}^{2}}-2-\sqrt{5} \right) \\
\end{array}

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен - многочлен вида, где - неизвестное, - некоторые числа, причем.

Значения переменной, которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена - это корни квадратного уравнения.

Теорема.

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение...

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения...

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Пиши в комментриях и... готовься к экзамену!

Пока что он самый важный в твоей жизни.

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Итак вернёмся к квадратному уравнению , где .

То, что стоит у нас в левой части, называется квадратным трёхчленом.

Справедлива теорема: Если - корни квадратного трёхчлена, то справедливо тождество

Где - старший коэффициент, - корни уравнения.

Итак, мы имеем квадратное уравнение - квадратный трёхчлен, где корни квадратного уравнения также называются корнями квадратного трёхчлена. Поэтому если мы имеем корни квадратного трёхчлена, то этот трёхчлен раскладывается на линейные множители.

Доказательство:

Доказательство данного факта выполняется с помощью теоремы Виета, рассмотренной нами в предыдущих уроках.

Давайте вспомним, о чём говорит нам теорема Виета:

Если - корни квадратного трёхчлена, у которого , то .

Из данной теоремы вытекает следующее утверждение, что .

Мы видим, что, по теореме Виета, , т. е., подставив данные значения в формулу выше, мы получаем следующее выражение

что и требовалось доказать.

Вспомним, что мы доказали теорему, что если - корни квадратного трёхчлена, то справедливо разложение .

Теперь давайте вспомним пример квадратного уравнения , к которому с помощью теоремы Виета мы подбирали корни . Из этого факта мы можем получить следующее равенство благодаря доказанной теореме:

Теперь давайте проверим правильность данного факта простым раскрытием скобок:

Видим, что на множители мы разложили верно, и любой трёхчлен, если он имеет корни, может быть разложен по данной теореме на линейные множители по формуле

Однако давайте проверим, для любого ли уравнения возможно такое разложение на множители:

Возьмём, к примеру, уравнение . Для начала проверим знак дискриминанта

А мы помним, что для выполнения выученной нами теоремы D должен быть больше 0, поэтому в данном случае разложение на множители по изученной теореме невозможно.

Поэтому сформулируем новую теорему: если квадратный трёхчлен не имеет корней, то его нельзя разложить на линейные множители.

Итак, мы рассмотрели теорему Виета, возможность разложения квадратного трёхчлена на линейные множители, и теперь решим несколько задач.

Задача №1

В данной группе мы будем по факту решать задачу, обратную к поставленной. У нас было уравнение, и мы находили его корни, раскладывая на множители. Здесь мы будем действовать наоборот. Допустим, у нас есть корни квадратного уравнения

Обратная задача такова: составьте квадратное уравнение, чтобы были его корнями.

Для решения данной задачи существует 2 способа.

Поскольку - корни уравнения, то - это квадратное уравнение, корнями которого являются заданные числа. Теперь раскроем скобки и проверим:

Это был первый способ, по которому мы создали квадратное уравнение с заданными корнями, в котором нет каких-либо других корней, поскольку любое квадратное уравнение имеет не более двух корней.

Данный способ предполагает использование обратной теоремы Виета.

Если - корни уравнения, то они удовлетворяют условию, что .

Для приведённого квадратного уравнения , , т. е. в данном случае , а .

Таким образом, мы создали квадратное уравнение, которое имеет заданные корни.

Задача №2

Необходимо сократить дробь .

Мы имеем трёхчлен в числителе и трёхчлен в знаменателе, причём трёхчлены могут как раскладываться, так и не раскладываться на множители. Если же и числитель, и знаменатель раскладываются на множители, то среди них могут оказаться равные множители, которые можно сократить.

В первую очередь необходимо разложить на множители числитель .

Вначале необходимо проверить, можно ли разложить данное уравнении на множители, найдём дискриминант . Поскольку , то знак зависит от произведения ( должно быть меньше 0), в данном примере , т. е. заданное уравнение имеет корни.

Для решения используем теорему Виета:

В данном случае, поскольку мы имеем дело с корнями, то просто подобрать корни будет довольно сложно. Но мы видим, что коэффициенты уравновешены, т. е. если предположить, что , и подставить это значение в уравнение, то получается следующая система: , т. е. 5-5=0. Таким образом, мы подобрали один из корней данного квадратного уравнения.

Второй корень мы будем искать методом подставления уже известного в систему уравнений, к примеру, , т.е. .

Таким образом, мы нашли оба корня квадратного уравнения и можем подставить их значения в исходное уравнение, чтобы разложить его на множители:

Вспомним изначальную задачу, нам необходимо было сократить дробь .

