Алгоритм решения систем линейных неравенств. Системы линейных неравенств и выпуклые множества точек

Системой неравенств принято называть любую совокупность двух или более неравенств, содержащих неизвестную величину.

Наглядно данную формулировку иллюстрируют, к примеру, такие системы неравенств :

Решить систему неравенств - означает найти все значения неизвестной переменной, при которых реализуется каждое неравенство системы, либо обосновать, что таких не бывает.

Значит, для каждого отдельного неравенства системы вычисляем неизвестную переменную. Далее из получившихся значений выбирает только те, которые верны и для первого и для второго неравенства. Следовательно, при подстановке выбранного значения оба неравенства системы становятся правильными.

Разберем решение нескольких неравенств:

Разместим одну под другой пару числовых прямых; на верхнею нанесем величину x , при которых первое неравенств о (x > 1) становиться верным, а на нижней—величину х , которые являются решением второго неравенства (х > 4).

Сопоставив данные на числовых прямых , отметим, что решением для обоих неравенств будет х > 4. Ответ, х > 4.

Пример 2.

Вычисляя первое неравенство получаем -3х < -6, или x > 2, второе -х > -8, или х < 8. Затем делаем по аналогии с предыдущим примером. На верхнюю числовую прямую наносим все те значения х , при которых реализуется первое неравенство системы , а на нижнюю числовую прямую, все те значения х , при которых реализуется второе неравенство системы.

Сопоставив данные, получаем, что оба неравенства будут реализовываться при всех значениях х , размещенных от 2 до 8. Множеств значений х обозначаем двойным неравенством 2 < х < 8.

Пример 3. Найдем

На этом уроке мы начнем изучение систем неравенств. Вначале будем рассматривать системы линейных неравенств. В начале урока рассмотрим, откуда и зачем возникают системы неравенств. Далее изучим, что значит решить систему, и вспомним объединение и пересечение множеств. В конце будем решать конкретные примеры на системы линейных неравенств.

Тема : Рацион альные неравенства и их системы

Урок: Основн ые понятия, решение систем линейных неравенств

До сих пор мы решали отдельные неравенства и применяли к ним метод интервалов, это могли быть и линейные неравенства , и квадратные и рациональные. Теперь перейдем к решению систем неравенств - сначала линейных систем . Посмотрим на примере, откуда берется необходимость рассматривать системы неравенств.

Найти область определения функции

Найти область определения функции

Функция существует, когда существуют оба квадратних корня, т.е.

Как решать такую систему? Необходимо найти все x, удовлетворяющие и первому и второму неравенству.

Изобразим на оси ox множество решений первого и второго неравенства.

Промежуток пересечения двух лучей и есть наше решение.

Такой метод изображения решения системы неравенств иногда называют методом крыш.

Решением системы является пересечение двух множеств.

Изобразим это графически. Имеем множество А произвольной природы и множество В произвольной природы, которые пересекаются.

Определение: Пересечением двух множеств А и В называется такое третье множество, которое состоит из всех элементов, входящих и в А и в В.

Рассмотрим на конкретных примерах решения линейных систем неравенств, как находить пересечения множеств решений отдельных неравенств, входящих в систему.

Решить систему неравенств:

Ответ: (7; 10].

4. Решить систему

Откуда может взяться второе неравенство системы? Например, из неравенства

Графически обозначим решения каждого неравенства и найдем промежуток их пересечения.

Таким образом, если мы имеем систему, в которой одно из неравенств удовлетворяет любому значению x, то его можно исключить.

Ответ: система противоречива.

Мы рассмотрели типовые опорные задачи, к которым сводится решение любой линейной системы неравенств.

Рассмотрим следующую систему.

7.

Иногда линейная система задается двойным неравенством, рассмотрим такой случай.

8.

Мы рассмотрели системы линейных неравенств, поняли, откуда они появляются, рассмотрели типовые системы, к которым сводятся все линейные системы, и решили некоторые из них.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Портал Естественных Наук ().

2. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

4. Центр образования «Технология обучения» ().

5. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 53; 54; 56; 57.

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода неравенств

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5y +1/7y^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} y + \frac{1}{7}y^2 \)

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Первое неравенство системы.