Попробуем решить поставленную задачу, подставив вместо числителя .

Необходимо не забыть, что при этом знаменатель не может равняться 0, т. е. , .

Если данные условия будут выполняться, то мы сократили исходную дробь до вида .

Задача №3 (задача с параметром)

При каких значениях параметра сумма корней квадратного уравнения

Если корни данного уравнения существуют, то , вопрос: когда .

Разложение квадратных трехчленов на множители относится к школьным заданиям, с которыми рано или поздно сталкивается каждый. Как его выполнить? Какова формула разложения квадратного трехчлена на множители? Разберемся пошагово с помощью примеров.

Общая формула

Разложение квадратных трехчленов на множители осуществляется решением квадратного уравнения. Это несложная задача, которую можно решить несколькими методами - нахождением дискриминанта, при помощи теоремы Виета, существует и графический способ решения. Первые два способа изучаются в средней школе.

Общая формула выглядит так: lx 2 +kx+n=l(x-x 1)(x-x 2) (1)

Алгоритм выполнения задания

Для того чтобы выполнить разложение квадратных трехчленов на множители, нужно знать теорему Вита, иметь под рукой программу для решения, уметь находить решение графически или искать корни уравнения второй степени через формулу дискриминанта. Если дан квадратный трехчлен и его надо разложить на множители, алгоритм действий такой:

1) Приравнять исходное выражение к нулю, чтобы получить уравнение.

2) Привести подобные слагаемые (если есть такая необходимость).

3) Найти корни любым известным способом. Графический метод лучше применять в случае, если заранее известно, что корни - целые и небольшие числа. Нужно помнить, что количество корней равно максимальной степени уравнения, то есть у квадратного уравнения корней два.

4) Подставить значение х в выражение (1).

5) Записать разложение квадратных трехчленов на множители.

Примеры

Окончательно понять, как выполняется это задание, позволяет практика. Иллюстрируют разложение на множители квадратного трехчлена примеры:

необходимо разложить выражение:

Прибегнем к нашему алгоритму:

1) х 2 -17х+32=0

2) подобные слагаемые сведены

3) по формуле Виета найти корни для этого примера сложно, потому лучше воспользоваться выражением для дискриминанта:

D=289-128=161=(12,69) 2

4) Подставим найденные нами корни в основную формулу для разложения:

(х-2,155) * (х-14,845)

5) Тогда ответ будет таким:

х 2 -17х+32=(х-2,155)(х-14,845)

Проверим, соответствуют ли найденные дискриминантом решения формулам Виета:

14,845 . 2,155=32

Для данных корней применяется теорема Виета, они были найдены правильно, а значит полученное нами разложение на множители тоже правильно.

Аналогично разложим 12х 2 +7х-6.

x 1 =-7+(337) 1/2

x 2 =-7-(337) 1/2

В предыдущем случае решения были нецелыми, но действительными числами, найти которые легко, имея перед собой калькулятор. Теперь рассмотрим более сложный пример, в котором корни будут комплексными: разложить на множители х 2 +4х+9. По формуле Виета корни найти не получится, и дискриминант отрицательный. Корни будут на комплексной плоскости.

D=-20

Исходя из этого, получаем нтересующие нас корни -4+2i*5 1/2 и -4-2i * 5 1/2 , поскольку (-20) 1/2 =2i*5 1/2 .

Получаем искомое разложение, подставив корни в общую формулу.

Еще один пример: нужно разложить на множители выражение 23х 2 -14х+7.

Имеем уравнение 23х 2 -14х+7 =0

D=-448

Значит, корни 14+21,166i и 14-21,166i. Ответ будет такой:

23х 2 -14х+7 =23(х-14-21,166i )*(х-14+21,166i ).

Приведем пример, решить который можно без помощи дискриминанта.

Пусть нужно разложить квадратное уравнение х 2 -32х+255. Очевидно, его можно решить и дискриминантом, однако быстрее в данном случае подобрать корни.

x 1 =15

x 2 =17

Значит х 2 -32х+255 =(х-15)(х-17).

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей (x - x i) , i = 1 , 2 , … , n , тогда P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 1) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.

Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 3) x 2 + p x + q , где x 2 + p x + q = (x - x 1) (x - x 2) .

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на (x - s) , тогда получаем остаток, который равен многочлену в точке s , тогда получим

P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) + P n (s) , где Q n - 1 (x) является многочленом со степенью n - 1 .

Следствие из теоремы Безу

Когда корень многочлена P n (x) считается s , тогда P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a (x - x 1) (x - x 2) , где x 1 и x 2 - это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

Необходимо найти корни уравнения 4 x 2 - 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = (- 5) 2 - 4 · 4 · 1 = 9 . Отсюда имеем, что

x 1 = 5 - 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1

Отсюда получаем, что 4 x 2 - 5 x + 1 = 4 x - 1 4 x - 1 .

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4 x - 1 4 x - 1 = 4 x 2 - x - 1 4 x + 1 4 = 4 x 2 - 5 x + 1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3 x 2 - 7 x - 11 .

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 - 7 x - 11 = 0 .

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3 x 2 - 7 x - 11 = 0 D = (- 7) 2 - 4 · 3 · (- 11) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 - D 2 · 3 = 7 - 181 6

Отсюда получаем, что 3 x 2 - 7 x - 11 = 3 x - 7 + 181 6 x - 7 - 181 6 .

Пример 3

Произвести разложение многочлена 2 x 2 + 1 на множители.

Решение

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

2 x 2 + 1 = 0 x 2 = - 1 2 x 1 = - 1 2 = 1 2 · i x 2 = - 1 2 = - 1 2 · i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x - 1 2 · i x + 1 2 · i .

Пример 4

Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .

Решение

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

x 2 + 1 3 x + 1 = 0 D = 1 3 2 - 4 · 1 · 1 = - 35 9 x 1 = - 1 3 + D 2 · 1 = - 1 3 + 35 3 · i 2 = - 1 + 35 · i 6 = - 1 6 + 35 6 · i x 2 = - 1 3 - D 2 · 1 = - 1 3 - 35 3 · i 2 = - 1 - 35 · i 6 = - 1 6 - 35 6 · i

Получив корни, запишем

x 2 + 1 3 x + 1 = x - - 1 6 + 35 6 · i x - - 1 6 - 35 6 · i = = x + 1 6 - 35 6 · i x + 1 6 + 35 6 · i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на (x - x 1) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x .

Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x = = x (a n x n - 1 + a n - 1 x n - 2 + . . . + a 1)

Данный способ считается вынесением общего множителя за скобки.

Пример 5

Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 - x на множители.

Решение

Видим, что x 1 = 0 - это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4 x 3 + 8 x 2 - x = x (4 x 2 + 8 x - 1)

Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x - 1 . Найдем дискриминант и корни:

D = 8 2 - 4 · 4 · (- 1) = 80 x 1 = - 8 + D 2 · 4 = - 1 + 5 2 x 2 = - 8 - D 2 · 4 = - 1 - 5 2

Тогда следует, что

4 x 3 + 8 x 2 - x = x 4 x 2 + 8 x - 1 = = 4 x x - - 1 + 5 2 x - - 1 - 5 2 = = 4 x x + 1 - 5 2 x + 1 + 5 2

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Пример 6

Произвести разложение выражения f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа - 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Отсюда следует, что х = 2 и х = - 3 – это корни исходного многочлена, который можно представить как произведение вида:

f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x 3 + 5 x 2 + 9 x + 9) = = (x - 2) (x + 3) (x 2 + 2 x + 3)

Переходим к разложению квадратного трехчлена вида x 2 + 2 x + 3 .

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x + 3) (x 2 + 2 x + 3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f (x) = 2 x 3 + 19 x 2 + 41 x + 15 .

Решение

Необходимо выполнить замену переменной y = 2 x , следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4 . Получаем, что

4 f (x) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g (y)

Когда получившаяся функция вида g (y) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , ± 60

Перейдем к вычислению функции g (y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

g (1) = 1 3 + 19 · 1 2 + 82 · 1 + 60 = 162 g (- 1) = (- 1) 3 + 19 · (- 1) 2 + 82 · (- 1) + 60 = - 4 g (2) = 2 3 + 19 · 2 2 + 82 · 2 + 60 = 308 g (- 2) = (- 2) 3 + 19 · (- 2) 2 + 82 · (- 2) + 60 = - 36 g (3) = 3 3 + 19 · 3 2 + 82 · 3 + 60 = 504 g (- 3) = (- 3) 3 + 19 · (- 3) 2 + 82 · (- 3) + 60 = - 42 g (4) = 4 3 + 19 · 4 2 + 82 · 4 + 60 = 756 g (- 4) = (- 4) 3 + 19 · (- 4) 2 + 82 · (- 4) + 60 = - 28 g (5) = 5 3 + 19 · 5 2 + 82 · 5 + 60 = 1070 g (- 5) = (- 5) 3 + 19 · (- 5) 2 + 82 · (- 5) + 60

Получаем, что у = - 5 – это корень уравнения вида y 3 + 19 y 2 + 82 y + 60 , значит, x = y 2 = - 5 2 - это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2 x 3 + 19 x 2 + 41 x + 15 на x + 5 2 .