Нажмите на кнопку для изменения типа первого неравенства.


> >= < <=
Решить систему неравенств

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Системы неравенств с одним неизвестным. Числовые промежутки

С понятием системы вы познакомились в 7 классе и научились решать системы линейных уравнений с двумя неизвестными. Далее будут рассмотрены системы линейных неравенств с одним неизвестным. Множества решений систем неравенств могут записываться с помощью промежутков (интервалов, полуинтервалов, отрезков, лучей). Также вы познакомитесь обозначениями числовых промежутков.

Если в неравенствах \(4x > 2000 \) и \(5x \leq 4000 \) неизвестное число х одно и то же, то эти неравенства рассматривают совместно и говорят, что они образуют систему неравенств: $$ \left\{\begin{array}{l} 4x > 2000 \\ 5x \leq 4000 \end{array}\right. $$

Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства. Данная система - пример системы линейных неравенств с одним неизвестным.

Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств - это значит найти все решения этой системы или установить, что их нет.

Неравенства \(x \geq -2 \) и \(x \leq 3 \) можно записать в виде двойного неравенства: \(-2 \leq x \leq 3 \).

Решениями систем неравенств с одним неизвестным являются различные числовые множества. Эти множества имеют названия. Так, на числовой оси множество чисел х, таких, что \(-2 \leq x \leq 3 \), изображается отрезком с концами в точках -2 и 3.

-2 3

Если \(a отрезком и обозначается [а; b]

Если \(a интервалом и обозначается (а; b)

Множества чисел \(x \), удовлетворяющих неравенствам \(a \leq x полуинтервалами и обозначаются соответственно [а; b) и (а; b]

Отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками .

Таким образом, числовые промежутки можно задавать в виде неравенств.

Решением неравенства с двумя неизвестными называется пара чисел (х; у), обращающая данное неравенство в верное числовое неравенство. Решить неравенство - это значит найти множество всех его решений. Так, решениями неравенства х > у будут, например, пары чисел (5; 3), (-1; -1), так как \(5 \geq 3 \) и \(-1 \geq -1\)

Решение систем неравенств

Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений.

И все же напомним: чтобы решить систему неравенств, нужно решить каждое неравенство по отдельности, а затем найти пересечение этих решений.

Например, исходная система неравенств была приведена к виду:
$$ \left\{\begin{array}{l} x \geq -2 \\ x \leq 3 \end{array}\right. $$

Чтобы решить эту систему неравенств, отметим решение каждого неравенства на числовой оси и найдём их пересечение:

-2 3

Пересечением является отрезок [-2; 3] - это и есть решение исходной системы неравенств.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 23 Системы линейных неравенств

Системой линейных неравенств называется любая совокупность двух или более линейных неравенств, содержащих одну и ту же неизвестную величину.

Примерами таких систем могут служить системы:

Решить систему неравенств - это значит найти все значения неизвестной величины, при которых выполняется каждое неравенство системы.

Решим приведенные выше системы.

Расположим одну под другой две числовые прямые (рис. 31); на верхней отметим те значения х , при которых выполняется первое неравенство (х > 1), а на нижней-те значения х , при которых выполняется второе неравенство (х > 4).

Сравнивая результаты на числовых прямых, замечаем, что оба неравенства одновременно будут удовлетворяться при х > 4. Ответ, х > 4.

Первое неравенство дает -3х < -б, или х > 2, а второе - х > -8, или х < 8. Далее поступаем так же, как и в первом примере. На одной числовой прямой отмечаем все те значения х , при которых выполняется первое неравенство системы, а на второй числовой прямой, расположенной под первой, все те значения х , при которых выполняется второе неравенство системы (рис. 32).

Сравнение этих двух результатов показывает, что оба неравенства одновременно будут выполняться при всех значениях х , заключенных от 2 до 8. Множество таких значений х записывается в виде двойного неравенства 2 < х < 8.

Пример 3. Решить систему неравенств

Первое неравенство системы дает 5х < 10, или х < 2, второе х > 4. Таким образом, любое число, удовлетворяющее обоим неравенствам одновременно, должно быть не больше 2 и больше 4 (рис. 33).

Но таких чисел не существует. Поэтому данная система неравенств не выполняется ни при каких значениях х . Подобные системы неравенств называются несовместными.

Упражнения

Решить данные системы неравенств (№ 179 -184):

Решить неравенства (№ 185, 186):

185. (2х + 3) (2 - 2х ) > 0. 186. (2 - π ) (2х - 15) (х + 4) > 0.

Найти допустимые значения букв, входящих в данные равенства (№ 187, 188):

Решить неравенства (№ 189, 190):

189. 1 < 2х - 5 < 2. 190. -2 < 1 - ах < 5.

191. Какой должна быть температура 10 л воды, чтобы при смешении ее с 6 л воды при температуре 15° получить воду с температурой не менее 30° и не более 40°?

192. Одна сторона треугольника равна 4 см, а сумма двух других 10 см. Найти эти стороны, если они выражаются целыми числами.

193. Известно, что система двух линейных неравенств не удовлетворяется ни при каких значениях неизвестной величины. Можно ли сказать, что отдельные неравенства этой системы невыполняются ни при каких значениях неизвестной величины?

Определение 1 . Совокупность точек пространства R n , координаты которых удовлетворяют уравнению а 1 х 1 + а 2 х 2 +…+ a n x n = b , называется (n - 1 )-мерной гиперплоскостью в n -мерном пространстве.

Теорема 1. Гиперплоскость делит все пространство на два полупространства. Полупространство является выпуклым множеством.

Пересечение конечного числа полупространств является выпуклым множеством.

Теорема 2 . Решением линейного неравенства с n неизвестными

а 1 х 1 + а 2 х 2 +…+ a n x n b

является одно из полупространств, на которые все пространство делит гиперплоскость

а 1 х 1 + а 2 х 2 +…+a n x n = b .

Рассмотрим систему из m линейных неравенств с n неизвестными.

Решением каждого неравенства системы является некоторое полупространство. Решением системы будет являться пересечение всех полупространств. Это множество будет замкнутым и выпуклым.

Решение систем линейных неравенств

с двумя переменными

Пусть дана система из m линейных неравенств с двумя переменными.

Решением каждого неравенства будет являться одна из полуплоскостей, на которые всю плоскость разбивает соответствующая прямая. Решением системы будет являться пересечение этих полуплоскостей. Данная задача может быть решена графически на плоскости Х 1 0 Х 2 .

37. Представление выпуклого многогранника

Определение 1. Замкнутое выпуклое ограниченное множество в R n , имеющее конечное число угловых точек , называется выпуклым n -мерным многогранником.

Определение 2 . Замкнутое выпуклое неограниченное множество в R n , имеющее конечное число угловых точек, называется выпуклой многогранной областью.

Определение 3 . Множество А R n называется ограниченным, если найдется n -мерный шар, содержащий это множество.

Определение 4. Выпуклой линейной комбинацией точек называется выражение, гдеt i , .

Теорема (теорема о представлении выпуклого многогранника). Любую точку выпуклого многогранника можно представить в виде выпуклой линейной комбинации его угловых точек.

38. Область допустимых решений системы уравнений и неравенств.

Пусть дана система из m линейных уравнений и неравенств с n неизвестными.

Определение 1 . Точка R n называется возможным решением системы, если ее координаты удовлетворяют уравнениям и неравенствам системы. Совокупность всех возможных решений называется областью возможных решений (ОВР) системы.

Определение 2. Возможное решение, координаты которого неотрицательны, называется допустимым решением системы. Множество всех допустимых решений называется областью допустимых решений (ОДР) системы.

Теорема 1 . ОДР является замкнутым, выпуклым, ограниченным (или неограниченным) подмножеством вR n .

Теорема 2. Допустимое решение системы является опорным тогда и только тогда, когда эта точка являетсяугловой точкой ОДР.

Теорема 3 (теорема о представлении ОДР). Если ОДР - ограниченное множество, то любое допустимое решение можно представить в виде выпуклой линейной комбинации угловых точек ОДР (в виде выпуклой линейной комбинации опорных решений системы).

Теорема 4 (теорема о существовании опорного решения системы). Если система имеет хотя бы одно допустимое решение (ОДР), то среди допустимых решений существует хотя бы одно опорное решение.