Решение

Запишем и получим:

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 (2 x 2 + 14 x + 6) = = 2 x + 5 2 (x 2 + 7 x + 3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x 2 + 7 x + 3 . Приравниванием к нулю и находим дискриминант.

x 2 + 7 x + 3 = 0 D = 7 2 - 4 · 1 · 3 = 37 x 1 = - 7 + 37 2 x 2 = - 7 - 37 2 ⇒ x 2 + 7 x + 3 = x + 7 2 - 37 2 x + 7 2 + 37 2

Отсюда следует, что

2 x 3 + 19 x 2 + 41 x + 15 = 2 x + 5 2 x 2 + 7 x + 3 = = 2 x + 5 2 x + 7 2 - 37 2 x + 7 2 + 37 2

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Пример 9

Произвести разложение многочлена x 4 + 4 x 3 - x 2 - 8 x - 2 на множители.

Решение

Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1 , - 1 , 2 и - 2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что

1 4 + 4 · 1 3 - 1 2 - 8 · 1 - 2 = - 6 ≠ 0 (- 1) 4 + 4 · (- 1) 3 - (- 1) 2 - 8 · (- 1) - 2 = 2 ≠ 0 2 4 + 4 · 2 3 - 2 2 - 8 · 2 - 2 = 26 ≠ 0 (- 2) 4 + 4 · (- 2) 3 - (- 2) 2 - 8 · (- 2) - 2 = - 6 ≠ 0

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 4 + 4 x 3 - 2 x 2 + x 2 - 8 x - 2 = = (x 4 - 2 x 2) + (4 x 3 - 8 x) + x 2 - 2 = = x 2 (x 2 - 2) + 4 x (x 2 - 2) + x 2 - 2 = = (x 2 - 2) (x 2 + 4 x + 1)

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

x 2 - 2 = 0 x 2 = 2 x 1 = 2 x 2 = - 2 ⇒ x 2 - 2 = x - 2 x + 2 x 2 + 4 x + 1 = 0 D = 4 2 - 4 · 1 · 1 = 12 x 1 = - 4 - D 2 · 1 = - 2 - 3 x 2 = - 4 - D 2 · 1 = - 2 - 3 ⇒ x 2 + 4 x + 1 = x + 2 - 3 x + 2 + 3

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 2 - 2 x 2 + 4 x + 1 = = x - 2 x + 2 x + 2 - 3 x + 2 + 3

Замечание

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Пример 10

Произвести разложение на множители многочлен x 4 + 3 x 3 - x 2 - 4 x + 2 .

Решение

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = = (x 4 + x 3) + (2 x 3 + 2 x 2) + (- 2 x 2 - 2 x) - x 2 - 2 x + 2 = = x 2 (x 2 + x) + 2 x (x 2 + x) - 2 (x 2 + x) - (x 2 + 2 x - 2) = = (x 2 + x) (x 2 + 2 x - 2) - (x 2 + 2 x - 2) = (x 2 + x - 1) (x 2 + 2 x - 2)

После разложения на множители получим, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = x 2 + x - 1 x 2 + 2 x - 2 = = x + 1 + 3 x + 1 - 3 x + 1 2 + 5 2 x + 1 2 - 5 2

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x 4 + 4 x 3 + 6 x 2 + 4 x - 2 на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3

На последовательность коэффициентов суммы в скобках указывает выражение x + 1 4 .

Значит, имеем x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 .

После применения разности квадратов, получим

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3 = = x + 1 - 3 4 x + 1 + 3 4 x 2 + 2 x + 1 + 3

Пример 12

Произвести разложение на множители x 3 + 6 x 2 + 12 x + 6 .

Решение

Займемся преобразованием выражения. Получаем, что

x 3 + 6 x 2 + 12 x + 6 = x 3 + 3 · 2 · x 2 + 3 · 2 2 · x + 2 3 - 2 = (x + 2) 3 - 2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x 3 + 6 x 2 + 12 x + 6 = = (x + 2) 3 - 2 = = x + 2 - 2 3 x + 2 2 + 2 3 x + 2 + 4 3 = = x + 2 - 2 3 x 2 + x 2 + 2 3 + 4 + 2 2 3 + 4 3

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x 6 + 5 x 3 + 6 .

Решение

По условию видно, что необходимо произвести замену y = x 3 . Получаем:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

Корни полученного квадратного уравнения равны y = - 2 и y = - 3 , тогда

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3 = = x + 2 3 x 2 - 2 3 x + 4 3 x + 3 3 x 2 - 3 3 x + 9 3

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter